Measurement Jacobians for Multi-Camera Visual-Inertial Navigation

Kevin Eckenhoff - keck@udel.edu
Patrick Geneva - pgeneva@udel.edu
Jesse Bloecker - jesseb@udel.edu
Guoquan Huang - ghuang@udel.edu

Department of Mechanical Engineering
University of Delaware, Delaware, USA

Robot Perception and Navigation Group (RPNG)
Tech Report - RPNG-2018-MCVINS
Last Updated - February 28, 2019

Consider a 3D feature captured in the image of the base camera b with timestamp ${ }^{b} t_{k}$. The normalized feature measurement for this is given by:

$$
\begin{align*}
\mathbf{z}_{k} & =\left[\begin{array}{c}
\frac{x}{z} \\
\frac{y}{z}
\end{array}\right]+\mathbf{n}_{k} \tag{1}\\
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] } & ={ }^{C_{b}\left({ }^{b} t_{k}\right)} \mathbf{p}_{f}={ }_{I}^{C_{b}} \mathbf{R}_{G}^{I\left({ }^{(b} t_{k}\right)} \mathbf{R}\left({ }^{G} \mathbf{p}_{f}-{ }^{G} \mathbf{p}_{I\left({ }^{(} t_{k}\right)}\right)+{ }^{C_{b}} \mathbf{p}_{I} \tag{2}
\end{align*}
$$

Here $I\left({ }^{b} t_{k}\right)$ refers to the state of the IMU at true imaging time ${ }^{b} t_{k}$, which gives simple Jacobians because the clone corresponding to $I\left({ }^{b} t_{k}\right)$ is contained in our state vector.

The chain rule gives:

$$
\begin{align*}
& \frac{\partial \mathbf{z}_{k}}{\partial \delta \mathbf{x}}=\frac{\partial \mathbf{z}_{k}}{\left.\partial^{C}{ }^{(b)} t_{k}\right)} \delta \mathbf{p}_{f} \frac{\partial^{C_{b}\left({ }^{(} t_{k}\right)} \delta \mathbf{p}_{f}}{\partial \delta \mathbf{x}} \tag{3}\\
& \frac{\partial \mathbf{z}_{k}}{\partial^{C_{b}}{ }^{\left(b_{k}\right)} \delta \mathbf{p}_{f}}=\left[\begin{array}{ccc}
\frac{1}{z} & 0 & -\frac{x}{z^{2}} \\
0 & \frac{1}{z} & -\frac{y}{z^{2}}
\end{array}\right] \tag{4}\\
& \frac{\partial^{C_{b}\left({ }^{(} t_{k}\right)} \delta \mathbf{p}_{f}}{\partial^{I\left({ }^{(} t_{k}\right)} \delta \boldsymbol{\theta}_{G}}={ }_{I}^{C_{b}} \mathbf{R}\left\llcorner_{G}^{\left.I{ }^{b} t_{k}\right)} \mathbf{R}\left({ }^{G} \mathbf{p}_{f}-{ }^{G} \mathbf{p}_{I\left({ }^{b} t_{k}\right)}\right)\right\rfloor \tag{5}\\
& \frac{\partial^{C_{b}\left({ }^{b} t_{k}\right)} \delta \mathbf{p}_{f}}{\partial^{C} \delta \boldsymbol{\theta}_{I}}=\left\lfloor{ }_{I}^{C_{b}} \mathbf{R}_{G}^{I\left({ }^{(b} t_{k}\right)} \mathbf{R}\left({ }^{G} \mathbf{p}_{f}-{ }^{G} \mathbf{p}_{I\left({ }^{b} t_{k}\right)}\right)\right\rfloor \tag{6}\\
& \frac{\partial^{C_{b}\left({ }^{b} t_{k}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{(b} t_{k}\right)}}={ }_{-}^{C_{b}} \mathbf{R}_{G}^{\left.I{ }^{(b} t_{k}\right)} \mathbf{R} \tag{7}\\
& \frac{\partial^{C_{b}\left({ }^{(b} t_{k}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{f}}={ }_{I}^{C_{b}} \mathbf{R}_{G}^{I\left({ }^{(b} t_{k}\right)} \mathbf{R} \tag{8}
\end{align*}
$$

Now let us suppose that we we capture an image from another camera, cam i, and suppose that there exists an offset in the timestamps between cam b and cam i, such that if ${ }^{b} t_{k}={ }^{i} t_{k}+{ }^{i} t_{b}$, where ${ }^{b} t_{k}$ is the true time of the image expressed in the base camera's clock, ${ }^{i} t_{k}$ is the reported timestamp in the measuring camera's clock, and ${ }^{i} t_{b}$ is the unknown time offset.

For the measurement of a feature, we have:

$$
\begin{equation*}
C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right) \mathbf{p}_{f}={ }_{I}^{C_{i}} \mathbf{R}_{G}^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R}\left({ }^{G} \mathbf{p}_{f}-{ }^{G} \mathbf{p}_{I\left(i_{k}+{ }^{i} t_{b}\right)}\right)+{ }^{C_{i}} \mathbf{p}_{I} \tag{9}
\end{equation*}
$$

We do not keep an estimate for the clone associated with this time, and instead rely on interpolation. Letting ${ }^{b} t_{1}$ and ${ }^{b} t_{2}$ denote the bounding IMU clones between which ${ }^{i} t_{k}+{ }^{b} \hat{t}_{b}$ falls, we have:

$$
\begin{align*}
{ }_{G}^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} & \left.=\operatorname{Exp}\left(\lambda_{k} \log \left({ }_{G}^{I\left({ }^{b} t_{2}\right)} \mathbf{R}_{I\left({ }^{b} t_{1}\right)}^{G} \mathbf{R}\right)\right)\right) \tag{10}\\
\left.{ }^{G} \mathbf{p}_{I\left({ }^{(}{ }^{(} t_{1}+\right.}+{ }^{i} t_{b}\right) & =\left(1-\lambda_{k}\right) \tag{11}\\
\lambda_{k} \mathbf{p}_{I\left({ }^{b} t_{1}\right)}+\lambda_{k}{ }^{G} \mathbf{p}_{I\left({ }^{b} t_{2}\right)} & =\frac{{ }^{i} t_{k}+{ }^{i} t_{b}-{ }^{b} t_{1}}{{ }^{b} t_{2}-{ }^{b} t_{1}} \tag{12}
\end{align*}
$$

For this measurement, we can use the chain rule to compute the derivatives with respect to the bounding states and the unknown time offset:

$$
\begin{align*}
& \frac{\partial^{C_{i}\left({ }^{(} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{I\left({ }^{(} t_{1}\right)} \delta \boldsymbol{\theta}_{G}}=\frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}} \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial^{I\left({ }^{\left(t_{2}\right)} \delta \boldsymbol{\theta}_{G}\right.}} \tag{13}\\
& \frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{I\left({ }^{(b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}}=\frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{I\left({ }^{\left(i_{k}+\right.}{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}} \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial^{I\left({ }^{(b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}} \tag{14}\\
& \frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{b} t_{1}\right)}}=\frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)}} \frac{\left.\partial^{G} \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right.}\right)}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{(b} t_{1}\right)}} \tag{15}\\
& \frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{(} t_{2}\right)}}=\frac{\delta^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)}} \frac{\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{b} t_{2}\right)}} \tag{16}\\
& \frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial \delta^{i} t_{b}}=\frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{(} t_{k}+{ }^{i} t_{b}\right)}} \frac{\left.\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+i{ }^{2}\right.}\right)}{\partial \delta^{i} t_{b}}+\frac{\partial^{C_{i}\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)}}{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \mathbf{p}_{f}} \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial \delta^{i} t_{b}} \tag{17}
\end{align*}
$$

The first terms in the chain rule are identical to those derived for the cam b case, but with the calibration between the IMU to cam i. The derivatives with respect to the position are computed as:

$$
\begin{align*}
& \frac{\left.\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right.}\right)}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{b} t_{1}\right)}}=\left(1-\lambda_{k}\right) \mathbf{I} \tag{18}\\
& \frac{\left.\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{+} t_{b}\right.}\right)}{\partial^{G} \delta \mathbf{p}_{I\left({ }^{b} t_{2}\right)}}=\lambda_{k} \mathbf{I} \tag{19}\\
& \frac{\left.\partial^{G} \delta \mathbf{p}_{I\left({ }^{i} t_{k}+{ }^{+} t_{b}\right.}\right)}{\partial \delta^{i} t_{b}}=\frac{1}{{ }^{{ }^{b} t_{2}-{ }^{b} t_{1}}\left({ }^{G} \mathbf{p}_{I\left({ }^{b} t_{2}\right)}-{ }^{G} \mathbf{p}_{I\left({ }^{(} t_{1}\right)}\right)} . \tag{20}
\end{align*}
$$

For the orientation derivatives, we use the following approximations for small angles $\boldsymbol{\psi}$

$$
\begin{align*}
\operatorname{Exp}(\boldsymbol{\theta}+\boldsymbol{\psi}) & \approx \operatorname{Exp}\left(\mathbf{J}_{l}(\boldsymbol{\theta}) \boldsymbol{\psi}\right) \operatorname{Exp}(\boldsymbol{\theta}) \tag{21}\\
& \approx \operatorname{Exp}(\boldsymbol{\theta}) \operatorname{Exp}\left(\mathbf{J}_{r}(\boldsymbol{\theta}) \boldsymbol{\psi}\right) \tag{22}
\end{align*}
$$

where the definition of Jacobians of $S O(3) \mathbf{J}_{l}(\cdot)$ and $\mathbf{J}_{r}(\cdot)$ are the following:

$$
\begin{align*}
& \mathbf{J}_{l}(\phi)=\mathbf{I}+\frac{1-\cos (\|\phi\|)}{\|\phi\|^{2}}\lfloor\phi \times\rfloor+\frac{\|\phi\|-\sin (\|\phi\|)}{\|\phi\|^{3}}\lfloor\phi \times\rfloor^{2} \tag{23}\\
& \mathbf{J}_{r}(\phi)=\mathbf{I}-\frac{1-\cos (\|\phi\|)}{\|\phi\|^{2}}\lfloor\phi \times\rfloor+\frac{\|\phi\|-\sin (\|\phi\|)}{\|\phi\|^{3}}\lfloor\phi \times\rfloor^{2} \tag{24}
\end{align*}
$$

We also define for convenience ${ }_{1}^{2} \boldsymbol{\theta}=\log \left({ }_{I\left({ }^{(b)} t_{1}\right)}^{\left(b_{2}\right)} \mathbf{R}\right)$. In addition we will use the fact that $\mathbf{R E x p}(\boldsymbol{\theta})=$ $\operatorname{Exp}(\mathbf{R} \boldsymbol{\theta}) \mathbf{R}$. We first expand the rotation interpolation equation with respect to a perturbation in the clone $I\left({ }^{b} t_{1}\right)$:

$$
\begin{align*}
& \operatorname{Exp}\left(-{ }^{\left.I{ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}\right){ }_{G}^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{25}\\
& =\operatorname{Exp}\left(\lambda_{k} \log \left({ }_{G}^{\left.I{ }^{b} t_{2}\right)} \mathbf{R}_{I\left({ }^{b} t_{1}\right)}^{G} \mathbf{R E x p}\left({ }^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right)\right) \operatorname{Exp}\left(-{ }^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right){ }_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{26}\\
& \left.\approx \operatorname{Exp}\left(\lambda_{k}\left({ }_{1}^{2} \boldsymbol{\theta}+\mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right){ }^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right) \operatorname{Exp}\left(-{ }^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right)_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{27}\\
& \left.\approx \operatorname{Exp}\left(\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right)^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right) \operatorname{Exp}\left(\lambda_{k}^{2} \boldsymbol{\theta}\right) \operatorname{Exp}\left(-^{\left.I{ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right)_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{28}\\
& =\operatorname{Exp}\left(\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right){ }^{I\left({ }^{(} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right) \operatorname{Exp}\left(-\operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right){ }^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right) \operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right){ }_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{29}\\
& \left.\left.=\operatorname{Exp}\left(\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right)\right)^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right) \operatorname{Exp}\left(-\operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right)^{I\left({ }^{b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right)_{G}^{\left.I{ }^{(i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{30}\\
& \left.\approx \operatorname{Exp}\left(\left(\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right)-\operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right)\right)^{I\left({ }^{(b} t_{1}\right)} \delta \boldsymbol{\theta}_{G}\right)\right)_{G}^{\left.I{ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{31}\\
& \Rightarrow \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial^{I\left({ }^{(} t_{1}\right)} \delta \boldsymbol{\theta}_{G}}=-\left(\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k 1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{r}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right)-\operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right)\right) \tag{32}
\end{align*}
$$

Next we perturb $I\left({ }^{b} t_{2}\right)$

$$
\begin{align*}
& \operatorname{Exp}\left(-{ }^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}\right){ }_{G}^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{33}\\
& =\operatorname{Exp}\left(\lambda_{k} \log \left(\operatorname{Exp}\left(-{ }^{I\left({ }^{b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}\right)\right){ }_{G}^{I\left({ }^{(b} t_{2}\right)} \mathbf{R}_{I\left(b_{1}\right)}^{G} \mathbf{R}\right){ }_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{34}\\
& \approx \operatorname{Exp}\left(\lambda_{k}\left({ }_{1}^{2} \boldsymbol{\theta}-\mathbf{J}_{l}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right){ }^{I\left({ }^{b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}\right)\right){ }_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{35}\\
& \approx \operatorname{Exp}\left(-\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{l}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right){ }^{I\left({ }^{b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}\right) \operatorname{Exp}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right){ }_{G}^{\left.I{ }^{(b} t_{1}\right)} \mathbf{R} \tag{36}\\
& =\operatorname{Exp}\left(-\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{l}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right)^{I\left({ }^{b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}\right){ }_{G}^{\left.I^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{37}\\
& \Rightarrow \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial^{I\left({ }^{(b} t_{2}\right)} \delta \boldsymbol{\theta}_{G}}=\lambda_{k} \mathbf{J}_{l}\left(\lambda_{k}{ }_{1}^{2} \boldsymbol{\theta}\right) \mathbf{J}_{l}^{-1}\left({ }_{1}^{2} \boldsymbol{\theta}\right) \tag{38}
\end{align*}
$$

Lastly we perturb λ_{k} by $\delta \lambda_{k}=\frac{\delta^{i} t_{b}}{b_{t_{2}}-t_{b}}$:

$$
\begin{align*}
& \operatorname{Exp}\left(-I{ }^{i} t_{k}+{ }^{i} t_{b}\right) \tag{39}\\
\boldsymbol{\theta} & \left.\boldsymbol{\theta}_{G}\right){ }_{G}^{\left.I{ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{40}\\
& =\operatorname{Exp}\left(\left(\lambda_{k}+\delta \lambda_{k}\right) \log \left({ }_{G}^{\left.I{ }^{(b} t_{2}\right)} \mathbf{R}_{I\left(b_{1}\right)}^{G} \mathbf{R}\right)\right){ }_{G}^{I\left({ }^{b} t_{1}\right)} \mathbf{R} \tag{41}\\
& \left.\approx \operatorname{Exp}\left(\mathbf{J}_{l}\left(\lambda_{k}{ }^{2} \boldsymbol{\theta}\right)\right){ }_{1}^{2} \boldsymbol{\theta} \delta \lambda_{k}\right){ }_{G}^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \mathbf{R} \tag{42}\\
\Rightarrow \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial \delta \lambda_{k}} & =-\mathbf{J}_{l}\left(\lambda_{k}^{2} \boldsymbol{\theta}\right){ }_{1}^{2} \boldsymbol{\theta} \tag{43}\\
\Rightarrow \frac{\partial^{I\left({ }^{i} t_{k}+{ }^{i} t_{b}\right)} \delta \boldsymbol{\theta}_{G}}{\partial \delta^{i} t_{b}} & =-\frac{1}{b_{t_{2}-} t_{1}} \mathbf{J}_{l}\left(\lambda_{k}^{2} \boldsymbol{\theta}\right){ }_{1}^{2} \boldsymbol{\theta}=-\frac{1}{{ }^{b} t_{2}-{ }^{b} t_{1}}{ }_{1}^{2} \boldsymbol{\theta}
\end{align*}
$$

