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I. SYSTEM OVERVIEW

We leverage the OpenVINS [!] system recently open
sourced by our group, which was developed to fill a gap in
the current open sourced visual-inertial navigation systems
(VINS). OpenVINS focuses on providing the fundamentals
for new researchers and practitioners to allow for users with
little background in state estimation to learn and develop
new ideas within the VINS research area. We provide the
necessary documentation, tools, and theory for filter-based
visual-inertial state estimation. The key components of the
OpenVINS suite are as follows:

e ov_core — Contains 2D image sparse visual feature
tracking; linear and Gauss-Newton feature triangulation
methods; visual-inertial simulator for arbitrary number
of cameras and frequencies; and fundamental manifold
math operations and utilities.

o ov_eval — Contains trajectory alignment; plotting utili-
ties for trajectory accuracy and consistency evaluation;
Monte-Carlo evaluation of different accuracy metrics;
and utility for recording ROS topics to file.

o ov_msckf — Contains the extendable modular Extended
Kalman Filter (EKF)-based sliding window visual-
inertial estimator with on-manifold type system for
flexible state representation. Features include: First-
Estimates Jacobains (FEJ) [2]-[4], IMU-camera time
offset calibration [5], camera intrinsics and extrinsic
online calibration [6], standard MSCKF [7], and 3D
SLAM landmarks of different representations.

At the core of the system is our on-manifold modular
Extended Kalman filter (EKF)-based sliding window visual-
inertial estimator. This estimates an inertial state containing
the current inertial measurement unit (IMU) position, veloc-
ity and biases, along with calibration parameters, stochas-
tic clones, and environmental temporal SLAM features.
Keyframing is not used and instead we have a fixed sliding
window size that always marginalize the oldest pose from
our state vector and bounds the computational complexity. To
both model the uncertainty of calibration values and handle
imperfect calibration we estimate the time offset between
the IMU and camera, along with the camera’s intrinsics and
extrinsic transform to the IMU.

We additionally leverage temporal SLAM features which
are estimated in an anchored frame with an inverse depth
representation. We found that while few SLAM features are
tracked during highly dynamic motion, the inward facing
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Fig. 1: Extracted fast extractions from the Indoor 45° 14
dataset. These high motion areas with low texture floors
prove a challenge for indirect feature extraction. Figure best
seen in color.

turns, take off and landing segments greatly benefited from
the inclusion of these features. We handled consistency issues
through First-Estimates Jacobains (FEJ) [2]-[4] which have
been shown to improve estimator performance.

II. FEATURE TRACKING DISCUSSION

As emphasised in the UZH-FPV drone racing dataset
paper [8] the large magnitude of visual optical flow in these
datasets present a challenge for feature tracking. OpenVINS
supporting both indirect sparse feature KLT tracking [9] and
descriptor based methods [10] through the implementations
available in OpenCV [11]. We have chose to use KLT as
it allows for longer feature tracks which facilitates longer
lived temporal SLAM features. Features are first extracted in
a uniform grid using FAST detection [12], and as mentioned
in the literature, is one of the key weaknesses of indirect-
based visual tracking methods in low gradient environments,
see Figure 1. We found that the Indoor 45° datasets had
particular trouble during the high speed straight segments
due to the lack of good feature extractions on the low texture
floor regions. The use of direct-based visual feature tracking
could possibly help address this. It is also interesting that our
stereo implementation, which enforces that all feature tracks
are seen in both cameras, does not work due to low amount
of features extracted and poor cross camera tracking quality.

III. EVALUATION HARDWARE

The OpenVINS system was evaluated on an Intel(R)
Xeon(R) CPU E3-1505M v6 @ 3.00GHz Lenovo P51 laptop
with 15GB of DDR4 memory and a 1TB Samsung SSD
850 EVO. OpenVINS has very minimal multi-threaded op-
timization, of which it is limited to just the feature tracking
frontend. The rosbags are read in serial from disk to allow
for dataset completion timing. The total time taken for a
dataset is based on the CPU clock time at initialization of
the VIO and until the MAV hits the ground. Table I shows



TABLE I: Evaluation time for the given datasets. Timing
from after initialization of the VIO till the MAV hits the
ground.

Dataset Name Eval. Time (sec) Dataset (sec)

indoor forward 11 54 75
indoor forward 12 32 51
indoor 45deg 3 50 76
indoor 45deg 16 27 46
outdoor forward 9 55 89
outdoor forward 10 72 111

TABLE II: Key parameters used for all datasets.

Parameter Name Value
sliding window size 15
max features 120
max SLAM features 40
fast threshold 15
fast grid x/y 10/8
min feat. pixel distance 10
raw pixel noise 1.0
acc. white noise 2.0000e-2
acc. random walk 3.0000e-3
gyro. white noise  1.6968e-03
gyro. random walk  1.9393e-05

the time taken on each dataset for the proposed OpenVINS
system and the total length of the rosbag processed after
initialization. The time for each update is evenly split be-
tween visual feature tracking and update, with the average
estimation frequency being between 30-40 Hz.

IV. ALGORITHM PARAMETERS

All launch parameters are kept the same for all datasets.
The system self-initializes after detecting a change in the
acceleration from being picked up at the beginning of each
dataset. Table II, shows the key parameters used by the
OpenVINS algorithm. We found that in the outdoor datasets
uniform extraction of features is more necessary then indoors
due to the large quantity of high gradient textures. As
noted, we found that requiring all features to have stereo
constraints to be unreasonable, and instead processed the left
and right images independently in a binocular configuration.
The feature tracking parameters in Table II are for each
camera. The time offset between the IMU and cameras
was calibrated online along with the camera intrinsics and
extrinsic transformations.
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