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With the aid of a small computer belonging to one of us, we have worked out many properties of the four-
dimensional counterpart of Rubik’s Cube, which we call the Rubik Tesseract because it is based on the same
geometrical principles that Rubik realized in his famous cube. It will be obvious that we have been guided
by Dr. Singmaster’s analysis of the Rubik cube and that our analysis could not have been made without
studying his “Notes on Rubik’s Magic Cube”(13).

1. Description of the Rubik Tesseract

A tesseract is a four–dimensional hypercube(7). It is bounded by eight cubical “faces” which meet at 16
corners, 32 edges, and 24 plane surfaces that we will call “squares”, reserving the word “faces” for the
boundary cubes. If we slice the tesseract into 81 equal smaller tesseracts, which we will call “tessies”, and
permit each of the eight “outer” layers of 27 tessies to rotate as a rigid body in a manner that preserves the
shape of the main tesseract, then we have a Rubik tesseract. (The rotations will be defined more precisely
in the next section.)

One tessie is at the center of the main tesseract, and one of them lies at the center of each of the eight
rotatable layers. These nine tessies retain their positions in a rotation; the other 72 can be moved from one
position to another. As with the Rubik cube, the re-arrangements can be very complex.

Each intersection of two or more faces of the main tesseract is the site of a movable tessie, and the (cubical)
boundaries of that tessie which lie in the intersecting faces are its “facets”. Since four faces meet at each
corner of the tesseract, there are sixteen 4-faceted tessies, which we call “tetrads”. Three faces meet at each
edge, so there are 32 3-faceted tessies which we call “triads”; and two faces meet at each square, so there
are 24 2-faceted tessies that we call “dyads”. Altogether the 72 movable tessies have 208 facets.

When the tesseract is sliced into tessies, each of its cubical faces is divided into 27 smaller cubes like the
“cubies” of a Rubik cube (if the cubies were real cubes instead of only having the external appearance of
cubes). One of these cubes is at the center of the face and the other 26 are facets of some of the movable
tessies. That is, if we think of a face as a Rubik cube, the eight corner cubies are facets of tetrads, the twelve
edge cubies are facets of triads, and the six axial cubies are facets of dyads. Since each facet belongs to a
different tessie, there are 26 movable tessies in the layer adjacent to a given face, and rotations of this layer
will involve only these 26 tessies.

Many people find it difficult, perhaps impossible, to visualize a tesseract (although it is not different in
principle from trying to visualize a three-dimensional machine from blueprints of it). But its faces can be
visualized in three dimensions by rotating them into a common 3-space, in much the same manner that the
surface of a cube can be developed onto a plane surface. Salvador Dali used this idea in his famous painting
“Corpus Hypercubus” (See Ref. 7) and we show such a representation in Figure 1. To avoid confusion
only the facets of four tetradic positions are shown. Facets belonging to the same position are numbered
consecutively; e.g. 145, 146, 147, 148. Further details in this Figure will be explained in the subsequent
discussion.

We number the faces of the tesseract 1 to 8 so that opposite faces are congruent, mod 4. (5 is opposite to
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1, etc. It is sometimes convenient to denote the face opposite to 1 by 1′, etc.) Then the position of a tessie
can be designated by the faces in which its facets lie; for example, the tetradic position whose facets we
have numbered 145-148 in Figure 1 is designated 1234. A triad will have a 3-digit number; for example, 127
designates a triad with facets in faces 1, 2 and 7. It could also be designated 123′. Similarly, 12 designates
a dyad.

2. Rotations of the Rubik Tesseract

The tesseract has four principal axes that meet orthogonally at its center and are perpendicular to the faces
they intersect. The directed axes passing through faces 1 to 4 are considered positive and are numbered 1
to 4 also. The negative axes are 5 to 8, 5 being the negative 1-axis, etc. We sometimes call these axes -1
to -4. In Figure 1 we show the positive axes in each face, as they are rotated along with the face into the
“3-space” of the picture.

In 2-space, a rotation occurs around a center (a point), in 3-space around an axis (a line). In 4-space it occurs
around a plane that we will call the “plane of rotation” (not to be confused with the planes, perpendicular to
it, in which points move through arcs under the rotation). For the Rubik tesseract, the permitted rotations
are 90 degree rotations (or multiples thereof) of a layer of tessies around any of the planes of rotation formed
by a pair of principal axes. The principal axis that “points to” the layer being turned is called the “primary
axis”; it may be any one of the eight axes, positive or negative. The other principal axis that defines the
plane of a rotation is called the “secondary axis” of the rotation.

The face of the tesseract to which the primary axis of a rotation points (and which bears the same number)
turns as a whole, in its own 3-space, around an axis through its center parallel to the secondary axis of
rotation. (Similarly, a rotation of a Rubik cube causes one of its faces to rotate in its own plane, about its
center point.) If the rotation of this face is clockwise, as seen by an observer in the same 3–space who looks
backward along the positive (translated) secondary axis from outside the cube, we call the Rubik rotation
positive. A counterclockwise rotation is called negative. There are, therefore, three different positive Rubik
rotations for each face of the tesseract, corresponding to the three axes about which the face can be rotated
in its own 3–space.

A positive 90 degree rotation about a primary axis, i, and a secondary axis, j, will be called a basic rotation
of the Rubik tesseract and will be denoted by Rij . The inverse, or negative rotation, will be denoted by R′

ij .
Now i can have any value from 1 to 8 and j any value from 1 to 4, but j and j + 4 must be different from i.
So there are 24 basic rotations of the Rubik tesseract.

3. Rotations Expressed as Permutations of Tessies

Each basic rotation changes the positions of tessies having facets lying in the face of the primary axis, and
the rotation can be described as a product of cyclic permutations of the tessie positions. It is evident from
the manner in which the face rotates about the translated secondary axis that each basic rotation will involve
two 4–cycles of tetrads, three 4–cycles of triads, and one 4–cycle of dyads, all disjoint. The other two dyads
with facets in the face are in the plane of rotation (their facets in the face are on the translated secondary
axis) and so they turn but do not move to new positions under the rotation. Altogether, 24 tessies and 76
facets change position under each rotation.

In Figure 1 we show the motion of the tetrad whose “Start” position (indicated by the colors of the faces)
is 1234, under the action of the rotation R12. The successive positions of the tetrad can be described by a
single tessie cycle or by four cycles of facets, as shown on the Figure.

To obtain the 24 basic permutations we wrote a computer program which calculated the permutations of the
208 facets and converted them into permutations of tessies. Each facet was assigned a number from 1 to 208
and its location identified by a coordinate vector. The i-th coordinates of the facets lying in Face i (i = 1 to
4) were assigned the value of 2, and -2 for the facets in Face i+4, or −i. The other coordinates of the facets
in the same face were given values of 1, –1, or zero according to their locations in the tri–axial coordinate
frame of the face. Thus, dyadic facets have two zero coordinates, triadic facets have one, and tetradic facets
have none. For instance, Facet No. 160 in Figure 1 will be seen to have the coordinate vector (1, 1,−1,−2).
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Each rotation was described by a 4x4 rotation matrix(12). For instance, the rotation R12 has the matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

for facets whose 1–component is positive, and the unit matrix for all other facets. Then the new location
and facet number after a rotation was found by pre–multiplying the old coordinate vector by the rotation
matrix. Thus, multiplying (1, 1,−1,−2) by R12 gives the vector (1, 1,−2, 1), which Figure 1 shows to be the
location of Facet 155.

The 24 basic rotations expressed as cyclic permutations are listed in Table 1. The digits in the first position
of each cycle can be written in any order, but the subsequent positions must follow in corresponding order
to maintain the proper orientations of the tessies.

Our nomenclature is similar to Singmaster’s. We could, for example write

1 = Up
2 = Right
3 = Front
4 = In

5 = Down
6 = Left
7 = Back
8 = Out

However, we find that the numerical system is preferable for computer operation and for visualizing moves,
and especially for turning the tesseract around in 4–space. (See Section 6a).

4. Useful Moves - The Computer Model

The foregoing discussion has been mainly a matter of definitions, preparatory to our main purpose, which is
to analyze the moves on the Rubik tesseract in the manner that Singmaster analyzed the moves on the Rubik
cube; that is to say, to determine what permutations of the tessies are possible, and to find “useful moves”
that would permit any possible permutation to be accomplished. A “move” is any sequence of the basic
rotations; a useful move is a move that involves only a small number of tessies, from which more complex
permutations can be built up.

Since we cannot build a physical Rubik tesseract, we needed two tools to look for useful moves. The first
was a device for visualizing the tesseract and suggesting useful moves; the second was a computer model
to calculate the permutations resulting from the moves. Our visualizing device is simple: the diagram of
Figure 2 mounted on a pin–board. This diagram is the “development” of the faces shown in Figure 1 with
the faces moved apart so that they don’t overlap. The locations of the facets of any tessie are easily found
from the coordinate axes and marked with pins. A basic rotation Rij is followed by looking at face i and
visualizing it turning clockwise around axis j. Thus the new position of any facets in that face can be found
and marked, and the other facets of the same tessie in other faces can be found because they have the same
set of face numbers. The pin–board diagram is especially useful for finding conjugating moves.

The computer model of the tesseract permits us to carry out moves and see the results. It contains an array
(M) that describes the current arrangement of the tesseract. The model will perform the following routines
on command:

Re–arrange the M–array in accordance with an input move, that consists of basic rotations and
stored combinations of basic rotations. The M–array can also be reset to the “Start” arrangement.

Calculate and display the tessie cycles that produce the current arrangement from the “Start”
arrangement

A program listing is included in Appendix B. The programming language is “Tiny Pascal”(5), which we
selected for its suitability to the problem and its availability to us. For the final phases of this work, we
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purchased a version of Tiny Pascal which operates under CP/M (the most widely used operating system for
8–bit microcomputers). The conversion of the program to standard Pascal is relatively straightforward.

a. Description of the Tesseract

The model contains the 24 basic rotations in a data bank, in the form of the facet permutations that were
calculated by the program described in Section 3. In the data bank, dyadic facets are numbered from 1
to 48, and facets of the same dyad are numbered consecutively; that is, facets 1 and 2 are on the same
dyad, 3 and 4 are on the same dyad, etc. The triadic facets are numbered from 49 to 144, with the same
system of consecutive numbering. The tetradic facets are numbered from 145 to 208, again with consecutive
numbering. These values are stored in the array M, which is a vector of 208 elements. Initially, M[J] contains
the value J, which means that each facet, and hence each tessie, is at the initial, or “Start” position.

After a move has been carried out, M[J] will contain the original location of the facet at location J. For
example, a tesseract in the initial configuration operated on by the permutation (1, 5, 7, 11) results in
M[1]=11, M[5]=1, M[7]=5, and M[11]=7. The M vector, then, is a complete description of the state of the
tesseract.

b. Moves

Each basic rotation moves 24 tessies with their 76 facets to new locations in the tesseract. These 76 facets
are permuted in 19 four-cycles. This permutation is carried out by PROC Z, which accesses the data bank
and carries out each 4-cycle, using PROC PERMUTE to modify the M-vector. All of the basic rotations are
in the CASE statement at the beginning of PROC Z. For a basic rotation Rij , the argument N of PROC
Z is the number ij. For rotations involving “negative” faces, two numbers are accepted: −ij, or (i + 4)j.
For example, Z(12) denotes a basic rotation of Face 1, with secondary axis 2. Z(-12) or Z(52) are equally
acceptable means of indicating a basic rotation of the opposite face.

As a convenience, useful moves were added to PROC Z as they were found. The moves Q1 to Q36 (see
following Sections and Appendix A) are called by using Z(101) to Z(136). Other moves are included with
arguments of 200 − 425; these are not intended to be used directly, but are required to carry out the Qi

moves. All of these moves call on basic rotations, or call on other moves that ultimately use basic rotations.
The recursion capability of Tiny Pascal is very useful in programming these operations.

c. Program Control

At any point, the effect of the moves that have been performed on the tesseract can be determined by entering
the value 99. This causes the REKAP variable to be set TRUE, which causes the procedure GETCYCLES
to execute, first for the dyads, then for the triads, and finally for the tetrads. The cycles are printed for each
type of tessie. GETCYCLES is described below.

After the cycles are obtained, more moves may be made, and the cycles can be printed out for the tesseract
in its new state. Or, the tesseract may be brought back to the initial state by entering 999, and a new set
of operations begun.

d. PROC GETCYCLES

This procedure takes advantage of the fact that the facets of any single tessie are numbered consecutively. It
begins by determining if any facet of a given tessie has been moved from the “Start” position. The variable
ACTIVITY is set TRUE if this is the case. Then the permutations are traced out by using the procedure
LOOKFOR, which recursively “chases” the original occupant of M[J] until it finds it, retaining along the
way the locations it has traversed. When all the permutations of facets of a given tessie have been traced,
the cycles are printed out. The facet numbers are not printed; instead the face numbers of the tesseract
are used, so that the tessie notation described in Section 1 is the result. When orientation changes occur,
it often happens that cycles of one facet differ in length from another facet of the same tessie. This is dealt
with by revising the cycle length to a length equal to the least common multiple of all the cycles. Each cycle
is then simply repeated the required number of times.

GETCYCLES starts with the lowest numbered facet, and works up. When a facet J has been involved in a

4



permutation cycle, the variable FLAG[J] is set FALSE, and this facet is considered no further. This avoids
repetition of permutation cycles for each tessie involved in the cycle.

The variable OK is used to indicate whether a legal move has been attempted. If a move is attempted which
is not in the repertoire, an appropriate message is printed, and the user is prompted for another input move.

e. Performance

We use a computer with a Z80 processor, with a 4 MHz clock speed, and 56K bytes of programmable
memory. The program in its present state carries out approximately 45 basic rotations per second. The
longest move in PROC Z is Q22, which consists of 14616 basic rotations - 323 seconds is required for this
move. The program is operated in a 48K CP/M system, with the data bank occupying 2032 bytes above
48K (C000 hex). We have not attempted to operate with smaller storage than this. The Tiny Pascal system
was purchased from Supersoft, Inc. They describe the compiler as requiring a minimum 36K CP/M system.

5. Permutations of Position

Even with the computer model and the pin-board, making moves on the tesseract is more cumbersome than
making moves on a Rubik cube. But this disadvantage seems to be offset by the greater flexibility for making
moves in four dimensions. At any rate, we were able to find all the moves necessary to generate any possible
permutation, as detailed in Appendix A.

We first consider permutations of position. (Permutations of orientation are discussed in the next section.)
From the cycle structure of the basic rotations, all such permutations of tetrads must be even. The positional
permutations of triads and dyads considered by themselves can be even or odd, but taken together they must
be even. The simplest possible permutation of tetrads, triads, or dyads by themselves is, therefore, a pair of
interchanges.

By using the same idea that Singmaster suggested for the cube we were able to find very quickly a move, Q1,
that involved only two interchanges of dyads and two of triads. (It is rather remarkable that from this one
move we were able to generate systematically all the moves, both positional permutations and orientation
permutations, that are necessary to define the group of the Rubik tesseract.) From Q1 it was fairly simple
to find two interchanges of triads alone:

Q4 = (238, 274)(638, 674)

and two interchanges of dyads alone:

Q6 = (23, 27)(43, 47)

Finding two interchanges of tetrads was more involved but fairly straightforward. We arrived at:

Q3
17 = (1346, 1836)(5678, 7654)

(The details of these moves are given in Appendix A.)

A move involving one dyadic and one triadic interchange can also be developed. (See Appendix A). In fact
every possible permutation of positions can be obtained from the above three moves.

Although these moves are “simple” in terms of the permutations involved, they are not short. The last result
above, for example, requires 1812 basic rotations. Nevertheless it is built up from Q1 in only about ten short
steps, and since the computer does the calculations in reasonable times, there is no great incentive to keep
the moves short in terms of the number of basic rotations.

6. Permutations of Orientation

Permutations of orientation on the tesseract are even more interesting than those on the Rubik cube. They
also come in a greater variety of types, so that Singmaster’s terminology is not adequate to describe them.
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We have adopted a system in which a twisted cycle is indicated by letters a, b, c, d. For instance, abc means
that the first 3 facets of each tessie permute cyclically, the first to the position of the second, etc. Thus:

(123, 567)abc = (123, 567, 312, 756, 231, 675)

(123, 567)ab = (123, 567, 213, 657)

etc. We will call a permutation involving two letters a “flip” or a “reflection”, one involving three letters a
“twist”, and one involving four letters, such as (ab)(cd), a “cross”.

a. Coordinate Systems

Before discussing these permutations it is necessary to look more closely at the coordinate system for the
tesseract. It is evident that we could have numbered the coordinate axes in numerous ways (4! × 24 to be
exact). These fall into two sets such that any two coordinate frames in the same set are superposable by
turning the frame around in 4–space; but each frame in one set is an enantiomorph of one in the other set.
[For more discussion of enantiomorphism see Ref. 6] In order to study changes in orientation we need to
have a rule to know when two frames are congruous (i.e., superposable by rotations in 4-space). The rule is
that the number of transpositions of positive axes plus the number of reversals of axes must be even. For
instance, referring back to Section 3, the following frames are all congruous:

Up Right Front In
Present Frame : 1 2 3 4
Exchange U–R and F–I : 2 1 4 3
Exchange F–I and Reverse F–B : 1 2 8 3
Reverse F–B and I–O : 1 2 7 8

Thus, for example, it is possible to move a tetrad from 1234 to 1283 (R12 does it) but impossible to move
from 1234 to 1238. The same rule applies in three dimensions. (This is why a corner cubie can be twisted
but not reflected.) In three dimensions it is not necessary to think about the rule because, when dealing with
a physical object, it is impossible to violate it; but for four dimensions we must be aware of it. (Incidentally,
an examination of the basic rotations in Table 1 shows that each tetradic move transposes one pair of axes
and reverses one axis, in accordance with this rule. That is, each cycle is written congruously, as it must be.
The two tetradic cycles of a rotation happen to be written incongruously to each other, but this does not
matter.).

An application of this rule is the operation that we call “transpose” in Appendix A, which we employ to derive
useful moves. The scheme is based on the fact that the digits in the tessie positions of a permutation are
related to the subscripts on the rotations that generate the permutation. Thus we can get a new permutation
merely by changing the subscripts of the rotation. For instance, the permutation (13, 14). . . can be changed
to (23, 24). . . by interchanging 1 and 2 on the subscripts of the rotations involved. But, according to
the above rule, if we make only one transposition we are looking at a “mirror image” of the tesseract, in
which all rotations are reversed in direction. Thus, when we transpose two digits in the permutation, we
must also invert all the rotations involved in the move (whether or not their subscripts are affected by the
transposition).

We now consider the orientation-permutations for dyads, triads, and tetrads.

b. Dyadic Flips

Dyads have only two orientations. A reversal of orientation is called a flip, and since this is an odd permu-
tation, it follows that flips must occur in pairs. In Appendix A we derive a pair of flips:

Q24 = (12)ab(34)ab = (12, 21)(34, 43)
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Thus the situation for dyads is much the same as on the Rubik cube.

c. Triadic Twists and Reflections - Gene Splicing

Triads have six permutations of orientation corresponding to the S3 group (symmetric group of permutations
on three letters). Three of them are twists (abc, acb, and I=identity) and three are reflections (ab, ac, and
bc). On the Rubik cube, only twists of corner cubies are possible because the reflections are 3-dimensional
enantiomorphs. But just as two-dimensional enantiomorphs can be superposed in three dimensions, so
3-dimensional enantiomorphs, which the triadic reflections are, can be superposed in four dimensions. A
reflection is an odd permutation, so they must occur in pairs. A twist is an even permutation, so they
can occur in isolation. Such an isolated twist is derived, in Appendix A, by use of the transposition device
described in Section 6a:

Q29 = (123)abc = (123, 312, 231)

The reverse twist is Q′
29 = Q2

29 = (123)acb

We did not find any direct way to generate a pair of reflections, so we used a device we call “gene splicing”
based on a rather far-fetched analogy with the recently developed techniques of genetic transformations.
First, we found a long complex permutation (the “chromosome”) that contains the desired reflection (the
“gene”). We splice onto this chromosome another “gene”, one of the isolated twists found above. Then we
make a permutation that “mutates” the reflection into the twist and vice-versa, on the chromosome. Finally,
by reacting this chromosome with the original one, we isolate the two genes, obtaining:

Q35 = (134)ac(275)bc

The details are in Appendix A.

d. Tetradic Twists and Crosses

There are 24 permutations of the four facets of a tetrad, comprising the S4 group. Four of them are crosses
[(ab)(cd), (ac)(bd), (ad)(bc), and I], eight of them are twists, six are 2-cycles (e.g. ab, etc.), and six are
4-cycles (e.g. abcd, etc.). Two-cycles and 4-cycles cannot occur in 4-space because they violate the rule
given above in Section 6a. That is, they involve an odd number of transpositions of axes and no reversals,
so they are 4-dimensional enantiomorphs. For instance

(1234)cd = (1234, 1243)

and this permutation cannot occur. Likewise, a 4–cycle is equivalent to an odd number of transpositions
and can’t occur either.

The even permutations, which form the alternating group (A4), are all possible. [See Ref. 3 for explanation
of the group-theoretic terminology used in the following analysis.] The crosses are a normal subgroup of the
alternating group, that we shall call N . That is:

N = [I, (ab)(cd), (ac)(bd), (ad)(bc)]

The cosets of N , which we call S and Z, are composed of the twists. Specifically

S = [abc, adb, acd, bdc]

Z = [acb, abd, adc, bcd]
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The sets N ,S, and Z form the quotient-group of A4 by N :

A4/N = [N,S,Z]

in which N acts as the identity element. The group multiplication table is:

NS = SN = Z2 = S NZ = ZN = S2 = Z SZ = ZS = N2 = N

meaning that the product of an element from N and one from S is in S, the product of two elements of Z is
in S; the product of an element of N and one from Z, or of two elements from S, is in Z; and the product
of an element from S and one from Z, or of two elements from N , is in N .

The quotient-group is cyclic and isomorphic with the group of residue classes, mod 3. If we count each S-
twist as +1, each Z-twist as −1, and each cross as zero, then the above table states that in any interactions
among the tetradic orientations the sum of all three types is invariant, mod 3. Since initially the sum is
zero, the sum is always congruent to zero, mod 3. More simply put, the sum of S-twists (+1) and Z-twists
(−1) must be congruent to zero, mod 3, but there is no constraint on the crosses. This is the equivalent,
for the tetrads, of the rule for corner-cubies on the Rubik cube: that the sum of the clockwise (+1) and
counterclockwise (−1) twists is congruent to zero, mod 3. But whereas the Rubik cube has only one twist of
each type, the tesseract has four, not to mention the crosses; and they can be combined in any way subject
to this constraint.

Therefore, an isolated cross is possible, but the minimum number of twists is two, of which one must be an
S-twist and the other a Z-twist. Examples of both cases were found (see Appendix A). Thus:

Q21 = (1234)(ad)(bc) = (1234, 4321)

Q18 = (1234)acd(1283)adc

In Q18 we have another example of the rule we stated in Section 6a. For, (1283)adc = (1238)acd. If we
wrote Q18 in the form (1234)acd(1238)acd we would seem to violate the S −Z addition rule. But this is only
because 1238 is on the “opposite side of the mirror” from 1234. It is exactly as if we twisted two corners of
a Rubik cube and then looked at one of them directly and the other in a mirror; we would see two twists in
the same direction. So, in expressions like Q18, we ought to write the tessies congruously.

There are 32 possible pairs of twists on 1234 and 1283, with one being an S-twist and the other a Z-twist,
and all of them can be obtained as shown in Appendix A. Similarly, the other two crosses on 1234 can be
obtained.

7. The Group of the Rubik Tesseract

The group of the Rubik tesseract is composed of all those permutations that can be generated by the basic
rotations in Table 1. We have shown that the constraints on this group are:

• Tetradic positional permutations must be even;

• Dyadic plus triadic positional permutations must be even;

• Dyadic flips and triadic reflections must be even;

• Tetradic S - Z twists must be congruent to zero, mod 3

We have also shown that all possible permutations within these constraints can actually be generated.

The number of permutations of position is therefore (24! 32! /2) × (16! /2). The number of dyadic flips is
224/2. With respect to the triads, any of the six orientations is possible for the first 31, but if the number of
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reflections to that point is even, the last orientation must be one of the three twists; and if it is odd, the last
orientation must be one of the three reflections. So the total number of possibilities is 632/2. Similarly, the
first fifteen tetrads can have any of 12 orientations independently, but if the S – Z sum at that point is zero,
the last orientation must be one of the four crosses (including I), or if it is +1 the last orientation must be
a Z-twist, or if it is -1, an S-twist. In each case, there are four possibilities for the last tetrad instead of 12,
so the number of combinations is 1216/3.

So the total number of permutations, the order of the Rubik tesseract group, is (24! 32! 16! /4) × (224/2) ×
(632/2)× (1216/3) or approximately 1.76× 10120, which is about the same as the number of ways to play a
game of chess(2).

We have dealt only with very simple permutations and short cycles (except for the “chromosomes”) but
very long cycles and complex permutations are obviously possible. There are elements of order 12,432,420
(= 22 × 33 × 5× 7× 11× 13× 23), consisting of an 11-cycle and a 13-cycle of dyads, a 23-cycle and a twisted
9-cycle of triads, and a 5-cycle, a 7-cycle, and two crossed 2-cycles of tetrads. From cursory examination of
the possibilities, this is probably the maximum order of an element in the group, but it might not be.

8. Rubik N-topes

“In that blessed region of Four Dimensions, shall we linger on the threshold of the Fifth, and not enter
therein?” E. A. Abbott - “Flatland”

The foregoing ideas can obviously be extended to spaces of higher dimensions. For brevity, we shall call an
N -dimensional regular orthogonal polytope an N -tope. The Rubik N -tope is obtained by slicing an N -tope
into 3N equal smaller N -topes, called “topies”, and permitting any outer layer of 3N−1 topies to rotate
rigidly in a manner analogous to the rotations of the Rubik cube and tesseract. The structural features of
the Rubik N -tope are listed in Table 2.

The “axes” of a rotation of a Rubik N -tope are (N-2)-dimensional Euclidean spaces. For the 5-tope, for
example, they are 3-spaces and there are six of them for each face, so that the Rubik 5-tope has sixty basic
rotations.

The permutations of topies generated by the basic rotations form the group of the Rubik N -tope. The order
of the group is calculated as follows. The basic rotations are always odd permutations of dyads and triads
and are even permutations for n-ads of n > 3. (See at bottom of Table 2). So, the number of permutations
of position is

Pp =
(aN,2)! (aN,3)! · · · (aN,N )!

2N−2

where aN,n is the number of n-ads (see Table 2).

For n < N , the n-ads can have any orientations of the Sn group (symmetric group on n letters), provided
that the total number of permutations of orientation is even; hence there are (1/2)(n! )aN,n permutations of
orientation of n-ads for n < N .

For the N -ads, the orientations are limited to the even permutations, that is, to the alternating group AN ,
because odd permutions are enantiomorphic. The number of possible permutations depends on the number
tN of orbits in the action of the N -tope group on the set of patterns of orientations of N -ads.

There are (N ! /2)aN,N such patterns. So the total number of permutations of orientation is:

Po =
(2! )aN,2(3! )aN,3 · · · (N ! )aN,N

tN2N−2+aN,N

and the order of the Rubik N-tope group is PpPo. For N equal to 3 or 4, the number of orbits, tN , is equal
to 3. We have seen in Section 6d that the reason there are three orbits for the case N = 4 is that the

9



alternating group on four letters has a normal subgroup. For N > 4, AN has no normal subgroup; Buhler
et al give a proof that tN = 1 for N > 4 (Ref. 4).

For example, the order of the Rubik 5-tope group is

40! 80! 80! 32! 23468024806032 ≈ 7.017× 10560

It should be noted that this calculation gives only the maximum possible order for the Rubik N -tope group,
since we have not actually demonstrated, as we did for N = 4, that all the permutations can actually be
reached. But on the basis of the results for the tesseract we feel strongly that this is the actual order.

Like Mr. Square of Flatland(1), after this brief glimpse we must now descend from these insubstantial spaces.

9. The Rubik Cube Group as a Subgroup of the Rubik Tesseract Group

The Rubik cube group is a tiny subgroup of the Rubik tesseract group, considerably smaller, in terms of the
relative numbers of their elements, than a proton is to the entire universe we know. Nevertheless, because of
recent interest in the Rubik cube among a small part of humanity, we should take a look at this subgroup.
After all, the structure of a proton is not without interest, at least to an even smaller part of humanity.

We have already noted that each face of a Rubik tesseract corresponds to a Rubik cube in the sense that each
facet of the face is a cubie: tetradic facets are corner cubies, triadic facets are edge cubies, and dyadic facets
are axial cubies. Now consider a particular face, say Face 4, and the rotations R14, R24, R34, R54, R64, R74

of the six faces adjoining it. The permutations generated by these rotations form a group in which no facets
enter or leave Face 4, and their effects within Face 4 are exactly the same as the six basic rotations of the
Rubik cube, except that they are left-handed. In fact each of the above rotations has one triadic and one
tetradic cycle involving Face 4, and if we drop the 4 (which is is invariant) from each position of these cycles
and neglect the other cycles not involving Face 4, and also drop the subscript 4 from the R’s, we have

R1 = (12, 17, 16, 13)(123, 172, 167, 136)

R2 = (12, 32, 52, 72)(123, 325, 527, 721)

R3 = (13, 63, 53, 23)(123, 613, 563, 253)

R5 = (52, 53, 56, 57)(523, 536, 567, 572)

R6 = (16, 76, 56, 36)(163, 761, 567, 365)

R7 = (17, 27, 57, 67)(127, 257, 567, 617)

This is a set of basic (left-handed) rotations for the Rubik cube group. Additionally we note that the
rotations R41, R42, and R43 cause Face 4 to rotate about the secondary axis, in its own 3-space; that is, they
turn the Rubik cube around. The rotation R41, for example, turns the cube 90 degrees about Axis 1. The
effect on the other axes is given by the dyadic cycle of R41 : (24, 34, 64, 74). So Axis 2 goes to Axis 3, Axis
3 to Axis 6, etc. and we see that these are also left-handed turns.

10. Quarks

Viewing the Rubik cube as just a face of a Rubik tesseract throws a new light on the problem of “quark
isolation” discussed by D. R. Hofstadter (10). In his article he describes an analogy (attributed to S. W.
Golomb — see also Ref. 9) between corner–cubie twists and quarks. Like quarks, a twist cannot occur in
isolation on a Rubik cube, but only in pairs of opposite twist or in three’s with the same twist.

From our present vantage point, we see that the corner–cubie twists are mere shadows of tetradic twists that
a four–dimensional hypercubist can generate. For instance, he can generate a pair of twists such as

(1234)abc(1283)abd
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which to a Rubik cubist in the space of Face 4 appears as an isolated corner twist (a clockwise twist of the
URF cubie); for he does not know that in another 3–space parallel to his, there is another Rubik cube (Face
8) on which a counterclockwise twist has appeared simultaneously.

The hypercubist can play many mystifying tricks on the poor cubist. When the latter has made an ordinary
pair of twists, such as (123)abc(253)acb - which are really (1234)abc(2534)acb — the invisible hypercubist can
snatch one of them away by conjugating with R2

52, which moves (2534)acb to (2578)acb in Face 8. He can flip
a single edge-cubie, and even stranger, perhaps, he can reflect a single corner-cubie, by (1234)(ab)(cd).

Analogously, the quarks may be shadows of hyperquarks, like the shadows of the puppets on the wall of
Plato’s cave, that can be produced or snatched away by an invisible puppeteer*. Some physicists believe that
“wormholes” exist connecting “two distinct but asymptotically flat universes” and perhaps that particles
can pass through such wormholes from one universe to the other (11). Perhaps this is the way to isolate a
quark, like the hypercubist moves a twist from one face to another.

Finally, we would note that we have three types of tetrads, N , S, and Z, corresponding to the three colors of
quarks, and each type has four “flavors”. If the physicists had stopped when they had four flavors of quarks
we would perhaps have a better analogy; but now that they believe in five or maybe six flavors (8) we find
we have reached or surpassed the limits of our analogical powers.

* Behold! human beings living in an underground den,. . . here they have been since their childhood, . . .
chained so that they cannot move, and can only see before them. . . . Behind them a fire is blazing at a
distance, and between the fire and the prisoners there is a raised way; and . . . a low wall . . . like the
screen which marionette players [use to] show their puppets. . .

You have shown me a strange image, and they are strange prisoners.

Like ourselves, I replied; and they see only their own shadows, or the shadows of one another, which the fire
throws on the opposite wall of the cave?. . . And of the objects which are being carried [by the puppeteers]
in like manner they would only see the shadows?

Yes, he said. . .

To them, I said, the truth would be literally nothing but the shadows of the images.

– Plato, The Republic, Book VII

Assuredly not, he said; I have hardly ever known a mathematician who was capable of reasoning.

– op. cit. sup.
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Figure 1

Facet Cycles

of R12 shown:

(145, 149, 157, 153)
(146, 150, 158, 154)
(147, 152, 159, 156)
(148, 151, 160, 155)

RUBIK TESSERACT

The large cubes are faces of the tesseract that have been rotated into the 3–space of Face 4,
which is hidden behind Face 3 and below Face 1. The small cubes are the facets of a tetrad
as it moves through the cycle (1234, 1283, 1278, 1247) under the action of rotation R12. The
“start” position of this tetrad, as indicated by the colors of its facets, is 1234.



Figure 2

The coordinate axes
of each face have been
rotated with the face
into the 3–space of
Face 4.

“Pin–Board” Diagram of Tesseract



TABLE 1 – BASIC ROTATIONS

R12 =(13, 18, 17, 14)(123, 128, 127, 124)(134, 183, 178, 147)(163, 168, 167, 164)
(1234, 1283, 1278, 1247)(1634, 1683, 1678, 1647)

R13 =(12, 14, 16, 18)(123, 143, 163, 183)(124, 146, 168, 182)(127, 147, 167, 187)
(1234, 1436, 1638, 1832)(1274, 1476, 1678, 1872)

R14 =(12, 17, 16, 13)(123, 172, 167, 136)(124, 174, 164, 134)(128, 178, 168, 138)
(1234, 1724, 1674, 1364)(1238, 1728, 1678, 1368)

R21 =(23, 24, 27, 28)(123, 124, 127, 128)(523, 524, 527, 528)(234, 247, 278, 283)
(1234, 1247, 1278, 1283)(5234, 5247, 5278, 5283)

R23 =(12, 82, 52, 42)(123, 823, 523, 423)(124, 821, 528, 425)(127, 827, 527, 427)
(1234, 8231, 5238, 4235)(1274, 8271, 5278, 4275)

R24 =(12, 32, 52, 72)(123, 325, 527, 721)(124, 324, 524, 724)(128, 328, 528, 728)
(1234, 3254, 5274, 7214)(1238, 3258, 5278, 7218)

R31 =(23, 83, 63, 43)(123, 183, 163, 143)(523, 583, 563, 543)(234, 832, 638, 436)
(1234, 1832, 1638, 1436)(5234, 5832, 5638, 5436)

R32 =(13, 43, 53, 83)(123, 423, 523, 823)(134, 435, 538, 831)(163, 463, 563, 863)
(1234, 4235, 5238, 8231)(1634, 4635, 5638, 8631)

R34 =(13, 63, 53, 23)(123, 613, 563, 253)(134, 634, 534, 234)(138, 638, 538, 238)
(1234, 6134, 5634, 2534)(1238, 6138, 5638, 2538)

R41 =(24, 34, 64, 74)(124, 134, 164, 174)(524, 534, 564, 574)(234, 364, 674, 724)
(1234, 1364, 1674, 1724)(5234, 5364, 5674, 5724)

R42 =(14, 74, 54, 34)(124, 724, 524, 324)(134, 714, 574, 354)(164, 764, 564, 364)
(1234, 7214, 5274, 3254)(1634, 7614, 5674, 3654)

R43 =(14, 24, 54, 64)(124, 254, 564, 614)(134, 234, 534, 634)(174, 274, 574, 674)
(1234, 2534, 5634, 6134)(1274, 2574, 5674, 6174)

R52 =(53, 54, 57, 58)(523, 524, 527, 528)(534, 547, 578, 583)(563, 564, 567, 568)
(5234, 5247, 5278, 5283)(5634, 5647, 5678, 5683)

R53 =(52, 58, 56, 54)(523, 583, 563, 543)(524, 582, 568, 546)(527, 587, 567, 547)
(5234, 5832, 5638, 5436)(5274, 5872, 5678, 5476)

R54 =(52, 53, 56, 57)(523, 536, 567, 572)(524, 534, 564, 574)(528, 538, 568, 578)
(5234, 5364, 5674, 5724)(5238, 5368, 5678, 5728)

R61 =(63, 68, 67, 64)(163, 168, 167, 164)(563, 568, 567, 564)(634, 683, 678, 647)
(1634, 1683, 1678, 1647)(5634, 5683, 5678, 5647)

R63 =(16, 46, 56, 86)(163, 463, 563, 863)(164, 465, 568, 861)(167, 467, 567, 867)
(1634, 4635, 5638, 8631)(1674, 4675, 5678, 8671)

R64 =(16, 76, 56, 36)(163, 761, 567, 365)(164, 764, 564, 364)(168, 768, 568, 368)
(1634, 7614, 5674, 3654)(1638, 7618, 5678, 3658)



TABLE 1 - BASIC ROTATIONS(continued)

R71 =(27, 47, 67, 87)(127, 147, 167, 187)(527, 547, 567, 587)(274, 476, 678, 872)
(1274, 1476, 1678, 1872)(5274, 5476, 5678, 5872)

R72 =(17, 87, 57, 47)(127, 827, 527, 427)(167, 867, 567, 467)(174, 871, 578, 475)
(1274, 8271, 5278, 4275)(1674, 8671, 5678, 4675)

R74 =(17, 27, 57, 67)(127, 257, 567, 617)(174, 274, 574, 674)(178, 278, 578, 678)
(1274, 2574, 5674, 6174)(1278, 2578, 5678, 6178)

R81 =(28, 78, 68, 38)(128, 178, 168, 138)(528, 578, 568, 538)(238, 728, 678, 368)
(1238, 1728, 1678, 1368)(5238, 5728, 5678, 5368)

R82 =(18, 38, 58, 78)(128, 328, 528, 728)(138, 358, 578, 718)(168, 368, 568, 768)
(1238, 3258, 5278, 7218)(1638, 3658, 5678, 7618)

R83 =(18, 68, 58, 28)(128, 618, 568, 258)(138, 638, 538, 238)(178, 678, 578, 278)
(1238, 6138, 5638, 2538)(1278, 6178, 5678, 2578)



Table 2 — Rubik N–topes

Dimension = N 3 4 5

Number of Faces = aN,1 = 2N 6 8 10

Rotation “Axes” per Face = (1/2)(N − 1)(N − 2) 1 3 6

Number of Basic Rotations = N(N − 1)(N − 2) 6 24 80

Number of Movable “Topies” = 3N − 2N − 1 24 72 232

Number of n-ads and facets a3,n f3,n a4,n f4,n a5,n f5,n

n = 2 12 24 24 48 40 80

n-ads : aN,n = 2n N !
(N − n)!n!

n = 3 8 24 32 96 80 240

n = 4 16 64 80 320

facets : fN,n = n aN,n n = 5 32 160

Total 20 48 72 208 232 800

Number of n-ads per face

n = 2 4 6 8

bN,n = aN−1,n−1 = 2n−1 (N − 1)!
(N − n)!(n− 1)!

n = 3 4 12 24

n = 4 8 32

n = 5 16

Number of n-ads per face that do not move
in a specific rotation of that face n = 2 0 0 4

cN,n =
2n−1

(n− 1)!
(N − 3) . . . (N − n− 1) n = 3 0 0 4

cN,n = 0 if n = N or n = N − 1 n = 4 0 0

n = 5 0

Number of 4–cycles per rotation

dN,n = (1/4)(bN,n − cN,n) n = 2 1 1 1

dN,2 = 1 n = 3 1 3 5

dN,3 = 2N − 5 n = 4 2 8

dN,n is even for n > 3 n = 5 4



APPENDIX A
Useful Moves on the Rubik Tesseract

The basic rotations Rij are listed in Table 1. Useful moves are designated Q1, Q2, etc. The subscripts on
the Q’s have no significance as coordinates. Other moves needed temporarily are denoted by other capital
letters. Moves are written in order from left to right; e.g., R12R13 means that R12 is performed first, followed
by R13. The following notation is used for brevity:

Inverse : The inverses of Rij , Qi, etc. are R′
ij, Q′

i, etc.

Slice : (Rij)s = RijR′
−ij

Antislice : (Rij)a = RijR−ij

Commutator : (XY)c = XYX′Y′

Transpose : Q[ij]k means that subscripts i and j are interchanged on all the rotations that comprise Qk,
and that all the rotations are inverted. The effect of this is to transpose i and j in the
permutation produced by Qk.

For example if

Qk = R52R34 = (53, 54, 57, 58, 23, 13, 63) etc.,

then

Q[12]k = R′
61R′34 = (63, 64, 67, 68, 13, 23, 53) etc.

Note that in the permutation, 53 is treated as 1′3 which changes to 2′3 = 63 etc. Similarly,
in the subscripts on the R’s, 52 = −12 changes to −21 or 61, etc. Note also that the
rotations are inverted even if their subscripts are not involved in the transposition, as R34

above. Transposition is a way of turning the tesseract around in 4-space.

Simple Moves

We began looking for useful moves by following D. Singmaster’s advice for the Rubik cube, looking at some
simple moves. Almost at once we found two which led immediately to our first useful move, Q1. These were

(R12)sR2
21(R12)′s =(23, 27)(24, 28)(123, 127)(124, 128)

(523, 527)(524, 528)(234, 278)(238, 274)
(1234, 1278)(1238, 1274)(5234, 5278)(5238, 5274)

and
(R2

12R
2
23)

2 =(123, 127)(124, 128)(523, 527)(524, 528)
(1234, 1278)(1238, 1274)(5234, 5278)(5238, 5274)

Neither of these moves is very useful in itself, but they are obviously alike in most cycles, so we take their
product:

Q1 = (R12)sR2
21(R12)′s(R

2
12R

2
23)

2 = (23, 27)(24, 28)(234, 278)(238, 274)
Q1 is an interchange of two pairs of dyads and two pairs of triads. It turns out that from Q1 we can generate
a series of useful moves, including all those necessary to prove the order of the group of the Rubik tesseract.
Some simple moves related to Q1 are:

Q2 = (Q1R32)c = (123, 827, 423)(523, 427, 823)
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is a pair of 3-cycles of triads.

Then, letting X = (R32)aR14(R32)′a we obtain a single 3-cycle of triads:

Q3 = (Q1X)c = (238, 274, 638)

Dyadic and Triadic Swaps

Now we reduce Q1 to a pair of triadic interchanges by the following strategy. The conjugating factor
X = (R32)aR2

14(R32)′a interchanges 238 and 274 with 674 and 638, which are not affected by Q1, being on
the opposite side of the tesseract. So XQ1X′ = (23, 27)(24, 28)(234, 278)(638, 674) and (since X′ = X):

Q4 = Q1XQ1X′ = [Q1(R32)aR2
14(R32)′a]

2 = (238, 274)(638, 674)

This is the minimum number of triadic interchanges, since a single interchange would be an odd permutation.
Next we reduce Q1 to a pair of dyadic interchanges, which is the minimum possible for the same reason. Let

Q5 = Q[24]1 = (43, 47)(42, 46)(432, 476)(436, 472)

Then
Q1Q5 = (23, 27)(43, 47)(24, 28, 64)(234, 278, 674)(238, 634, 274)

We eliminate the 3–cycles by cubing. Thus

Q6 = (Q1Q5)3 = (23, 27)(43, 47)

Tetradic Swaps

The process for obtaining a pair of tetradic interchanges is longer, but it is fairly straightforward because we
can treat it as a problem on the Rubik cube. If we think of Face 2 as a Rubik cube, we see that the effect of
Q1 is to rotate the entire middle layer of the cube by 180 degrees around axis 1. Similarly, the effect of R2

21

is to rotate the entire cube 180 degrees around the same axis. Therefore R2
21Q1 has the effect of rotating

the top and bottom layers 180 degrees without affecting the middle layer. That is, R2
21Q1 interchanges the

opposite edge cubies and the diagonally opposite corner cubies, top and bottom. To cancel out the edge-cubie
interchanges we need triadic interchanges involving Face 2. We get these by conjugations on Q4, as follows:

Q7 = R2
42Q4R2

42 = (234, 238)(364, 368)

Q8 = R24Q7R′
24 = (124, 128)(364, 368)

Q9 = R12Q8R′
12 = (123, 127)(364, 368)

Q10 = R′
24Q7R24 = (524, 528)(364, 368)

Q11 = R52Q10R′
52 = (523, 527)(364, 368)

Q12 = Q8Q9 = (123, 127)(124, 128)

Q13 = Q10Q11 = (523, 527)(524, 528)

Q12 and Q13 are the desired moves which have the effect in Face 2 of swapping the opposite edge-cubies on
the top and bottom. So

Q14 = (R2
21Q1)Q12Q13 = (1234, 1278)(1247, 1283)(5234, 5278)(5247, 5283)
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We now have, in Q14, an interchange of four pairs of tetrads. We next set out to reduce this to two pairs by
the same strategy that we got Q4, but it is difficult to conjugate one of these pairs of tetrads to the other
side of the tesseract without affecting any of the others.

We first rearrange the interchanging pairs, as follows:

Q15 = R′
32R

2
52R

′
42Q14R42R2

52R32 = (1234, 1283)(1278, 7214)(5234, 5283)(5278, 7254)

We remark that the two tetrads, 1247 and 5247, have been re-oriented. We now move two pairs to the
opposite side of the tesseract:

Q16 = R2
13Q15R2

13 = (1346, 1836)(1647, 7681)(5234, 5283)(5278, 7254)

(Actually, this move was unnecessary. We could have proceeded to the next step from Q15.) We apply the
commutator move:

Q17 = (Q16R′
64)c = (1346, 1836)(5678, 7654)(1876)abc(1746)acb

By cubing Q17 we have, finally, two pairs of tetrads:

Q3
17 = (1346, 1836)(5678, 7654)

Now we have found two pairs of interchanges on dyads (Q6), on triads (Q4), and on tetrads (Q3
17). By

conjugation we can obtain such transpositions on any two pairs of dyads, triads, or tetrads. Since any
permutation can be expressed as a product of transpositions, we can build up any positional permutation
that is even for dyads, triads, and tetrads. In the case of a permutation that is odd for dyads and triads
(and necessarily even for tetrads) we can multiply it by any basic rotation and the product will be even for
dyads, triads, and tetrads, as illustrated below.

Dyad-Triad Pair Swap

To obtain an interchange of one pair of dyads and one pair of triads, as, for example:

Q36 = (23, 27)(234, 278)

we proceed as follows. First we find
Q36R21 = AB C

where
A = (23, 28)(24, 27)(234, 283)(247, 278)
B = (123, 124, 127, 128)(523, 524, 527, 528)
C = (1234, 1247, 1278, 1283)(5234, 5247, 5278, 5283)

We can build up A from conjugations of Q6 and Q12, i.e.:

A1 = R34R′
21R

′
34Q6R34R21R′

34 = (23, 28)(43, 47)

A2 = R74R′
21R

′
74Q6R74R21R′

74 = (24, 27)(43, 47)

A3 = R42R′
12R32Q12R′

32R12R′
42 = (234, 283)(123, 127)

A4 = R82R′
12R72Q12R′

72R12R′
82 = (247, 278)(123, 127)

So
A = A1 A2 A3 A4
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Likewise, B can be built up from Q9 and Q11:

B2 = Q9Q11 = (123, 127)(523, 527)

B1 = R32R′
12R52R′

32B2R32R′
52R12R′

32 = (123, 124)(523, 524)

B3 = R′
32R12R′

52R32B2R′
32R52R′

12R32 = (123, 128)(523, 528)

and
B = B1 B2 B3

Then C can be built up from Q3
17 :

C0 = R′
12R

2
14Q

3
17R

2
14R12 = (1234, 1247)(5678, 7654)

C1 = C0R2
24C0R2

24 = (1234, 1247)(5234, 5247)

C2 = R2
31R

′
21R

2
31C1R2

31R21R2
31 = (1234, 1278)(5234, 5278)

C3 = R21C1R′
21 = (1234, 1283)(5234, 5283)

and
C = C1 C2 C3

Thus we obtain
Q36 = ABCR′

21 = (23, 27)(234, 278)

The number of basic rotations to get Q36 is 11,919.

In making the tetradic conjugations above it is helpful to note that the proper orientations can be produced
most easily if the desired interchange changes the same number of faces as the original interchange. In the
case above, for example, we wish to conjugate from Q3

17 to C1. Each interchange in C1 holds two faces fixed.
In Q3

17, the interchange (1346, 1836) also holds two faces fixed (1 and 6) but the interchange (5678, 7654)
changes three faces. Therefore we conjugate in two steps using only the first interchange of Q3

17. That is, we
first get C0 from (1346, 1836), leaving (5678, 7654) alone. Then we get

R2
24C0R2

24 = (5234, 5247)(5678, 7654)

again leaving the second interchange alone. Then the product of these gives C1.

Tetradic Twists and Crosses

As a bonus from Q17 we have a pair of twists:

Q2
17 = (1876)acb(1746)abc

For convenience we move them to the other side of the tesseract:

Q18 = R2
13R

2
61Q

2
17R

2
61R

2
13 = (1234)acd(1283)adc

We now proceed to obtain the other permutations of orientation of tetrad 1234. We first make the same
twist on a third tetrad:

Q19 = R82Q18R′
82 = (1234)acd(1278)adc

Next we obtain a different twist by transposition:

Q[12]19 = (2134)acd(2178)adc = (1234)bcd(1278)bdc
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Combining Q18 and Q[12]19 gives a cross on 1234:

Q18Q[12]19 = (1234)(bcd)(acd)(1283)adc(1278)bdc

= (1234)(ac)(bd)(1283)adc(1278)bdc

or
Q[12]19Q18 = (1234)(ad)(bc)(1283)adc(1278)bdc

(Note that the permutations (acd) and (bcd) multiply in reverse order to the moves Q18 and Q[12]19.) So
we get

Q20 = (Q18Q[12]19)3 = (1234)(ac)(bd)

Q21 = (Q[12]19Q18)3 = (1234)(ad)(bc)

The third cross is
Q22 = Q20Q21 = (1234)(ab)(cd)

We can also obtain Q22 in half as many steps from:

Q22 = Q18Q[12]19(Q[12]19Q18)′ = (Q18Q[12]19)c

By multiplying Q18 in turn by each of the crosses we obtain all of the S-twists on tetrad 1234:

Q18Q20 = (1234)adb(1283)adc

Q18Q21 = (1234)bdc(1283)adc

Q18Q22 = (1234)abc(1283)adc

and by squaring these moves (including Q18) we get all the Z-twists on 1234. We can easily move the crosses
to tetrad 1283 [R′

12Q20R12 = (1283)(ac)(bd), etc.] and generate all eight twists on that tetrad. In this way
we can generate all of the 32 possible pairs of 1234 and 1283 with an S-twist on one of them and a Z-twist
on the other. We can easily move the crosses and twist-pairs anywhere on the tesseract, and thus obtain all
possible permutations of tetradic orientations.

Dyadic Flips and Triadic Twists

Dyads have only two orientations, and flips must occur in pairs. It is easy to find a representative pair by
transposition. We start with

Q6 = (23, 27)(43, 47)

Then

Q23 = R14R′
72Q6R72R′

14 = (12, 43)(23, 27)
Q[12]23 = (21, 43)(13, 17)
Q[12]6 = (13, 17)(43, 47)

and so
Q24 = (Q6Q[12]6)(Q23Q[12]23) = (12, 43)(21, 43) = (12)ab(34)ab

A triadic twist can also be found by use of transpositions. These twists can occur singly. We start with Q7,
which we move to

Q25 = R12R82Q7R′
82R

′
12 = (123, 324)(163, 364)

Transposing 2–3, we obtain

Q[23]25 = (132, 234)(172, 274) = (123, 243)(172, 274)
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So
Q25Q[23]25 = (123)abc(234)abc(163, 364)(172, 274)

and
Q26 = (Q25Q[23]25)2 = (123)acb(234)acb

To reduce this to a single twist we make another transposition:

Q[12]26 = (123)abc(134)acb
Q27 = R′

13Q26R13 = (134)abc(234)acb
Q28 = Q[12]26Q27 = (123)abc(234)acb

So
Q29 = Q26Q′

28 = Q26Q2
28 = (123)abc

The reverse twist is of course Q2
29 = (123)acb.

These triadic twists and the dyadic flip-pair can obviously be moved anywhere on the tesseract.

Triadic Reflections — “Gene Splicing”

The final type of permutation of orientation we need to find is a pair of triadic reflections (they cannot occur
singly), which we will do by a method we call “gene splicing” for reasons that will be obvious. We first look
for a move that includes such a reflection as part of the permutation. Such moves are easy to find. For
instance

Q30 = R31R′
12R41 = (134)bcX

The remainder of the permutation, denoted by X, is a long and complicated sequence of cycles which involve
all but seven of the 31 other triads. We call Q30 the “chromosome”. We do not need to concern ourselves
with the details of X except to identify the “neutral” triads that are not affected by it, some of which we
wish to use for conjugating purposes. The four we use are 275, 872, 576, and 678, all of which have facets in
Face 7. We start with Q4 = (238, 274)(638, 674) and convert it to

A = R2
82Q4R2

82 = (274, 278)(674, 678)

in which all the triads also have facets in Face 7. We can therefore move A to the four neutral triads by a
Rubik-cube move; for instance

Q31 = R′
53R

2
43R

2
53R43AR′

43R2
53R

2
43R53 = (275, 872)(576, 678)

[That is, if we regard Face 7 as a Rubik cube, A is a pair of edge-swaps : Right-Front with Right-Back and
Left-Front with Left-Back; while Q31 swaps Right-Down with Right-Back and Left-Down with Left-Back.
This conjugation is easily found on the Rubik cube.]

The next step is to move 134 to one of the neutral positions without affecting the other three positions:

Q32 = R2
14R

′
13R53R23R′

53Q31R53R′
23R

′
53R13R2

14

= (275, 134)(576, 678)

The third step is to twist triad 275, which we do by conjugating Q29:

Q33 = R2
24Q29R2

24 = (275)abc
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Step 4 is to splice this gene into the chromosome:

Q33Q30 = (275)abc(134)bcX

Step 5:

Q32 is a “reagent” that will react with the chromosome Q33Q30 only at the “gene sites” 275 and 134.
Carrying out this reaction, we mutate gene 134 from type bc to type abc and we mutate gene 275 in the
reverse manner:

Q34 = Q32(Q33Q30)Q32 = (275)bc(134)abcX

Step 6:

Finally, mixing the two chromosomes Q30 and Q34, we isolate the genes 134 and 275:

Q35 = Q′
30Q34 = (134)(abc)(bc)(275)(bc)X′X = (134)ac(275)bc

From Q35 and Q33 we can get the other two reflections on triad 275; that is:

Q33Q35 = (134)ac(275)ab

Q35Q33 = (134)ac(275)ac

Similarly we can generate the other two reflections on 134. Thus all nine combinations of reflections of 134
and 275 can be found, and we can move these anywhere on the tesseract.

In summary, we have shown how to generate any permutation of the Rubik tesseract group.
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1 PROGRAM TESS2X (TDATA); {Search for Useful Moves on Rubik Tesseract}
2 CONST CR=13;
3 ORG=%C000;
4 ORG2=%C800;
5 TRUE=1;
6 FALSE=0;
7 VAR FACE:INTEGER;
8 M, FLAG :ARRAY[208] OF INTEGER;
9 OK, DONE, RECAP, FACE, ANS, NMOVES : INTEGER;

10 PROC CRLF; BEGIN WRITE(13,10) END;
11 PROC INITIALIZE;
12 VAR J,K,L1,L2,L3:INTEGER;
13 BEGIN
14 NMOVES := 0;
15 FOR J:=1 TO 208 DO
16 BEGIN
17 M[J]:=J;
18 FLAG[J] := TRUE;
19 READ(TDATA,K);
20 MEM[ORG2+J] := K
21 END;
22 FOR J:=1 TO 1824 DO
23 BEGIN
24 READ(TDATA,L1,L2,L3);
25 MEM[ORG+J-1]:=100*L1+10*L2+L3-5328
26 END
27 END;
28 PROC REFORM;
29 VAR J:INTEGER;
30 BEGIN
31 NMOVES := 0;
32 FOR J:=1 TO 208 DO
33 BEGIN
34 M[J]:=J;
35 FLAG[J] := TRUE
36 END
37 END;
38 PROC Z(N); {move proc}
39 VAR START, S, J : INTEGER;
40 PROC PERMUTE(K1,K2,K3,K4);
41 VAR SAVE:INTEGER;
42 BEGIN
43 SAVE:=M[K1]; M[K1]:=M[K4]; M[K4]:=M[K3]; M[K3]:=M[K2]; M[K2]:=SAVE
44 END; {permute}
45 BEGIN
46 OK := TRUE;
47 CASE N OF
48 12: START := ORG; -12,52: START := ORG + 912;
49 13: START := ORG + 76; -13,53: START := ORG + 988;
50 14: START := ORG + 152; -14,54: START := ORG + 1064;
51 21: START := ORG + 228; -21,61: START := ORG + 1140;
52 23: START := ORG + 304; -23,63: START := ORG + 1216;
53 24: START := ORG + 380; -24,64: START := ORG + 1292;
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54 31: START := ORG + 456; -31,71: START := ORG + 1368;
55 32: START := ORG + 532; -32,72: START := ORG + 1444;
56 34: START := ORG + 608; -34,74: START := ORG + 1520;
57 41: START := ORG + 684; -41,81: START := ORG + 1596;
58 42: START := ORG + 760; -42,82: START := ORG + 1672;
59 43: START := ORG + 836; -43,83: START := ORG + 1748;
60 99: RECAP := TRUE;
61 999: REFORM
62 ELSE
63 OK := FALSE
64 END; {case}
65 IF NOT OK THEN
66 BEGIN
67 IF (N>100) AND (N<199) THEN
68 BEGIN
69 OK:= TRUE;
70 IF N=101 THEN
71 BEGIN
72 Z(12);
73 Z(-12); Z(-12); Z(-12);
74 Z(21); Z(21);
75 Z(-12);
76 Z(12); Z(12); Z(12);
77 Z(12); Z(12);
78 Z(23); Z(23);
79 Z(12); Z(12);
80 Z(23); Z(23);
81 END
82 ELSE IF N=102 THEN
83 BEGIN
84 Z(101);
85 Z(32);
86 Z(101);
87 Z(32); Z(32); Z(32)
88 END
89 ELSE IF N=103 THEN
90 BEGIN
91 Z(101);
92 Z(32); Z(-32);
93 Z(14);
94 Z(-32); Z(-32); Z(-32);
95 Z(32); Z(32); Z(32);
96 Z(101);
97 Z(32); Z(-32);
98 Z(14); Z(14); Z(14);
99 Z(-32); Z(-32); Z(-32);

100 Z(32); Z(32); Z(32)
101 END
102 ELSE IF N=104 THEN
103 BEGIN
104 Z(101);
105 Z(32); Z(-32);
106 Z(14); Z(14);
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107 Z(-32); Z(-32); Z(-32);
108 Z(32); Z(32); Z(32);
109 Z(101);
110 Z(32); Z(-32);
111 Z(14); Z(14);
112 Z(-32); Z(-32); Z(-32);
113 Z(32); Z(32); Z(32)
114 END
115 ELSE IF N=105 THEN
116 BEGIN
117 Z(14);
118 Z(-14); Z(-14); Z(-14);
119 Z(41); Z(41);
120 Z(-14);
121 Z(14); Z(14); Z(14);
122 Z(14); Z(14);
123 Z(43); Z(43);
124 Z(14); Z(14);
125 Z(43); Z(43);
126 END
127 ELSE IF N=106 THEN
128 BEGIN
129 Z(101); Z(105);
130 Z(101); Z(105);
131 Z(101); Z(105)
132 END
133 ELSE IF N=107 THEN
134 BEGIN
135 Z(42); Z(42); Z(104); Z(42); Z(42)
136 END
137 ELSE IF N=108 THEN
138 BEGIN
139 Z(24); Z(107); Z(24); Z(24); Z(24)
140 END
141 ELSE IF N=109 THEN
142 BEGIN
143 Z(12); Z(108); Z(12); Z(12); Z(12)
144 END
145 ELSE IF N=110 THEN
146 BEGIN
147 Z(24); Z(24); Z(24); Z(107); Z(24)
148 END
149 ELSE IF N=111 THEN
150 BEGIN
151 Z(52); Z(110); Z(52); Z(52); Z(52)
152 END
153 ELSE IF N=112 THEN
154 BEGIN
155 Z(108); Z(109)
156 END
157 ELSE IF N=113 THEN
158 BEGIN
159 Z(110); Z(111)
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160 END
161 ELSE IF N=114 THEN
162 BEGIN
163 Z(21); Z(21);
164 Z(101);
165 Z(24); Z(42); Z(42);
166 Z(104);
167 Z(42); Z(42); Z(24); Z(24); Z(24);
168 Z(12); Z(24); Z(42); Z(42);
169 Z(104);
170 Z(42); Z(42); Z(24); Z(24); Z(24);
171 Z(12); Z(12);Z(12);
172 Z(24); Z(24); Z(24); Z(42); Z(42);
173 Z(104);
174 Z(42); Z(42); Z(24);
175 Z(-12); Z(24); Z(24); Z(24); Z(42); Z(42);
176 Z(104);
177 Z(42); Z(42); Z(24); Z(-12); Z(-12); Z(-12)
178 END
179 ELSE IF N=116 THEN
180 BEGIN
181 Z(13); Z(13); Z(32); Z(32); Z(32);
182 Z(-12); Z(-12); Z(42); Z(42); Z(42);
183 Z(114);
184 Z(42); Z(-12); Z(-12); Z(32); Z(13); Z(13)
185 END
186 ELSE IF N=117 THEN
187 BEGIN
188 Z(116); Z(-24); Z(-24); Z(-24);
189 Z(116); Z(-24)
190 END
191 ELSE IF N=118 THEN
192 BEGIN
193 Z(13); Z(13); Z(-21); Z(-21); Z(117); Z(117);
194 Z(-21); Z(-21); Z(13); Z(13)
195 END
196 ELSE IF N=119 THEN
197 BEGIN
198 Z(-42); Z(118); Z(-42); Z(-42); Z(-42)
199 END
200 ELSE IF N=120 THEN
201 BEGIN
202 Z(118); Z(219);
203 Z(118); Z(219);
204 Z(118); Z(219)
205 END
206 ELSE IF N=121 THEN
207 BEGIN
208 Z(219); Z(118); Z(219); Z(118); Z(219); Z(118)
209 END
210 ELSE IF N=122 THEN
211 BEGIN
212 Z(120); Z(121)
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213 END
214 ELSE IF N=123 THEN
215 BEGIN
216 Z(14); Z(-32); Z(-32); Z(-32); Z(106); Z(-32); Z(14); Z(14); Z(14)
217 END
218 ELSE IF N=124 THEN
219 BEGIN
220 Z(123); Z(223); Z(106); Z(206)
221 END
222 ELSE IF N=125 THEN
223 BEGIN
224 Z(12); Z(82); Z(107); Z(82); Z(82); Z(82); Z(12); Z(12); Z(12)
225 END
226 ELSE IF N=126 THEN
227 BEGIN
228 Z(125); Z(325); Z(125); Z(325)
229 END
230 ELSE IF N=127 THEN
231 BEGIN
232 Z(13); Z(13); Z(13); Z(126); Z(13)
233 END
234 ELSE IF N=128 THEN
235 BEGIN
236 Z(226); Z(127)
237 END
238 ELSE IF N=129 THEN
239 BEGIN
240 Z(126); Z(128); Z(128)
241 END
242 ELSE IF N=130 THEN
243 BEGIN
244 Z(31); Z(12); Z(12); Z(12); Z(41)
245 END
246 ELSE IF N=131 THEN
247 BEGIN
248 Z(53); Z(53); Z(53); Z(43); Z(43); Z(53); Z(53); Z(43);
249 Z(82); Z(82); Z(104); Z(82); Z(82);
250 Z(43); Z(43); Z(43); Z(53); Z(53); Z(43); Z(43); Z(53)
251 END
252 ELSE IF N=132 THEN
253 BEGIN
254 Z(14); Z(14); Z(13); Z(13); Z(13); Z(53); Z(23);
255 Z(53); Z(53); Z(53); Z(131); Z(53);
256 Z(23); Z(23); Z(23); Z(53); Z(53); Z(53); Z(13); Z(14); Z(14)
257 END
258 ELSE IF N=133 THEN
259 BEGIN
260 Z(24); Z(24); Z(129); Z(24); Z(24)
261 END
262 ELSE IF N=134 THEN
263 BEGIN
264 Z(132); Z(133); Z(130); Z(132)
265 END
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266 ELSE IF N=135 THEN
267 BEGIN
268 Z(41); Z(41); Z(41); Z(12); Z(31); Z(31); Z(31); Z(134)
269 END
270 ELSE IF N=136 THEN
271 BEGIN
272 Z(34); Z(21); Z(21); Z(21); Z(34); Z(34); Z(34); Z(106);
273 Z(34); Z(21); Z(34); Z(34); Z(34);
274 Z(74); Z(21); Z(21); Z(21); Z(74); Z(74); Z(74); Z(106);
275 Z(74); Z(21); Z(74); Z(74); Z(74);
276 Z(42); Z(12); Z(12); Z(12); Z(32); Z(112); Z(32); Z(32); Z(32);
277 Z(12); Z(42); Z(42); Z(42);
278 Z(82); Z(12); Z(12); Z(12); Z(72); Z(112); Z(72); Z(72); Z(72);
279 Z(12); Z(82); Z(82); Z(82);
280 Z(32); Z(12); Z(12); Z(12); Z(52); Z(32); Z(32); Z(32); Z(109);
281 Z(111); Z(32); Z(52); Z(52); Z(52); Z(12); Z(32); Z(32); Z(32);
282 Z(109); Z(111);
283 Z(32); Z(32); Z(32); Z(12); Z(52); Z(52); Z(52); Z(32); Z(109);
284 Z(111); Z(32); Z(32); Z(32); Z(52); Z(12); Z(12); Z(12); Z(32);
285 Z(140);
286 Z(31); Z(31); Z(21); Z(21); Z(21); Z(31); Z(31); Z(140);
287 Z(31); Z(31); Z(21); Z(31); Z(31);
288 Z(21); Z(140); Z(21); Z(21); Z(21);
289 Z(21); Z(21); Z(21)
290 END
291 ELSE IF N=140 THEN
292 BEGIN
293 Z(12); Z(12); Z(12); Z(14); Z(14); Z(117); Z(117); Z(117);
294 Z(14); Z(14); Z(12); Z(24); Z(24);
295 Z(12); Z(12); Z(12); Z(14); Z(14); Z(117); Z(117); Z(117);
296 Z(14); Z(14); Z(12); Z(24); Z(24)
297 END
298 ELSE OK:=FALSE
299 END;
300 IF (N>200) AND (N<299) THEN
301 BEGIN
302 OK:= TRUE;
303 IF N=201 THEN
304 BEGIN
305 Z(21); Z(21); Z(21); Z(-21); Z(12); Z(12); Z(-21); Z(-21); Z(-21);
306 Z(21); Z(21); Z(21); Z(13); Z(13); Z(21); Z(21); Z(13); Z(13)
307 END
308 ELSE IF N=204 THEN
309 BEGIN
310 Z(201); Z(31); Z(31); Z(31); Z(-31); Z(-31); Z(-31);
311 Z(24); Z(24); Z(-31); Z(31);
312 Z(201); Z(31); Z(31); Z(31); Z(-31); Z(-31); Z(-31);
313 Z(24); Z(24); Z(-31); Z(31)
314 END
315 ELSE IF N=205 THEN
316 BEGIN
317 Z(24); Z(24); Z(24); Z(-24); Z(-24); Z(-24); Z(42); Z(42);
318 Z(24);Z(-24);Z(24);Z(24);Z(43); Z(43);Z(24);Z(24);Z(43);Z(43)
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319 END
320 ELSE IF N=206 THEN
321 BEGIN
322 Z(201); Z(205); Z(201); Z(205); Z(201); Z(205)
323 END
324 ELSE IF N=207 THEN
325 BEGIN
326 Z(41); Z(41); Z(204); Z(41); Z(41)
327 END
328 ELSE IF N=208 THEN
329 BEGIN
330 Z(14); Z(14); Z(14); Z(207); Z(14)
331 END
332 ELSE IF N=209 THEN
333 BEGIN
334 Z(21); Z(21); Z(21); Z(208); Z(21)
335 END
336 ELSE IF N=210 THEN
337 BEGIN
338 Z(14); Z(207); Z(14); Z(14); Z(14)
339 END
340 ELSE IF N=211 THEN
341 BEGIN
342 Z(-21); Z(-21); Z(-21); Z(210); Z(-21)
343 END
344 ELSE IF N=214 THEN
345 BEGIN
346 Z(12); Z(12); Z(201); Z(208); Z(209); Z(210); Z(211)
347 END
348 ELSE IF N=215 THEN
349 BEGIN
350 Z(31); Z(-21); Z(-21); Z(41); Z(214);
351 Z(41); Z(41); Z(41); Z(-21); Z(-21); Z(31); Z(31); Z(31)
352 END
353 ELSE IF N=216 THEN
354 BEGIN
355 Z(23); Z(23); Z(215); Z(23); Z(23)
356 END
357 ELSE IF N=217 THEN
358 BEGIN
359 Z(216); Z(-14); Z(216); Z(-14); Z(-14); Z(-14)
360 END
361 ELSE IF N=218 THEN
362 BEGIN
363 Z(23); Z(23); Z(-12); Z(-12); Z(217); Z(217);
364 Z(-12); Z(-12); Z(23); Z(23)
365 END
366 ELSE IF N=219 THEN
367 BEGIN
368 Z(-41); Z(-41); Z(-41); Z(218); Z(-41)
369 END
370 ELSE IF N=223 THEN
371 BEGIN
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372 Z(24); Z(24); Z(24); Z(-31); Z(206); Z(-31); Z(-31); Z(-31); Z(24)
373 END
374 ELSE IF N=225 THEN
375 BEGIN
376 Z(21); Z(21); Z(21); Z(-41); Z(-41); Z(-41); Z(207); Z(-41); Z(21)
377 END
378 ELSE IF N=226 THEN
379 BEGIN
380 Z(225); Z(425); Z(225); Z(425)
381 END
382 ELSE OK:=FALSE
383 END;
384 IF (N>300) AND (N<399) THEN
385 BEGIN
386 OK:=TRUE;
387 IF N=301 THEN
388 BEGIN
389 Z(13); Z(13); Z(13); Z(-13); Z(31); Z(31); Z(-13); Z(-13); Z(-13);
390 Z(13); Z(13); Z(13); Z(32); Z(32); Z(13); Z(13); Z(32); Z(32)
391 END
392 ELSE IF N=304 THEN
393 BEGIN
394 Z(301); Z(23); Z(23); Z(23); Z(-23); Z(-23); Z(-23); Z(14); Z(14);
395 Z(23); Z(-23);
396 Z(301); Z(23); Z(23); Z(23); Z(-23); Z(-23); Z(-23); Z(14); Z(14);
397 Z(23); Z(-23)
398 END
399 ELSE IF N=307 THEN
400 BEGIN
401 Z(43); Z(43); Z(304); Z(43); Z(43)
402 END
403 ELSE IF N=325 THEN
404 BEGIN
405 Z(13); Z(13); Z(13); Z(83); Z(83); Z(83); Z(307); Z(83); Z(13)
406 END
407 ELSE OK:=FALSE
408 END;
409 IF (N>400) AND (N<499) THEN
410 BEGIN
411 OK:=TRUE;
412 IF N=401 THEN
413 BEGIN
414 Z(23); Z(-23); Z(-23); Z(-23); Z(32); Z(32); Z(-23); Z(23); Z(23);
415 Z(23); Z(23); Z(23); Z(31); Z(31); Z(23); Z(23); Z(31); Z(31)
416 END
417 ELSE IF N=404 THEN
418 BEGIN
419 Z(401); Z(13); Z(-13); Z(24); Z(24); Z(13); Z(13); Z(13); Z(-13);
420 Z(-13); Z(-13);
421 Z(401); Z(13); Z(-13); Z(24); Z(24); Z(13); Z(13); Z(13); Z(-13);
422 Z(-13); Z(-13)
423 END
424 ELSE IF N=407 THEN
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425 BEGIN
426 Z(43); Z(43); Z(404); Z(43); Z(43)
427 END
428 ELSE IF N=425 THEN
429 BEGIN
430 Z(23); Z(-43); Z(407); Z(-43); Z(-43); Z(-43); Z(23); Z(23); Z(23)
431 END
432 ELSE OK:=FALSE
433 END
434 END; {if not ok}
435 IF (OK) AND (N<99) THEN
436 BEGIN
437 NMOVES := NMOVES + 1;
438 FOR J:=1 TO 19 DO
439 BEGIN
440 S := START + 4*(J-1);
441 PERMUTE(MEM[S],MEM[S+1],MEM[S+2],MEM[S+3])
442 END
443 END;
444 IF NOT OK THEN WRITE(N#,’ not understood - no action taken’,13,10)
445 END; {move}
446 PROC GETCYCLES(XST,XFIN,SIDES);
447 VAR N,PTR,ACTIVITY,J,K, LINEPOS, JJ, JK, CYLENGTH, NPOS, TAG: INTEGER;
448 VC: ARRAY[288] OF INTEGER;
449 START, SCOPE: ARRAY[4] OF INTEGER;
450 FUNC LCM(U,V);
451 FUNC GCD(M,N);
452 BEGIN
453 IF N=0 THEN GCD:=M
454 ELSE GCD:=GCD(N,M MOD N)
455 END; {gcd}
456 BEGIN
457 LCM := (U*V) DIV GCD(U,V)
458 END; {lcm}
459 PROC LOOKFOR(X,Y);
460 FUNC TESSNO(P);
461 BEGIN
462 TESSNO := (P-XST) DIV SIDES
463 END;
464 BEGIN
465 IF M[Y]<>X THEN LOOKFOR(X,M[Y]);
466 JJ := JJ + 1;
467 VC[JJ] := MEM[ORG2 + M[Y]];
468 FLAG[Y]:= TESSNO(Y) = TESSNO(X)
469 END;
470 BEGIN
471 PTR:=XST;
472 WHILE PTR<XFIN DO
473 BEGIN
474 ACTIVITY:=FALSE;
475 FOR J:=1 TO SIDES DO
476 BEGIN
477 K:=PTR+J-1;
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478 ACTIVITY:=ACTIVITY OR ((M[K]<>K) AND FLAG[K])
479 END;
480 IF ACTIVITY THEN
481 BEGIN
482 TAG:=0; JJ:=0;
483 FOR J:=1 TO SIDES DO
484 BEGIN
485 K:=PTR+J-1;
486 IF K<>M[K] THEN LOOKFOR(K,M[K]);
487 JJ:=JJ+1;
488 VC[JJ]:=MEM[ORG2+M[K]];
489 SCOPE[J]:=JJ-TAG;
490 TAG:=JJ
491 END;
492 START[1]:=1; CYLENGTH:=SCOPE[1];
493 FOR J:=2 TO SIDES DO
494 BEGIN
495 START[J]:=START[J-1]+SCOPE[J-1];
496 CYLENGTH:=LCM(SCOPE[J],CYLENGTH)
497 END;
498 CRLF;
499 WRITE(’[’);
500 LINEPOS:=1;
501 FOR J:=1 TO CYLENGTH DO
502 BEGIN
503 FOR K:=1 TO SIDES DO
504 BEGIN
505 NPOS := ((J-1) MOD SCOPE[K]) + START[K];
506 WRITE(VC[NPOS])
507 END;
508 IF J<CYLENGTH THEN
509 BEGIN
510 WRITE(’,’);
511 LINEPOS := LINEPOS + SIDES + 1;
512 IF LINEPOS>70 THEN
513 BEGIN
514 LINEPOS := 10;
515 CRLF;
516 WRITE(’ ’);
517 WRITE(’ ’)
518 END
519 END
520 END;
521 WRITE(’]’)
522 END;
523 PTR:=PTR+SIDES
524 END;
525 FOR N:=XST TO XFIN DO FLAG[N] := TRUE
526 END; {getcycles}
527 BEGIN {main program}
528 CRLF;
529 DONE := FALSE;
530 INITIALIZE;
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531 REPEAT
532 RECAP := FALSE;
533 OK := FALSE;
534 WHILE NOT OK DO
535 BEGIN
536 WRITE(13,10,’ Move’);
537 READ(FACE#);
538 CRLF;
539 Z(FACE)
540 END;
541 IF RECAP THEN
542 BEGIN
543 WRITE(’ Move Count = ’, NMOVES#,13,10);
544 GETCYCLES(1,48,2);
545 GETCYCLES(49,144,3);
546 GETCYCLES(145,208,4)
547 END
548 UNTIL DONE
549 END.


