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1 Preliminaries

1.1 System State

The IMU state of an aided inertial navigation system at time step k is given by [1]:

xk =
[
k
Gq̄
> b>ωk

Gv>k b>ak
Gp>k

]>
(1)

where k
Gq̄ is the unit quaternion of JPL form parameterizing the rotation k

GR from the global frame
{G} to the current local frame {k} [2], bωk and bak are the gyroscope and accelerometer biases, and
Gvk and Gpk are the velocity and position of the IMU expressed in the global frame, respectively.
The error state corresponding to Equation (1) is given by:

δxk =
[
kδθ>G δb>ωk

Gδv>k δb>ak
Gδp>k

]>
(2)

The relationship between the vector quantities with true value v, mean value v̂, and error state
δv takes the form v = v̂ + δv. For quaternions in JPL convention, with true value q̄, mean value
ˆ̄q, and error state δθ, we have:

q̄ =

[
δθ
2
1

]
⊗ ˆ̄q (3)

where ⊗ is the quaternion multiplication. We write these relationships compactly as x = x̂ � δx
and δx = x � x̂.

1.2 Graph Optimization

Given a set of measurements with residuals ei and information matrices Λi, we solve the following
maximum a posteriori (MAP) problem to estimate our state [3]:

x̂ = argmin
x

∑
i

1

2
||ei (x)||2Λi

(4)

We solve this MAP problem through iterative linearization, where for each iteration we solve the
following problem:

δx̂ = argmin
δx

∑
i

1

2
||ei (x̂) + Jiδx||2Λi

(5)

Ji =
∂ei (x̂ � δx)

∂δx

∣∣∣
δx=0

(6)

It is clear that in order to use this formulation in estimation, we must define the appropriate
measurement residuals ei, Jacobians Ji, and information matrices Λi. In this technical report we
show how to optimally utilize IMU measurements in this formulation through the use of continuous
preintegration.

2 Continuous Preintegration

An IMU attached to the robot collects inertial readings of the underlying state dynamics. In
particular, the sensor receives angular velocity ωm and local linear acceleration am measurements
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which relate to the corresponding true values ω and a as follows:

ωm = ω + bω + nω (7)

am = a + I
GRGg + ba + na (8)

where Gg = [0 0 9.81]> is the global gravity, noting that the gravity is slightly different in different
parts of the globe, and I

GR is the rotation from the global frame to the instantaneous local inertial
frame. The measurements are corrupted both by the time-varying biases bω and ba (which must be
co-estimated with the state), and the zero-mean white Gaussian noises nω and na. The standard
dynamics of the IMU state is given by [4]:

I
G

˙̄q =
1

2
Ω(ωm − bω − nω)IGq̄ (9)

ḃω = nωb (10)
Gv̇I = G

I R (am − ba − na)− Gg (11)

ḃa = nab (12)
GṗI = GvI (13)

where

Ω(ω) =

[
−bωc ω
−ω> 0

]
(14)

3 Standard IMU Processing

Given a series of IMU measurements, I, collected over a time interval [tk, tk+1], the standard
(graph-based) IMU processing considers the following propagation function:

xk+1 = g (xk, I,n) (15)

That is, the future state at time step k + 1 is a function of the current state at step k, the IMU
measurements I, and the corresponding measurement noise n. Conditioning on the current state,
the expected value of the next state is found by evaluating the propagation function with zero
noise:

x̆k+1 = g (xk, I,0) (16)

which implies that we perform integration of the state dynamics in the absence of noise. The
residual for use in batch optimization of this propagation now constrains the start and end states
of the interval and is given by:

cIMU (x) =
1

2
||xk+1 � x̆k+1||2Q−1

k
(17)

=
1

2
||xk+1 � g (xk, I,0)||2

Q−1
k

(18)

where Qk is the linearized, discrete-time noise covariance computed from the IMU noise character-
ization and is a function of the state. This noise covariance matrix and the propagation function
can be found by the integration of Equations (9)-(13) and their associated error state dynamics, to
which we refer the reader to [2, 1].
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It is clear from Equation (16) that we need constantly re-evaluate the propagation function g(·)
and the residual covariance Qk whenever the linearization point (state estimate) changes. The high
frequency nature of the IMU sensors and the complexity of the propagation function and the noise
covariance can make direct incorporation of IMU data in real-time graph-based SLAM prohibitively
expensive.

4 Model 1: Piecewise Constant Measurements

IMU preintegration seeks to directly reduce the computational complexity of incorporating inertial
measurements by removing the need to re-integrate the propagation function and noise covari-
ance. This is achieved by processing IMU measurements in a local frame of reference, yielding
measurements that are, in contrast to Equation (16), independent of the state [5].

Specifically, by denoting ∆T = tk+1− tk, we have the following relationship between a series of
IMU measurements, the start state, and the resulting end state [6]:

Gpk+1 = Gpk + Gvk∆T −
1

2
Gg∆T 2 + G

k R

∫ tk+1

tk

∫ s

tk

k
uR (am − ba − na) duds (19)

Gvk+1 = Gvk − Gg∆T + G
k R

∫ tk+1

tk

k
uR (am − ba − na) du (20)

k+1
G R = k+1

k R k
GR (21)

bωk+1
= bωk +

∫ tk+1

tk

nωb du (22)

bak+1
= bak +

∫ tk+1

tk

nab du (23)

From the above, we define the following preintegrated IMU measurements:

kαk+1 =

∫ tk+1

tk

∫ s

tk

k
uR (am − ba − na) duds (24)

kβk+1 =

∫ tk+1

tk

k
uR (am − ba − na) du (25)

where along with these preintegrated inertial measurements the preintegrated relative-orientation
measurement k+1

k q̄ (or k+1
k R) can be obtained from the integration of the gyro measurements.

To remove the dependencies of the above preintegrated measurements on the true biases, we
linearize about the current bias estimates at time step tk, b?ak and b?ωk . Defining ∆b = b− b?, we
have:

k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
'

kαk+1

(
b?ωk ,b

?
ak

)
+

∂α

∂bω

∣∣∣
b?ωk

∆bω +
∂α

∂ba

∣∣∣
b?ak

∆ba (26)

k
GR

(
Gvk+1 − Gvk + Gg∆T

)
' kβk+1

(
b?ωk ,b

?
ak

)
+

∂β

∂bω

∣∣∣
b?ωk

∆bω +
∂β

∂ba

∣∣∣
b?ak

∆ba (27)

k+1
G R k

GR
>' R

(
∂R

∂bω

∣∣∣
b?ωk

∆bω

)
k+1
k R

(
b?ωk

)
(28)
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Note that Equations (26) and (27) are simple Taylor series expansions for our kαk+1 and kβk+1

measurements, while Equation (28) models an additional rotation induced due to a change of the
linearization point (estimate) of the gyro bias [6, 7].

The preintegrated measurement’s mean values, kᾰk+1, kβ̆k+1, and k+1
k

˘̄q, must be computed
for use in graph optimization. It is important to note that current preintegration methods [5, 7,
8] are all based on discrete integration of the measurement dynamics through Euler or midpoint
integration. In particular, the discrete approximation used by Forster et al. [7] in fact corresponds
to a piecewise constant global acceleration model. By contrast, we here offer closed-form solutions
for the measurement means under the assumptions of piecewise constant measurements and of
piecewise constant local acceleration (in Section 5).

4.1 Measurement Mean

We now derive the closed-from solutions for k+1
k

˘̄q, kᾰk+1, kβ̆k+1. In particular, the quaternion
τ+1
τ

˘̄q can be found using the zeroth order quaternion integrator [2]. This can be compounded
successively to get the final measurement mean k+1

k
˘̄q. In a similar fashion, we can find, in closed

form, kᾰτ+1 and kβ̆τ+1. We have derived the following continuous time linear system:[
k ˙̆αu
k ˙̆
βu

]
=

[
0 I
0 0

] [
kᾰu
kβ̆u

]
+

[
0
k
uR̆

]
(am − b?ak) (29)

The solution of this linear dynamical system is given by:[
kᾰτ+1
kβ̆τ+1

]
= Φ(tτ+1, tτ )

[
kᾰτ
kβ̆τ

]
+

∫ tτ+1

tτ

Φ(tτ+1, u)

[
0
k
uR̆

]
(am − b?ak) du (30)

where the state-transition matrix Φ(tτ+1, tτ ) is given by the matrix exponential:

Φ(tτ+1, tτ ) = exp

([
0 I
0 0

]
∆t

)
= I +

[
0 I
0 0

]
∆t+

[
0 0
0 0

]
∆t2 =

[
I I∆t
0 I

]
(31)

where ∆t = tτ+1 − tτ . Substituting the state-transition into Equation (30) yields:[
kᾰτ+1
kβ̆τ+1

]
=

[
I I∆t
0 I

] [
kᾰτ
kβ̆τ

]
+

∫ tτ+1

tτ

[
I I(tτ+1 − u)
0 I

] [
0
k
uR̆

]
â du (32)

=

[
kᾰτ + kβ̆τ∆t

kβ̆τ

]
+

∫ tτ+1

tτ

[
(tτ+1 − u)kuR̆â

k
uR̆â

]
du (33)

=

[
kᾰτ + kβ̆τ∆t

kβ̆τ

]
+

[
k
τ+1R̆

∫ tτ+1

tτ
(tτ+1 − u)τ+1

u R̆â du
k
τ+1R̆

∫ tτ+1

tτ
τ+1
u R̆â du

]
(34)

where â = am − b?ak . Using ω̂ = ωm − b?ωk and δt = (tτ+1 − u), and the Rodrigues’ formula (35)
we have:

τ+1
u R = exp(−bω̂cδt) = I− sin(|ω̂|δt)

|ω̂|
bω̂c+

1− cos(|ω̂|δt)
|ω̂|2

bω̂c2 (35)
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[
kᾰτ+1
kβ̆τ+1

]
=

[
kᾰτ + kβ̆τ∆t

kβ̆τ

]
+

[
k
τ+1R̆

∫ ∆t
0 (δt)(I− sin(|ω̂|(δt))

|ω̂| bω̂c+ 1−cos(|ω̂|δt)
|ω̂|2 bω̂c2)(â)dδt

k
τ+1R̆

∫ ∆t
0 (I− sin(|ω̂|(δt))

|ω̂| bω̂c+ 1−cos(|ω̂|δt)
|ω̂|2 bω̂c2)(â)dδt

]
(36)

=
[
kᾰτ + kβ̆τ∆t

kβ̆τ

]

+

[
k
τ+1R̆( (∆t2)

2 I + |ω̂|∆tcos(|ω̂|∆t)−sin(|w|∆t)
|ω̂|3 bω̂c+ (|ω̂|∆t)2−2cos(|ω̂|∆t)−2(|ω̂|∆t)sin(|ω̂|∆t)+2

2|ω̂|4 bω̂c2)(â)
k
τ+1R̆(∆tI− 1−cos(|ω̂|(∆t))

|ω̂|2 bω̂c+ (|ω̂|∆t)−sin(|ω̂|∆t)
|ω̂|3 bω̂c2)(â)

]
(37)

4.2 State-Transition Matrix

In order to use the derived continuous preintegration measurement means, we must have the co-
variances associated with their error quantities. To do this, we examine the time evolution of the
corresponding error states:

kδα̇u = kδβu (38)

kδβ̇u = k
uR̆ (I + buδθkc) (am − ba − na)−ku R̆

(
am − b?ak

)
(39)

= k
uR̆
(
−b̃a − na

)
+k
u R̆buδθkc

(
am − b?ak

)
(40)

˙uδθk = −
⌊(
ω̂ − b?ωk

)⌋
uδθk − b̃w − nw (41)

where we have used the standard error associated with JPL-convention quaternions, uk q̄ = δq̄ ⊗ u
k

˘̄q,
and δq̄ ' [(δθ/2)> 1]>. This yields the following linearized system describing our error states:

u ˙δθk
˙̃
bω
k ˙δβu

˙̃
ba

k ˙δαu

 =


−bω̂c −I 0 0 0

0 0 0 0 0

−kuR̆bâc 0 0 −kuR̆ 0
0 0 0 0 0
0 0 I 0 0



uδθk
b̃ω
kδβu
b̃a

kδαu

+


−I 0 0 0
0 I 0 0

0 0 −kuR̆ 0
0 0 0 I
0 0 0 0




nω
nωb
na
nab

 (42)

⇒ ṙ = Fr + Gn (43)

As compared to the original preintegration paper [6], the above system incorporates bias errors
that captures the drift in a given bias over an interval. Note that these bias error terms b̃ω and
b̃a, describe the deviation of the bias over the interval due to the random-walk drift, rather than
the error of the current bias estimate. The discrete state transition matrix can be found by solving
the following differential equation:

Φ̇(tu, tτ ) = F(u) Φ(tu, tτ ) (44)

Φ(tτ , tτ ) = I15×15 (45)

4.3 Discrete Covariance Propagation

Using the expressions for the state-transition matrix, the covariance propagation for our preinte-
grated measurements takes the form:

Pk = 015×15 (46)

Pτ+1 = Φ(tτ+1, tτ ) Pτ Φ(tτ+1, tτ )> + Qτ (47)

Qτ =

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG(u)>Φ(tτ+1, u)>du (48)
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In practical applications, the state transition matrix Φ(tτ+1, tτ ) and discrete measurement covari-
ance Qτ can be numerically integrated.

4.4 Acceleration Bias Jacobians

We have derived the closed-form measurement update for kᾰτ and kβ̆τ (see Equation (37)). We
need only compute the gradients of our closed-form update expressions with respect to changes in
bias. In particular, since each update term is linear in the estimated acceleration, â = am − b?ak ,

we can find the bias Jacobians of kαk+1 and kβk+1 with respect to ba as follows:[
∂α
∂ba
∂β
∂ba

]
=:

[
Hα(τ + 1)
Hβ(τ + 1)

]
=

[
Hα(τ) + Hβ(τ)∆t

Hβ(τ)

]
(49)

−

kτ+1R̆
(

∆t2

2 I3×3 + |ω̂|∆tcos(|ω̂|∆t)−sin(|ω̂|∆t)
|ω̂|3 bω̂c+ (|ω̂|∆t)2−2cos(|ω̂|∆t)−2(|ω̂|∆t)sin(|ω̂|∆t)+2

2|ω̂|4 bω̂c2
)

k
τ+1R̆

(
∆tI3×3 − 1−cos(|ω̂|(∆t))

|ω̂|2 bω̂c+ (|ω̂|∆t)−sin(|ω|∆t)
|ω̂|3 bω̂c2

) 
and for small values of ω̂ we have:

lim
|ω̂|→0

[
Hα(τ + 1)
Hβ(τ + 1)

]
=

[
Hα(τ) + Hβ(τ)∆t

Hβ(τ)

]
−

[
k
τ+1R̆(∆t2

2 I− ∆t3

3 bω̂c+ ∆t4

8 bω̂c
2)

k
τ+1R̆(∆tI− ∆t2

2 bω̂c+ ∆t3

6 bω̂c
2)

]
(50)

4.5 Gyro Bias Jacobians

We find the derivatives of kατ+1 and kβτ+1 with respect to each entry of the gyro bias by taking
the derivative with respect to each gyro bias entry. We seek to find the following entries:

Jα =
[
∂kατ+1

∂bω1

∂kατ+1

∂bω2

∂kατ+1

∂bω3

]
(51)

Jβ =
[
∂kβτ+1

∂bω1

∂kβτ+1

∂bω2

∂kβτ+1

∂bω3

]
(52)

For each of the above entries, from Equation (37), we have the following:

∂kατ+1

∂bωi
=
∂kατ
∂bωi

+
∂kβτ∆t

∂bωi

+
∂

∂bwi

(
k
τ+1R(

(∆t2)

2
I3×3 +

|ω̂|∆tcos(|ω̂|∆t)− sin(|ω̂|∆t)
|ω̂|3

bω̂c

+
(|ω̂|∆t)2 − 2cos(|ω̂|∆t)− 2(|ω̂|∆t)sin(|ω̂|∆t) + 2

2|ω̂|4
bω̂c2)

)
(â) (53)

The first two terms are from the previous integration time step, as we build these Jacobians incre-
mentally. Defining êi as the unit vector in the i’th direction, and ω̂i the corresponding entry in ω̂
the third term can be found as the following:

∂kτ+1R( (∆t)2

2 I + f1bω̂c+ f2bω̂c2)

∂bωi
=
∂kτ+1R

∂bωi

(
(∆t)2

2
I + f1bω̂c+ f2bω̂c2

)
+ k
τ+1R̆

(
∂f1

∂bωi
bω̂c − f1bêic+

∂f2

∂bωi
bω̂c2 − f2(bêicbω̂c+ bω̂cbêic)

)
(54)
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where f1 and f2 are the corresponding coefficients in Equation (53), and their derivatives are
computed as:

∂f1

∂bωi
=
ω̂i(|ω̂|2∆t2sin(|ω̂|∆t)− 3sin(|ω̂|∆t) + 3|ω̂|∆tcos(|ω̂|∆t))

|ω̂|5
(55)

∂f2

∂bωi
=
ω̂i((|ω̂|∆t)2 − 4cos(|ω̂|∆t)− 4(|ω̂|∆t)sin(|ω̂|∆t) + (|ω̂|∆t)2cos(|ω̂|∆t) + 4)

|ω̂|6
(56)

For small ω̂,

lim
|ω̂|→0

∂f1

∂bωi
= −ω̂i

∆t5

15
(57)

lim
|ω̂|→0

∂f2

∂bωi
= ω̂i

∆t6

72
(58)

Similarly, we have:

∂kβτ+1

∂bωi
=
∂kβτ
∂bωi

+
∂kτ+1R

∂bωi

(
∆tI + f3bω̂c+ f4bω̂c2

)
â

+ k
τ+1R̆

(
∂f3

∂bωi
bω̂c − f3bêic+

∂f4

∂bωi
bω̂c2 − f4(bêicbω̂c+ bω̂cbêic)

)
â (59)

where

∂f3

∂bωi
=
ω̂i(2(cos(|ω̂|∆t)− 1) + (|ω̂|∆t)sin(|ω̂|∆t))

|ω̂|4
(60)

∂f4

∂bωi
=
ω̂i(2(|ω̂|∆t) + (|ω̂|∆t)cos(|ω̂|∆t)− 3sin(|ω̂|∆t))

|ω̂|5
(61)

For small ω̂ we have:

lim
|ω̂|→0

∂f3

∂bωi
= −ω̂i

∆t4

12
(62)

lim
|ω̂|→0

∂f4

∂bωi
= ω̂i

∆t5

60
(63)

We now show how to derive the derivative of the rotation matrix with respect to a change in
bias, i.e., ∆bω = bω − b?ωk . To do so, we consider a set of measurements over the interval and for
the first measurement interval, [tk, tτ1 ], with measurement ωm1 , we integrate over its sub-interval
to get the following:

τ1
k R = (kτ1R)> = (exp(bωm1 − b?ωk −∆bωc∆t))> (64)

' (exp(bωm1 − b?ωkc∆t)exp(b−Jr1∆bωc∆t))> (65)

= exp(bJr1∆bωc∆t)exp(−bωm1 − b?ωkc∆t) (66)

= exp(bJr1∆bωc∆t)τ1k R̆ (67)

' (I3×3 + bJr1∆bωc∆t)τ1k R̆ (68)
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where Jri is the right Jacobian of SO(3) evaluated at the i’th measurement (i.e., ωmi), see Equation
(164). This decomposition can be done for every measurement interval:

τi+1
τi R ' (I3×3 + bJri+1∆bωc∆t)τi+1

τi R̆ (69)

We can now look at what happens when we compound measurements. In particular, at the second-
step [tτ1 , tτ2 ], we have the following:

τ2
k R = τ2

τ1R
τ1
k R (70)

' (I3×3 + bJr2∆bωc∆t)τ2τ1R̆(I3×3 + bJr1∆bωc∆t)τ1k R̆ (71)

= (I3×3 + bJr2∆bωc∆t)(I3×3 + bτ2τ1R̆Jr1∆bωc∆t)τ2k R̆ (72)

≈ (I3×3 + b(Jr2 + τ2
τ1R̆Jr1)∆bωc∆t)τ2k R̆ (73)

Here we have used the property that RbwcR> = bRwc for a rotation matrix. Repeating this
process for the interval [tτ2 , tτ3 ] yields:

τ3
k R = τ3

τ2R
τ2
k R (74)

' (I3×3 + bJr3∆bωc∆t)τ3τ2R̆(I3×3 + b(Jr2 + τ2
τ1R̆Jr1)∆bωc∆t)τ2k R̆ (75)

= (I3×3 + bJr3∆bωc)(I3×3 + b(τ3τ2R̆Jr2 + τ3
τ1R̆Jr1)∆bωc∆t)τ3k R̆ (76)

' (I3×3 + b(Jr3 + τ3
τ2R̆Jr2 + τ3

τ1R̆Jr1)∆bωc∆t)τ3k R̆ (77)

We thus see the pattern developing and can write the updated rotation at any time step tu as:

u
kR = exp(bJq(u)(bω − b?ωk)c)ukR̆ (78)

with Jq(u) =
u∑

τ=τ1

u
τ R̆Jrτ∆t (79)

Each of these values can be calculated incrementally by noting that:

Jq(u+ 1) = u+1
u R̆

u∑
τ=τ1

u
τ R̆Jrτ∆t+ Jru+1∆t (80)

= u+1
u R̆Jq(u) + Jru+1∆t (81)

The derivative of every rotation with respect to the i’th entry of the gyro bias, which appears in
both Equation (54) and (59) can be approximated using:

u
kR ' (I3×3 + bJq(u)(bω − b?ωk)c)ukR̆ (82)

∂ukR

∂bωi
≈ bJq(u)êicukR̆ (83)

∂kuR

∂bωi
≈ −kuR̆bJq(u)êic (84)

The total rotation after a bias update can be expressed as:

k+1
k R = exp(bJq(k + 1)(bω − b?ωk)c)k+1

k R̆ (85)

(86)
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4.6 Measurement Residual

eIMU (x) = (87)

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄b

)
bωk+1

− bωk(
k
GR

(
Gvk+1 − Gvk + Gg∆T

)
−Jβ

(
bωk − b?ωk

)
−Hβ

(
bak − b?ak

)
− kβ̆k+1

)
bak+1

− bak(
k
GR

(
Gpk+1 − Gpk − Gvk∆T + 1

2
Gg∆T 2

)
−Jα

(
bωk − b?ωk

)
−Hα

(
bak − b?ak

)
− kᾰk+1

)


where

q̄b =

 θ
||θ|| sin

(
||θ||

2

)
cos
(
||θ||

2

)  (88)

θ = Jq
(
bωk − b?ωk

)
(89)

4.7 Measurement Jacobian

Let us partition the preintegrated residual for the first model as:

eIMU =
[
e>θ e>bω e>v e>ba e>p

]>
(90)

The measurement Jacobian with respect to one element of the state vector can be found by per-
turbing the measurement function by the corresponding element. For example, the relative-rotation
measurement residual is perturbed by a change in gyro bias around the current estimate (i.e.,
bωk − b?ωk = b̂ωk + δbωk − b?ωk):

eθ = 2vec

(
k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗ k+1

k
˘̄q
−1 ⊗

[
Jq(b̂ωk+δbωk−b?ωk

)

2
1

])

=: 2vec

(
ˆ̄qr ⊗

[
Jq(b̂ωk+δbωk−b?ωk

)

2
1

])

= 2vec

(
L(ˆ̄qr)

[
Jq(b̂ωk+δbωk−b?ωk

)

2
1

])

= 2vec

([
q̂r,4I3×3 − bq̂rc q̂r

−q̂>r q̂r,4

][Jq(b̂ωk+δbωk−b?ωk
)

2
1

])
= (q̂r,4I3×3 − bq̂rc)Jq(b̂ωk + δbωk − b?ωk) + other terms

So that our Jacobian with respect to a perturbance in bias is:

∂eθ
∂δbωk

= (q̂r,4I3×3 − bq̂rc)Jq (91)
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Similarly, the Jacobian with respect to k+1δθG can be found as follows:

eθ = 2vec

([
k+1δθG

2
1

]
⊗ k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗ k+1

k q̄
−1 ⊗ ˆ̄qb

)

= 2vec

([
k+1δθG

2
1

]
⊗ ˆ̄qrb

)

= 2vec

(
R(q̂rb)

[
k+1δθG

2
1

])

= 2vec

([
q̂rb,4I3×3 + bq̂rbc q̂rb

−q̂>rb q̂rb,4

][ k+1δθG
2
1

])
= (q̂rb,4I3×3 + bq̂rbc)k+1δθG + other terms

Yielding the Jacobian:

∂eθ
∂k+1δθG

= q̂rb,4I3×3 + bq̂rbc (92)

The Jacobian with respect to kδθG is given by:

eθ = 2vec

(
k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗

[
−
kδθG

2
1

]
⊗ k+1
k q̄

−1 ⊗ ˆ̄qb

)

= 2vec

(
q̂n ⊗

[
−
kδθG

2
1

]
⊗ q̂−1

mb

)

= 2vec

(
L(q̂n)R(q̄−1

mb)

[
−
kδθG

2
1

])

= 2vec
([q̂n,4I3×3 − bq̂nc q̂n

−q̂>n q̂n,4

]
[
q̄mb,4I3×3 − bq̄mbc −qmb

q>mb q̄mb,4

][
−
kδθG

2
1

])
= −((q̂n,4I3×3 − bq̂nc)(qmb,4I3×3 − bqmbc) + q̂nq

>
mb)

kδθG + other terms

Which gives the Jacobian:

∂eθ
∂kδθG

= −((q̂n,4I3×3 − bq̂nc)(q̄mb,4I3×3 − bqmbc) + q̂nq̄
>
mb)

Note than in the preceding Jacobians, we have defined several intermediate quaternions, (ˆ̄qr, ˆ̄qrb, ˆ̄qn,
and ˆ̄qmb) for ease of notation. Following the same methodology, we can find the Jacobians of the
α measurement with respect to the position, velocity and bias.

∂ebω
∂δbωk

= −I (93)

∂ebω
∂δbωk+1

= I (94)
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∂ev
∂kδθG

=
⌊
k
GR̂(Gv̂k+1 − Gv̂k + Gg∆t)

⌋
(95)

∂ev
∂δbωk

= −Jβ (96)

∂ev
∂Gδvk

= −kGR̂ (97)

∂ev
∂Gδvk+1

= k
GR̂ (98)

∂ev
∂δba

= −Hβ (99)

∂eba
∂δbak

= −I (100)

∂eba
∂δbak+1

= I (101)

∂ep
∂kδθG

=

⌊
k
GR̂

(
Gp̂k+1 − Gp̂k − Gv̂k∆t+

1

2
Gg∆t2

)⌋
(102)

∂ep
∂δbωk

= −Jα (103)

∂ep
∂Gδvk

= −kGR̂∆t (104)

∂ep
∂δbak

= −Hα (105)

∂ep
∂Gδpk

= −kGR̂ (106)

∂ep
∂Gδpk+1

= k
GR̂ (107)

(108)

5 Model 2: Piecewise Constant Local Acceleration

The previous preintegration (Model 1) assumes that noiseless IMU measurements can be approxi-
mated as remaining constant over a sampling interval, which, however, might not always be a good
approximation. For example, in the case of an IMU rotating against the direction of gravity, the
measurement will change over a sampling interval continuously due to the effect of gravity. In this
section, we propose a new preintegration model that instead assumes piecewise constant true local
acceleration during the sampling time interval, which may better approximate motion dynamics in
practice.

To this end, we first rewrite the state dynamics as:

Gpk+1 = Gpk + Gvk∆T + G
k R

∫ tk+1

tk

∫ s

tk

k
uRa duds (109)

Gvk+1 = Gvk + G
k R

∫ tk+1

tk

k
uRa du (110)
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Note that we have moved the effect of gravity back inside the integrals. We then define the following
vectors:

∆p =

∫ tk+1

tk

∫ s

tk

k
uRa duds (111)

∆v =

∫ tk+1

tk

k
uRa du (112)

which essentially are the true local position displacement and velocity change during [tk, tk+1], and
yields:

∆ṗ = ∆v (113)

∆v̇ = k
uRa (114)

In particular, between two IMU measurement times inside the preintegration interval, [tτ , tτ+1] ⊂
[tk, tk+1], we assume that the local acceleration will be constant:

∀tu ∈ [tτ , tτ+1] , a(tu) = a(tτ ) (115)

Using this sampling model we can rewrite Equation (114) as:

∆v̇ = k
uR
(
am − ba − na − τ

kR
k
GRGg

)
(116)

We now write the relationship of the states at the beginning and end of the interval as (see Equa-
tions (109) and (110)):

k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
= ∆p (117)

k
GR

(
Gvk+1 − Gvk

)
= ∆v (118)

It is important to note that, since ∆p and ∆v are functions of both the biases and the initial
orientation, we perform the following linearization with respect to these states:

k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
' ∆p

(
b?ωk ,b

?
ak
, kGq̄

?
)

+
∂∆p

∂bω

∣∣∣
b?ωk

∆bω +
∂∆p

∂ba

∣∣∣
b?ak

∆ba +
∂∆p

∂∆θk

∣∣∣
k
Gq̄

?
∆θk (119)

k
GR

(
Gvk+1 − Gvk

)
' ∆v

(
b?ωk ,b

?
ak
, kGq̄

?
)

+
∂∆v

∂bω

∣∣∣
b?ωk

∆bω +
∂∆v

∂ba

∣∣∣
b?ak

∆ba +
∂∆v

∂∆θk

∣∣∣
k
Gq̄

?
∆θk (120)

where ∆θk = 2vec
(
k
Gq̄ ⊗ k

Gq̄
?−1
)

is the rotation angle change associated with the change of the
linearization point of quaternion k

Gq̄.

5.1 Measurement Mean

To compute the new preintegrated measurement mean values, we first determine the continuous-
time dynamics of the expected preintegration vectors by taking expectations of Equations (113)
and (116), given by:

∆ ˙̆p = ∆v̆ (121)

∆ ˙̆v = k
uR̆
(
am − b?ak −

τ
kR̆

k
GR?Gg

)
(122)
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As in the case of Model 1, we can formulate a linear system of the new preintegration measurement
vectors and find the closed-from solutions. Specifically, we can integrate these differential equations
and obtain the solution similar to Equation (37), while using the new definition: â = am − b?ak −
τ
kR̆

k
GR?Gg, which serves as the estimate for the piecewise constant local acceleration over the

sampling interval.

5.2 Measurement Covariance

In order to use the derived continuous preintegration measurement means, we must have the co-
variances associated with their error quantities. We compute the derivative of our measurement
error states with respect to error sources as follows:

∆ ˙̃p = ∆v −∆v̆ (123)

= ∆ṽ (124)

∆ ˙̃v = k
uR̆ (I + buδθkc)

(
am − b?ak − b̃a − (I− bτδθkc) τkR̆ (I− b∆θkc) kGR?Gg − na

)
− k
uR̆
(
am − b?ak −

τ
kR̆

k
GR?Gg

)
(125)

= −kuR̆bâcuδθk − k
uR̆b̃a − k

uR̆bτ ğcτδθk − k
uR̆

τ
kR̆bkg?c∆θk − k

uR̆na (126)

where kg? = k
GR?Gg is the global gravity rotated into the local frame of the linearization point.

In the above expressions, we have used three angle errors: (i) uδθk corresponds to the active local
IMU orientation error, (ii) τδθk corresponds to the cloned orientation error at the sampling time tτ ,
and (iii) ∆θk is the global angle error of the starting orientation of the preintegration time interval.

In addition, the bias errors b̃ describe the deviation of the bias from the starting value over the
interval due to bias drift. With this, we have the following time evolution of the full preintegrated
measurement error state:

uδθ̇k
˙̃
bω
∆ ˙̃v
˙̃
ba
∆ ˙̃p
τδθ̇k
∆θ̇k


= F



uδθk
b̃ω
∆ṽ

b̃a
∆p̃
τδθk
∆θk


+



−I 0 0 0
0 I 0 0

0 0 −kuR̆ 0
0 0 0 I
0 0 0 0
0 0 0 0
0 0 0 0




nω
nωb
na
nab

 (127)

⇒ ṙ = Fr + Gn (128)

where

F =



−bωc −I 0 0 0 0 0
0 0 0 0 0 0 0

−kuR̆bâc 0 0 −kuR̆ 0 −kuR̆bτ ğc −kuR̆τ
kR̆bkg?c

0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(129)

The above continuous time measurement error evolution can be can be numerically integrated
to get the appropriate state transition Φ(tτ+1, tτ ) and additive measurement noise covariance Qτ .
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Having defined the state transition matrix and additive measurement noise covariance, for each
incoming IMU measurement we can “propagate” our total preintegration covariance P as follows:

Pk = 021×21 (130)

P−τ+1 = Φ(tτ+1, tτ )PτΦ(tτ+1, tτ )> + Qτ (131)

Pτ+1 = BP−τ+1B
> (132)

where B is the cloning matrix that allows us to replace the previous static orientation error τδθk to
the new one τ+1δθk when moving to the next preintegration measurement time interval (i.e., from
[tτ , tτ+1] to [tτ+1, tτ+2]), and is given by:

B =



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
I 0 0 0 0 0 0
0 0 0 0 0 0 I


(133)

The resulting preintegrated measurement covariance is extracted from the top left 15×15 block of
Pk+1 after the propagation in Equations (130)-(132) is over for the entire preintegration interval
[tk, tk+1].

5.3 Bias Jacobian Discussion

Model two preintegration depends on the initial orientation τ
kR for each IMU sampling interval

[tτ , tτ+1] and thus, when integrating over one interval to the other, this initial orientation error
changes from τδθk to τ+1δθk. This requires to extra care when computing the total Jacobian (state
transition) matrix, Ψk+1, over the entire preintegration interval [tk, tk+1]; that is, we propagate
this matrix as follows:

Ψk = I21×21 (134)

Ψτ+1 = BΦ(tτ+1, tτ )Ψτ (135)

where B is defined the same as in Equation (133).
Clearly, the total Jacobin matrix Ψk+1 will be the Jacobian of the resulting preintegrated mea-

surement error with respect to the initial error. Therefore, we can simply extract the corresponding
blocks to obtain the bias and initial orientation Jacobians. Denoting Ψk+1(i, j) the 3× 3 block of
the Jacobian matrix starting at index (i, j), we have:

Jq = −Ψk+1(0, 3) (136)

Ja = Ψk+1(12, 3) (137)

Jb = Ψk+1(6, 3) (138)

Ha = Ψk+1(12, 9) (139)

Hb = Ψk+1(6, 9) (140)

Oa = Ψk+1(12, 18) (141)

Ob = Ψk+1(6, 18) (142)

where we flip the sign of Jq to match the same definition used in Model 1.
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5.4 Measurement Residual

eIMU (x) =



2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄b

)
bωk+1

− bωk(
k
GR

(
Gvk+1 − Gvk

)
− Jβ

(
bωk − b?ωk

)
−

Hβ

(
bak − b?ak

)
−Oβ 2vec

(
k
Gq̄ ⊗ k

Gq̄
?−1
)
−∆v̆

)
bak+1

− bak(
k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
− Jα

(
bωk − b?ωk

)
−

Hα

(
bak − b?ak

)
−Oα 2vec

(
k
Gq̄ ⊗ k

Gq̄
?−1
)
−∆p̆

)



(143)

where

q̄b =

 θ
||θ|| sin

(
||θ||

2

)
cos
(
||θ||

2

)  (144)

θ = Jq
(
bωk − b?ωk

)
(145)

5.5 Measurement Jacobian

Let us partition the preintegrated residual for the second model as:

eIMU =
[
e>θ e>bω e>v e>ba e>p

]>
(146)

Instead of directly computing the derivatives, the measurement Jacobian with respect to one ele-
ment of the state vector can be found by perturbing the measurement function by the corresponding
element. The orientation and bias change measurement Jacobians remain unchanged under the new
model. However, since the definition of ev and ep have changed, their Jacobians must be changed
appropriately. The Jacobians are as follows:

∂ebω
∂δbωk

= −I (147)

∂ebω
∂δbωk+1

= I (148)

∂ev
∂kδθG

= bkGR̂
(
Gv̂k+1 − Gv̂k

)
c −Oβ (q̃4I + bq̃c) (149)

∂ev
∂δbωk

= −Jβ (150)

∂ev
∂Gδvk

= −kGR̂ (151)
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∂ev
∂Gδvk+1

= k
GR̂ (152)

∂ev
∂δbak

= −Hβ (153)

∂eba
∂δbak+1

= I (154)

∂eba
∂δbak

= −I (155)

∂ep
∂kδθG

= bkGR̂
(
Gp̂k+1 − Gp̂k − Gv̂k∆T

)
c −Oα (q̃4I + bq̃c) (156)

∂ep
∂δbωk

= −Jα (157)

∂ep
∂Gδvk

= −kGR̂∆T (158)

∂ep
∂δbak

= −Hα (159)

∂ep
∂Gδpk

= −kGR̂ (160)

∂ep
∂Gδpk+1

= k
GR̂ (161)

where [q̃> q̃4]> = k
G

ˆ̄q ⊗ k
Gq̄

?−1
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Appendix A: Useful Identities

We provide some useful identities that are used in our derivations throughout the report. Given a
constant angular velocity ω between times t1 and t2, the rotation matrix between the two frames
Lt1 and Lt2 is given by the matrix exponential:

Lt2
Lt1

R = exp (−bω(t2 − t1)c)

= I3×3 −
sin(|ω(t2 − t1)|)

|ω|
bωc+

1− cos(|ω(t2 − t1)|)
|ω|

bωc2 (162)

where the skew-symmetric is defined as:

bωc =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (163)

The right Jacobian of SO(3), Jr(φ), is defined by (see [9]):

Jr(φ) = I3×3 −
1− cos(‖ φ ‖)
‖ φ ‖2

bφc+
‖ φ ‖ −sin(‖ φ ‖)

‖ φ ‖3
bφc2 (164)

Given a small angle vector perturbation δφ, we can make the following approximation for the
rotation matrix [7] :

exp (bφ+ δψc) ' exp (bφc) exp (bJr(φ)δφc) (165)

This allows us to map a perturbation of the Lie algebra so(3) to a perturbation on the group
of SO(3). The JPL (natural order) quaternion is used throughout the paper [2, 10], which
parametrizes the rotation (162) as follows:

Lt2
Lt1
q̄ =

 ω
|ω|sin

(
|ω(t2−t1)|

2

)
cos
(
|ω(t2−t1)|

2

)
 . (166)
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