
Complexity Analysis:
A Linear-Complexity EKF for

Visual-Inertial Navigation with Loop Closures

Patrick Geneva - pgeneva@udel.edu
Kevin Eckenhoff - keck@udel.edu

Guoquan Huang - ghuang@udel.edu

Department of Mechanical Engineering
University of Delaware, Delaware, USA

Robot Perception and Navigation Group (RPNG)
Tech Report - RPNG-2019-LOOP
Last Updated - February 8, 2019

mailto:pgeneva@udel.edu
mailto:keck@udel.edu
mailto:ghuang@udel.edu

Contents

1 State Propagation 1
1.1 Problem Formulation . 1
1.2 Complexity Analysis . 1

2 Clone Marginalization 2
2.1 Problem Formulation . 2
2.2 Complexity Analysis . 2

3 Keyframe Augmentation 3
3.1 Problem Formulation . 3
3.2 Complexity Analysis . 3

4 EKF Update 5
4.1 Problem Formulation . 5
4.2 Complexity Analysis . 5

1 State Propagation

1.1 Problem Formulation

During propagation we process a set inertial measurements to move the state mean and covariance
forward in time. To propagate the state covariance matrix forward, we use the discrete time state
transition matrix as follows:

xk+1 = f(xk,amk
− nak ,ωmk

− nωk
) (1)

Pk|k−1 =

[
Φk−1PAAk−1|k−1

Φ>k−1 Φk−1PASk−1|k−1

PSAk−1|k−1
Φ>k−1 PSSk−1|k−1

]
+

[
Qk−1 0

0 0

]
(2)

1.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state of size a and the
Schmidt state variables xSk|k to have an error state of size n. The mean propagation only affects
the active state variables, thus we only focus on the state covariance propagation. We have the
following algorithm and computational costs for a set of IMU measurements I that are of some
size q:

Algorithm 1 Schmidt-MSCKF Covariance Propagation

1: procedure covariance propagation(PAAk−1|k−1
, PASk−1|k−1

, I) cost times
2: // Set initial values for state transition and noise
3: Φ = Ia×a a2 1
4: Q = 0a×a a2 1
5: // Compound all inertial measurements
6: for ωi,ai ∈ I do 1 q
7: Φ = Φ(i + 1, i)Φ a3 + a2 q
8: Q = Φ(i + 1, i)QΦ(i + 1, i)> + Qi 2a3 + 2a2 q
9: end for

10: // Update active covariance, and Schmidt cross-terms
11: PAAk|k−1

= ΦPAAk−1|k−1
Φ> + Q 2a3 + 2a2 1

12: PASk|k−1
= ΦPASk−1|k−1

a2n + an 1
13: end procedure

It is clear to see that the most expensive computation is the final multiplication of the Schmidt
cross-term covariance. We have the following computational cost for propagation if we take the
size of the active state to remain constant over time:

mean propagation : O(1)

covariance propagation : O(n)

(3)

(4)

RPNG-2019-LOOP 1

2 Clone Marginalization

2.1 Problem Formulation

When a clone leaves the sliding window, we chose if we should add that clone to the Schmidt state,
or marginalize it out. Here we look at what happens when we marginalize a clone from the end of
our state.

PAA PAS

PSS

Figure 1: Illustrate of what is deleted upon marginalization of a clone. The rows shown
in red will be deleted after the process is finished.

2.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state of size a and the
Schmidt state variables xSk|k to have an error state of size n. We assume that the clone that will
be marginalized is at the end of the active variable state/covariance.

Algorithm 2 Schmidt-MSCKF Covariance Clone Marginalization

1: procedure covariance clone marg(PAA, PAS , PSS) cost times
2: PAA.resize(PAA.r−6, PAA.c−6) c1 1
3: PAS .resize(PAS .r−6, PAS .c) c2 1
4: end procedure

From the above, we can see that the time to resize the matrices should dominate the actual cost.
In practice we don’t deallocate memory and simply keep track of the current size of the covariance,
thus we don’t have a cost to resize the matrix allowing for constant computation cost. Considering
the active state remains constant over time we have the following costs:

mean clone marginalization : O(1)

covariance clone marginalization : O(1)

(5)

(6)

RPNG-2019-LOOP 2

3 Keyframe Augmentation

3.1 Problem Formulation

When a clone leaves the sliding window, we chose if we should add that clone to the Schmidt
state, or marginalize it out. If we are going to add it to the Schmidt state, we call this operation
“keyframe augmentation” as we are adding a new keyframe into our Schmidt state.

PAA PAS

PSS

Figure 2: Illustrate of what is added and deleted upon keyframe augmentation. The
rows shown in red will be deleted after the process is finished, while the rows shown in
green have been added by copying the cross-terms from the PAA and PAS matrices.

3.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state of size a and the
Schmidt state variables xSk|k to have an error state of size n. For the mean, we simply need to
append the new 6 × 1 to the end our Schmidt state vector, and remove it from our active state
vector. Thus, we focus on how to re-order the covariance such that it has the new Schmidt variable
at the end of it. We assume that the clone that will be moved to the Schmidt state is at the end
of the active variable state/covariance.

RPNG-2019-LOOP 3

Algorithm 3 Schmidt-MSCKF Covariance Keyframe Augmentation

1: procedure covariance key aug(PAA, PAS , PSS) cost times
2: // Resize our covariance matrix
3: PAS .resize(PAS .r, PAS .c+6) c1 1
4: PSS .resize(PSS .r+6, PSS .c+6) c2 1
5: // Copy from active state to cross-terms
6: PAS(0, PAS .c−6, PAS .r, 6)=PAA(0, PAA.c−6, PAA.r, 6) 6a 1
7: // Copy from cross-terms to Schmidt
8: PSS(PSS .r−6, 0, 6, PSS .c)=PAS(PAS .r − 6, 0, 6, PAS .c) 6n 1
9: PSS(0, PSS .c−6, PSS .r, 6)=PAS(PAS .r − 6, 0, 6, PAS .c)

> 6n 1
10: // Finally, reduce size of covariances
11: PAA.resize(PAA.r−6, PAA.c−6) c3 1
12: PAS .resize(PAS .r−6, PAS .c) c4 1
13: end procedure

From the above, we can see that the time to resize the matrices should dominate the actual
cost of copying the covariance elements. In practice we preallocate memory and simply keep track
of the current size of the covariance, thus we don’t have a cost to resize the matrix. Considering
the active state remains constant over time we have the following costs:

mean augmentation : O(1)

covariance augmentation : O(n)

(7)

(8)

RPNG-2019-LOOP 4

4 EKF Update

4.1 Problem Formulation

Having propagated the state, we can update the state estimate means and covariance as follows:

x̂Ak|k = x̂Ak|k−1
+ KAk

z̃′k (9)

x̂Sk|k = x̂Sk|k−1
(10)

With the Schmidt Kalman gain KSk
= 0, we immediately have the covariance update as follows:

Pk|k = Pk|k−1 −


KAk

SkK
>
Ak

KAk
H′k

[
PASk|k−1

PSSk|k−1

]
[
PASk|k−1

PSSk|k−1

]>
H′k
>K>Ak

0

 (11)

= Pk|k−1 −
[
LAk

S−1k L>Ak
LAk

S−1k L>Sk

LSk
S−1k L>Ak

0

]
(12)

where the standard Kalman gain can be defined as:

Kk =

[
KAk

KSk

]
=

[
PAAk|k−1

H>Ak
+ PASk|k−1

H>Sk

PSAk|k−1
H>Ak

+ PSSk|k−1
H>Sk

]
S−1k

=:

[
LAk

LSk

]
S−1k (13)

where:

Sk = H′kPk|k−1H
′
k
>

+ R′k (14)

4.2 Complexity Analysis

We consider the current active state variables xAk|k to have an error state of size a, the Schmidt
state variables xSk|k to have an error state of size n, and the size of the measurement residuals to
be of size q. We define the set of variables that the update involves as K which is sparse and has
|K| non-zero elements (i.e. K � n).

For the state mean during update, once the Kalman gain KAk
is computed, it can be clearly

seen that it is only of complexity of the active state and the number of measurements contained in
z̃′k. This Kalman gain KAk

will be found through the computation of the updated covariance, and
is the most expensive computation during the mean update.

RPNG-2019-LOOP 5

Algorithm 4 Schmidt-MSCKF Covariance Update

1: procedure covariance update(PAA, PAS , PSS , Hk) cost times
2: // First, lets compute the sub-matrices LAk

and LSk

3: LAk
= 0a×q aq 1

4: LSk
= 0n×q nq 1

5: // Now we loop through all the sparse Hk for each state
variable scalar (whose id is its location in the covariance
matrix)

6: for all active state variables do 1 a
7: LAk

(id, 0, 1, q) =
∑

k∈K PikH
>
k 2|K|q a

8: end for
9: for all schmidt state variables do 1 n

10: LSk
(id, 0, 1, q) =

∑
k∈K PikH

>
k 2|K|q n

11: end for
12: // Compute the smaller covariance matrix by element, only

involving the variables that the Jacobian Hk involves.
13: HPH> =

∑
(i,j)∈K×KHiPijH

>
j 2|K|2q2 1

14: // Compute Sk and its inverse
15: Sk = HPH> + R′k 2q2 1

16: S−1k = inv(Sk) q3 + q2 1
17: // Finally, do the covariance update

18: PAA = PAA−LAk
S−1k L>Ak

aq2 +
a2q + 2a2

1

19: PAS = PAS−LAk
S−1k L>Sk

aq2 +
aqn + 2an

1

20: end procedure

It is important to note that the size non-zero entries in the sparse Jacobian Hk which involves
K elements (which we have defined as size |K|), directly impacts the complexity of the update. To
ensure that update is linear in time, we enforce that at each clone time (i.e., image time) we only
matche to a single keyframe. This ensures that the maximum keyframes that we will ever match
to is the size of the sliding window (i.e., no more then a in size). The impact this design decision
has on the number of non-zero elements in Hk is that the it is never more then the number of state
elements, thus we can consider it constant in terms of big-O. Thus, we have the following results:

mean update : O(n)

covariance update : O(n)

(15)

(16)

RPNG-2019-LOOP 6

	State Propagation
	Problem Formulation
	Complexity Analysis

	Clone Marginalization
	Problem Formulation
	Complexity Analysis

	Keyframe Augmentation
	Problem Formulation
	Complexity Analysis

	EKF Update
	Problem Formulation
	Complexity Analysis

