
LIPS: LiDAR-Inertial 3D Plane SLAM

Patrick Geneva - pgeneva@udel.edu
Kevin Eckenhoff - keck@udel.edu
Yulin Yang - yuyang@udel.edu

Guoquan Huang - ghuang@udel.edu

Department of Mechanical Engineering
University of Delaware, Delaware, USA

Robot Perception and Navigation Group (RPNG)
Tech Report - RPNG-2018-LIPS
Last Updated - July 31, 2018

mailto:pgeneva@udel.edu
mailto:keck@udel.edu
mailto:yuyang@udel.edu
mailto:ghuang@udel.edu

Contents

1 Graph Based Optimization 1
1.1 IMU State Definition . 1
1.2 Plane State Definition . 1

2 Closest Point Plane Representation 1
2.1 Representation Formulation . 1
2.2 Singularity Discussion . 2

3 Point Cloud to Plane Compression 2

4 Anchor Plane Graph Factor 4

5 IMU to LiDAR State Transform 6

6 Initial Plane Graph Factor 7

7 Plane Correspondences 7

8 Continuous Preintegration 8
8.1 Inertial Measurement Model . 8
8.2 Continuous Preintegrated Measurements . 8
8.3 Continuous Preintegrated Jacobians . 9
8.4 Continuous Preintegrated Covariance . 10

Appendix A Gauss-Newton Plane Weights 11

Appendix B Gradient of Gauss-Newton Cost Function 12

Appendix C Plane Measurement Compression Jacobian 13

Appendix D Anchor Plane Factor Jacobians 14
D.1 HA Jacobian . 14
D.2 HL Jacobian . 15
D.3 Hnd Jacobian . 16
D.4 HΠ Jacobian . 17

Appendix E IMU to LIDAR Transform Jacobian 18
E.1 ∂LGθ̃ Jacobian . 18
E.2 ∂Gp̃L Jacobian . 18

Appendix F Analytic Jacobians for Quaternion Representation 19
F.1 Quaternion Representation . 19
F.2 Measurement Noise Covariance . 19
F.3 Jacobians for Anchor Factor . 20

References 23

1 Graph Based Optimization

1.1 IMU State Definition

Each of our poses is defined by a IMU state which is parameterized by the following 16× 1 vector:

xI =
[
I
Gq̄
> b>g

Gv>I b>a
Gp>I

]>
(1)

where the quaternion I
Gq̄ represents the rotation from global to the IMU, the velocity is of the IMU

seen from the global frame, position is of the IMU seen from the global frame, and bg and ba are
the gyroscope and accelerometer biases respectively.

To perform state estimation, we need the define our error state that will correct the current
state estimate during each update step. Note that special care needs to be taken to use a multi-
plicative error model for the quaternion. We can define the minimal representation error state as
the following:

x̃ =
[
I
Gδθ

> b̃
>
g

Gṽ>I b̃
>
a

Gp̃>I

]>
(2)

where the quaternion error is defined by the 3 × 1 error vector defined as the following [1]:

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

> 1
]>

(3)

1.2 Plane State Definition

Each plane is a single 3 × 1 vector representing the closest 3D plane point to the current frame.
This “closest point” plane representation can be found in detail in in Section 2. We can define the
following state and error state for a given plane:

xΠ = GΠ (4)

x̃Π = xΠ − x̂Π (5)

= GΠ− GΠ̂ (6)

where the left superscript denotes the frame of reference the plane is seen from.

2 Closest Point Plane Representation

2.1 Representation Formulation

We choose the following plane representation:

GΠ =

GΠ(x)
GΠ(y)
GΠ(z)

3×1

(7)

where GΠi is the closest 3D plane point to the current frame of reference. This representation can
be related to the “conventional” Hesse representation through the following mappings:

fromND

([
Gn> Gd

]>)
: GΠ = Gn Gd (8)

toND
(
GΠ

)
:

Gn

Gd

 =

 1√
GΠ(x)2+GΠ(y)2+GΠ(z)2

GΠ√
GΠ(x)2 + GΠ(y)2 + GΠ(z)2

 (9)

RPNG-2018-LIPS 1

2.2 Singularity Discussion

fGg

fLg

G
Π

L
Π

Figure 1: An example situation where the local plane parameter LΠ is well defined while the global
plane representation GΠ is ill-defined as the found plane intercepts the global coordinate frame. We
show that this measurement, LΠ, is not ill-defined if it remains in the local sensor reference frame.

The above representation has a singularity when the value of Gd approaches zero. Any plane GΠ
that intersects our frame of reference {G} will be represented as the same zero vector regardless of
the plane’s orientation since the closest point on that plane is at zero. This singularity can cause
an issue if the plane is represented in a “global” frame of reference. An example failure case is if
the system detects a plane in its local frame of reference that when transformed into the global
frame intersects its origin (see Figure 1).

This issue can be avoided by ensuring that the planes are represented in their first seen frame
of reference, in this case the local frame {L}. We argue that this singularity is well suited in the
case of plane estimation using range based sensors (e.g., LiDAR and RGBD cameras) since planes
extracted from these sensors should not be ill-defined when represented the local sensor frame.
Zhang et al. [2] also noted that planes that are close to intersecting the sensor frame should be
consider “unreliable” if found and discarded.

3 Point Cloud to Plane Compression

From a range based sensor, we have a set of 3D points, {PT}, that belong to a plane in the state.
To leverage this possible large point cloud, we would like to first compress this set of 3D points into
a local measurement of the plane parameters. This local plane measurement can then be inserted
into the graph as a measurement of the estimated plane. Given a set of unorder points, we can
calculate the local parameters as follows:

LΠ∗ = argmin
LΠ

n∑
i=1

∣∣∣∣∣∣ ri(LΠ)
∣∣∣∣∣∣2
Wi(LΠ)

(10)

= argmin
LΠ

n∑
i=1

∣∣∣∣∣∣Ln>Lpmi − Ld
∣∣∣∣∣∣2
Wi(LΠ)

(11)

= argmin
LΠ

n∑
i=1

∥∥∥∥ LΠ>√
LΠ>LΠ

Lpmi −
√
LΠ>LΠ

∥∥∥∥2

Wi(LΠ)

(12)

= argmin
LΠ

n∑
i=1

∥∥∥∥∥ LΠ>

‖LΠ̂‖
Lpmi − ‖LΠ̂‖

∥∥∥∥∥
2

Wi(LΠ)

(13)

RPNG-2018-LIPS 2

where we define ri(·) as the residual of a measurement i, Wi(
LΠ) as the information matrix of the

noise that corrupts the i’th measurement (see Appendix A), LΠ as the point on the plane that
that is the shortest distance to that plane in the local frame, and Lpmi, i ∈ {PT} is a 3D point on
the plane seen from the local frame. This cost function minimizes the scalar difference between the
point Lpmi projected onto the plane normal, Ln =

LΠ

‖LΠ̂‖
, and the shortest distance to the plane,

Ld = ‖LΠ̂‖.
We minimize the cost function using the Gauss-Newton method of iterative linearization of the

residual about the current best estimate. Formally, we solve for the correction vector, LΠ̃, to our
linearization point LΠ̂:

LΠ̃
∗

= argmin
LΠ̃

n∑
i=1

∣∣∣∣∣∣ ri(LΠ̂ � LΠ̃)
∣∣∣∣∣∣2
Wi(LΠ)

(14)

' argmin
LΠ̃

n∑
i=1

∣∣∣∣∣∣ ri(LΠ̂) + Ji
LΠ̃

∣∣∣∣∣∣2
Wi(LΠ)

(15)

where Ji is the Jacobian of the residual in respect to the local plane error state (see Appendix C):

Ji =
∂ ri

∂LΠ̃

∣∣∣
LΠ̂

(16)

=
Lp>mi

‖LΠ̂‖
−
(
Lp>mi

LΠ
) LΠ̂

>

‖LΠ̂‖3
−

LΠ̂
>

‖LΠ̂‖
(17)

From Appendix B, we know that by taking the gradient of the linearized cost function, equation
(15), and finding where it is zero gives us the following correction vector:

LΠ̃ = −

(
n∑
i=1

J>i Wi Ji

)−1(n∑
i=1

J>i Wi ri(
LΠ̂)

)
(18)

Using equation (18), we can update our current estimate. For each iteration we compute the
weights, Jacobians, and update till we converge to a solution. We update our current estimate
using the following linear update function:

LΠ̂
+

= LΠ̂
−

+ LΠ̃ (19)

In summary, using the set of 3D points, {PT}, we have calculate the local plane parameters and
its covariance matrix and will define them as the following:

LΠ = LΠ̂ + nΠ (20)

where nΠ ∼ N (0,PΠ) (21)

where PΠ =

(
n∑
i=1

J>i Wi Ji

)−1

(22)

RPNG-2018-LIPS 3

4 Anchor Plane Graph Factor

A
Π

L
Π

fLg

fGg fAg

Figure 2: Pictorial view of a plane seen in the local {L} frame which can be transformed into its
anchor frame {A} in which we know we have a well-defined plane representation that can be used for

optimization.

We now have the local plane parameters seen in the local frame of reference at time k and would
like to update the value of the global plane parameters in the state. It is important to note that
this is not a simple coordinate transform of a 3D point. Each frame of reference has its own closest
point on the plane, thus, the plane representation in the local frame {L} will not be the same as
{G} or {A}. We can define the following equation that will map the plane seen in the local frame
into the of the anchor pose. We define the coordinate transform between the anchor frame, {A},
and local frame of reference, {L}, as:[

Ln
Ld

]
=

[
L
AR 0
−Ap>L 1

] [
An
Ad

]
(23)

where the relative transform is defined by:

L
AR = L

GR A
GR> (24)

ApL = A
GR
(
GpL − GpA

)
(25)

Using equation (8), we can defined the combined measurement equation as the following:

LΠ = h(xA,xL, toND(xΠ)) (26)

=
(
L
ARAn

)(
− Ap>L

An + Ad
)

(27)

= L
ARAnAd− L

ARAnAp>L
An (28)

= L
GR A

GR>AnAd− L
GR A

GR>An
(
A
GR
(
GpL − GpA

))>
An (29)

= L
GR A

GR>AnAd− L
GR A

GR>An
(
GpL − GpA

)>
A
GR>An (30)

= L
GR A

GR>AnAd− L
GR A

GR>AnGp>L
A
GR>An + L

GR A
GR>AnGp>A

A
GR>An (31)

= L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(32)

RPNG-2018-LIPS 4

The above equation maps the anchor plane representation, AΠ, into the local, LΠ, where An and
Ad can be found using equation (9). From here we perform a Taylor series expansion to linearize
the measurement function:

zm = h(xA,xL, toND(xΠ)) + nΠ (33)

= h(x̂A � x̃L, x̂L � x̃A, toND(x̂Π + x̃Π)) + nΠ (34)

Our estimated error in the error states is zero, giving us the following Taylor series:

' h(x̂A � 0, x̂L � 0, toND(x̂Π + 0)) +
∂h

∂x̃A

∣∣∣
x̂A,x̂L,x̂Π

(x̃A − 0) +
∂h

∂x̃L

∣∣∣
x̂A,x̂L,x̂Π

(x̃L − 0)

+
∂h

∂ toND(·)

∣∣∣
x̂A,x̂L,x̂Π

∂ toND(·)
∂x̃Π

∣∣∣
x̂A,x̂L,x̂Π

(x̃Π − 0) + nΠ (35)

' h(x̂A, x̂L, toND(x̂Π)) +
∂h

∂x̃A

∣∣∣
x̂A,x̂L,x̂Π

(x̃A) +
∂h

∂x̃L

∣∣∣
x̂A,x̂L,x̂Π

(x̃L)

+
∂h

∂ toND(·)

∣∣∣
x̂A,x̂L,x̂Π

∂ toND(·)
∂x̃Π

∣∣∣
x̂A,x̂L,x̂Π

(x̃Π) + nΠ (36)

' h(x̂A, x̂L, toND(x̂Π)) + HA x̃A + HL x̃L + HndHΠ x̃Π + nΠ (37)

where toND(·) is defined by Equation (9). Taking the expected value we have the following expected
measurement:

E [zm] = E [h(x̂A, x̂L, toND(x̂Π)) + HA x̃A + HL x̃L + HndHΠ x̃Π + nΠ] (38)

ẑm = h(x̂A, x̂L, toND(x̂Π)) (39)

The Jacobians are defined by the following (see Appendix D for derivations):

HA =

[
HA1 HA2

]
3×6

(40)

HL =

[
HL1 HL2

]
3×6

(41)

Hnd =

[
Hn Hd

]
3×4

(42)

HΠ =

HΠ1

HΠ2

4×3

(43)

RPNG-2018-LIPS 5

HA1 = L
GR A

GR̂
>(AnGp>L

A
GR̂
> ⌊An ×

⌋
− AnGp>A

A
GR̂
> ⌊An ×

⌋
−
⌊
AnAd ×

⌋
+
⌊
AnGp>L

A
GR̂
>An ×

⌋
−
⌊
AnGp>A

A
GR̂
>An ×

⌋)
(44)

HA2 = L
GR A

GR>An An>AGR (45)

HL1 =
⌊
L
GR̂ A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
×
⌋

(46)

HL2 = −LGR A
GR>An An>AGR (47)

Hn = L
GR A

GR>
(
Ad− Gp>L

A
GR>An̂ + Gp>A

A
GR>An̂

)
+ L
GR A

GR>
(
− An̂Gp>L

A
GR> + An̂Gp>A

A
GR>

)
(48)

Hd = L
GR A

GR>An (49)

HΠ1 =
1

Ad̂

(
I3×3 − An̂ An̂>

)
(50)

HΠ2 = An̂> (51)

5 IMU to LiDAR State Transform

As of right now we have assumed that the IMU and LiDAR states have co-sided. This is never the
case in practice due to having physical sensors. Our graph will stores IMU states since preintegration
measurement require the state to be in the same “intertial” frame of reference as the acceleration
and angular velocities, while all plane measurements are in the LiDAR frame of reference. We can
transform from the IMU state to the LiDAR state as follows:

L
GR = L

I R I
GR (52)

GpL = GpI − I
GR> L

I R>LpI (53)

where L
I R and LpI are the rotation from the IMU to LiDAR frame and the position of the IMU

seen from the LiDAR frame, respectively. These could be calibrated online, but in this work we
consider that theses transforms are known beforehand. We find the Jacobians of the above LiDAR
states in respect the IMU state as:

HIL =

 ∂LGθ̃

∂IGθ̃
03×9

∂LGθ̃

∂Gp̃I

∂Gp̃L
∂IGθ̃

03×9
∂Gp̃L
∂Gp̃I

6×15

(54)

=

 L
I R 03×9 03×3

I
GR̂
> ⌊L

I R>LpI×
⌋

03×9 I3×3

6×15

(55)

RPNG-2018-LIPS 6

The derivations for the above equations can be found in Appendix E. This Jacobian should be
chained with the HL and HA Jacobians from Section 4 to convert them to be functions of the
estimated IMU states.

6 Initial Plane Graph Factor

We treat the first frame that a plane is measured from as its anchor. This first reading of the plane
is a direct reading of the plane parameters we want to estimate, thus we can define the following
factor:

AΠ̃ = AΠ̂− AΠm (56)

where GΠm is the measurement measured from the first frame and AΠ̂ is the current estimated
value of the plane. It is important to note that this measurement is only a function of the initial
reading and define the Jacobians as the following:

Hu = I3×3 (57)

Hx = 03×15 (58)

7 Plane Correspondences

Outside of simulation, finding the correspondences between the planes presents a challenge. To
overcome this, we calculate the Mahalanobis distance between a new local plane measurement and
each of the currently estimated planes. If the minimal distance squared is smaller then a three
degree-of-freedom chi-squared test then the two planes match.

1. First compute the joint covariance PJ of the anchor state, local state, and anchor plane.

PJ = gtsam.jointMarginalCovariance(X(anchor), X(local), P (plane)) (59)

2. Compute the residual covariance matrix of the current measurement given all previous mea-
surements of this plane.

S = HPJH> + RΠ (60)

3. Compute the error of the current measurement and the current estimate of that measurement
transformed into the local frame:

LΠ̃ = LΠ− LΠ̂ (61)

=
(
L
ARAn

)(
Ad− Ap>L

An
)
− LΠ̂ (62)

4. Compute the Mahalanobis distance squared.

D = LΠ̃
>

S−1 LΠ̃ (63)

5. After computing the above distance squared the minimum will be the best plane correspon-
dence to the new measurement. To check if the plane is “close enough” to the currently
estimation plane, threshold on a 95 percentile chi-squared distribution for a given three de-
grees of freedom.

if(D < chi squared table[3]) : accept correspondence (64)

else : measurement is of a new plane (65)

RPNG-2018-LIPS 7

8 Continuous Preintegration

8.1 Inertial Measurement Model

We model the linear acceleration and angular velocity inertial measurements as:

ωm = ω + bw + nw (66)

am = a + ba + na + I
GRGg (67)

where Gg is the gravity in the global frame, ω is the angular velocity, a is the linear acceleration,
and nw, na are the continuous measurement noises. The underlying standard IMU dynamics are
given by [3]:

I
G

˙̄q =
1

2
Ω(ωm − bw − nw)IGq̄ (68)

ḃw = nwb (69)
Gv̇k = G

k R (am − ba − na)− Gg (70)

ḃa = nab (71)
Gṗk = Gvk (72)

where nwb, nab are the random walk noises and Ω(·) is:

Ω(ω) =

[
−bω×c ω
−ω> 0

]
(73)

8.2 Continuous Preintegrated Measurements

The key idea of continuous preintegration [4] is to factorize the resulting integration of equation
(68)-(72) between two LiDAR timesteps:

Gpk+1 = Gpk + Gvk∆T −
1

2
Gg∆T 2 + G

k Rkαk+1 (74)

Gvk+1 = Gvk − Gg∆T + G
k Rkβk+1 (75)

k+1
G q̄ = k+1

k q̄ ⊗ k
Gq̄ (76)

where ∆T is the difference between the bounding LiDAR pose timestamps (tk, tk+1) and kαk+1,
kβk+1

are defined by the following integrations of the IMU measurements:

kαk+1 =

∫ tk+1

tk

∫ s

tk

k
uR (am − ba − na) duds (77)

kβk+1 =

∫ tk+1

tk

k
uR (am − ba − na) du (78)

We note that the preintegrated measurements, kαk+1, kβk+1, k+1
k q̄ are dependent on the true biases.

This dependency is addressed through a first order Taylor series expansion about the current bias

RPNG-2018-LIPS 8

estimates b̄w and b̄a at time tk:

kαk+1 ' kᾰk+1 +
∂α

∂ba

∣∣∣
b̄a

∆ba +
∂α

∂bw

∣∣∣
b̄w

∆bw (79)

kβk+1 ' kβ̆k+1 +
∂β

∂ba

∣∣∣
b̄a

∆ba +
∂β

∂bw

∣∣∣
b̄w

∆bw (80)

k+1
k q̄ ' q̄(∆bw)−1 ⊗ k+1

k
˘̄q (81)

where kᾰk+1, kβ̆k+1, k+1
k

˘̄q are the preintegrated measurements evaluated at the current bias esti-

mates. In particular, k+1
k

˘̄q can be found using the zeroth order quaternion integrator [1]. We define
the quaternion which models multiplicative orientation corrections due to changes in the linearized
bias as:

q̄(∆bw) =

[
θ
||θ|| sin

||θ||
2

cos ||θ||2

]
(82)

θ =
∂q̄

∂bw

∣∣∣
b̄w

(
bw(k) − b̄w

)
(83)

where ∆bw := bw(k) − b̄w and ∆ba := ba(k) − b̄a are the differences between the true biases and
the current bias estimate used as the linearization point. The new preintegration measurements
can now be computed once and changes in the bias estimates can be taken into account through
the above Taylor series. The final measurement residual is as follows:

rI(x) =

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄(∆bw)

)
bw(k+1) − bw(k) k

GR
(
Gvk+1 − Gvk + Gg∆T

)
−kβ̆k+1 − ∂β

∂ba

∣∣∣
b̄a

∆ba − ∂β
∂bw

∣∣∣
b̄w

∆bw

ba(k+1) − ba(k)k

GR
(
Gpk+1 − Gpk − Gvk∆T + 1

2
Gg∆T 2

)
−kᾰk+1 − ∂α

∂ba

∣∣∣
b̄a

∆ba − ∂α
∂bw

∣∣∣
b̄w

∆bw

where vec(·) returns the vector portion of the quaternion (i.e., the top three elements) and the bias
errors are the difference between biases in the bounding states.

We use combined continuous preintegration factors that included both the inertial and bias
errors together and relate to the full 15 degree-of-freedom state (see Equation 1). This combined
continuous preintegration factor better models the measurement error state dynamics due to bias
drift over the integration interval.

8.3 Continuous Preintegrated Jacobians

The analytical Jacobians needed for graph optimization, bias Jacobians, and closed-form prein-
tegrated measurements are included in the preintegration technical report [5] where the above

RPNG-2018-LIPS 9

Jacobians correspond to the following equations:

∂α

∂ba

∣∣∣
b̄a

= Equation (49) (84)

∂α

∂bw

∣∣∣
b̄w

= Equations (53)-(58),(84) (85)

∂β

∂ba

∣∣∣
b̄a

= Equation (49) (86)

∂β

∂bw

∣∣∣
b̄w

= Equations (59)-(61),(84) (87)

∂q̄

∂bw

∣∣∣
b̄w

= Equation (81) (88)

8.4 Continuous Preintegrated Covariance

To find the covariance of the above residual, we can look at the continuous IMU error state dy-
namics. Consider the time tτ ∈ [tk, tk+1]. Defining k

τ R̆ as the rotation from the IMU frame at tτ to
the beginning IMU time tk, â as the corrected acceleration (â = am − b̄a), and ω̂ as the corrected
angular velocity (ω̂ = ωm − b̄ω), the linearized measurement error state system can be defined as
the following:

τ
k

˙δθ
˙δbω

k ˙δβτ
˙δba

k ˙δατ

 =

−bω̂×c −I3 03 03 03

03 03 03 03 03

−kτ R̆ bâ×c 03 03 −kτ R̆ 03

03 03 03 03 03

03 03 I3 03 03

τ
kδθ
δbω
kδβτ
δba
kδατ

+

−I3 03 03 03

03 I3 03 03

03 03 −kτ R̆ 03

03 03 03 I3

03 03 03 03

nω
nbω
na
naω

⇒ ṙ = Fr + Gn (89)

It can be noted that the above is equivalent to the standard VINS error state propagation equations
in the local frame of reference [6]. Based on the above equations, we can define the state transi-
tion matrix Φ(tτ+1, tτ) which describes how the error transitions across the measurement interval
[tτ , tτ+1] ⊂ [tk, tk+1]. Starting with covariance Pk = 015×15 we perform the following propagation
for all IMU measurements in the preintegration interval [tk, tk+1].

Pτ+1 = Φ(tτ+1, tτ)PτΦ(tτ+1, tτ)> + Qpτ

Qpτ =

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG(u)>Φ(tτ+1, u)>du

where Qc is the continuous time noise covariance matrix. The final covariance of the preintegrated
measurement is the ending cumulative covariance Pk+1.

RPNG-2018-LIPS 10

Appendix A: Gauss-Newton Plane Weights

Our sensor provides noisy 3D points that lie on a known plane. We model the noise in these 3D
points as the following:

Lpmi = Lpi + np (90)

where np ∼ N (0,Rd) (91)

Rd =

σ2
x 0

0 σ2
y 0

0 0 σ2
z

3×3

(92)

Using the above noisy measurement we can write the following measurement function:

zm = h(LΠ,np) (93)

Taking the Taylor series givens the following:

zm ' h(LΠ̂,np) + Ji
LΠ̃ + Hn np (94)

Taking the expectation given the true state gives:

ELΠ [zm] = ELΠ

[
h(LΠ̂,np) + Ji

LΠ̃ + Hn np

]
(95)

ẑm = h(LΠ̂,np) + Ji
LΠ̃ (96)

Finally we can calculate our covariance of the above measurement given the true state LΠ:

ELΠ

[
(zm − ẑm)(zm − ẑm)>

]
= ELΠ

[(
h(LΠ̂,np) + Ji

LΠ̃ + Hn np

− h(LΠ̂,np)− Ji
LΠ̃
)(
· · ·
)>]

(97)

= ELΠ

[(
Hn np

)(
Hn np

)>]
(98)

= Hn Rd H>n (99)

Giving us the following final equations:

Wi(
LΠ̂) =

(
Hn RdH

>
n

)−1
(100)

Hn = −
LΠ̂
>∥∥∥LΠ̂
∥∥∥ (101)

RPNG-2018-LIPS 11

Appendix B: Gradient of Gauss-Newton Cost Function

LΠ̃
∗

= argmin
LΠ̃

n∑
i=1

∣∣∣∣∣∣ ri(LΠ̂ � LΠ̃)
∣∣∣∣∣∣2
Wi

(102)

' argmin
LΠ̃

n∑
i=1

∣∣∣∣∣∣ ri(LΠ̂) + Ji
LΠ̃

∣∣∣∣∣∣2
Wi

(103)

' argmin
LΠ̃

n∑
i=1

(
ri(

LΠ̂) + Ji
LΠ̃
)>
Wi

(
ri(

LΠ̂) + Ji
LΠ̃
)

(104)

' argmin
LΠ̃

n∑
i=1

(
ri(

LΠ̂)>Wi ri(
LΠ̂) + ri(

LΠ̂)>Wi(Ji
LΠ̃)

+ (Ji
LΠ̃)>Wi ri(

LΠ̂) + (Ji
LΠ̃)>Wi(Ji

LΠ̃)
)

(105)

' argmin
LΠ̃

n∑
i=1

(
ri(

LΠ̂)>Wi ri(
LΠ̂) + 2 ri(

LΠ̂)>Wi(Ji
LΠ̃)

+ (Ji
LΠ̃)>Wi(Ji

LΠ̃)
)

(106)

The above cost will be minimized when the gradient of the cost function is zero. Thus we take the
gradient in respect to our optimization variable ∆LΠ:

∂ ri(
LΠ̂ � LΠ̃)

∂ LΠ̃
= 0 +

n∑
i=1

(
2 ri(

LΠ̂)>Wi Ji

)>
+

n∑
i=1

(Wi Ji)
> Ji

LΠ̃ +
n∑
i=1

J>i (Wi Ji)
LΠ̃ (107)

=
n∑
i=1

2 (Wi Ji)
>ri(

LΠ̂)

+
n∑
i=1

(
(Wi Ji)

> Ji + J>i (Wi Ji)
)
LΠ̃ (108)

=
n∑
i=1

2 (Wi Ji)
>ri(

LΠ̂) +
n∑
i=1

(
2 (J>i Wi Ji)

)
LΠ̃ (109)

−
n∑
i=1

(
2 (J>i Wi Ji)

)
LΠ̃ =

n∑
i=1

2 (Wi Ji)
>ri(

LΠ̂) (110)

LΠ̃ = −

(
n∑
i=1

2 (J>i Wi Ji)

)−1(n∑
i=1

2 (Wi Ji)
>ri(

LΠ̂)

)
(111)

LΠ̃ = −

(
n∑
i=1

J>i Wi Ji

)−1(n∑
i=1

J>i Wi ri(
LΠ̂)

)
(112)

RPNG-2018-LIPS 12

Appendix C: Plane Measurement Compression Jacobian

Our sensor provides noisy 3D points that lie on a known plane. We model the noise in these 3D
points as the following:

Lpmi = Lpi + np (113)

where np ∼ N (0,Rd) (114)

Rd =

σ2
x 0

0 σ2
y 0

0 0 σ2
z

3×3

(115)

Using the above noisy measurement we can write the following measurement function:

zm = h(LΠ, Lpi) (116)

=
LΠ̂
>

‖LΠ̂‖
Lpi − ‖LΠ̂‖ (117)

=
LΠ̂
>

‖LΠ̂‖

(
Lpmi − np

)
− ‖LΠ̂‖ (118)

=
LΠ̂
>

‖LΠ̂‖
Lpmi − ‖LΠ̂‖ −

LΠ̂
>

‖LΠ̂‖
np (119)

We can take the the derivative of this function in respect to the error evaluating it with noises at
zero and all values at the expected:

Ji =
∂

∂LΠ̃

(
Lp>mi

LΠ̂

)(
1

‖LΠ̂‖

)
+

(
Lp>mi

LΠ̂

)
∂

∂LΠ̃

(
1

‖LΠ̂‖

)
− ∂

∂LΠ̃

(
‖LΠ̂‖

)
(120)

=
Lp>mi

‖LΠ̂‖
−
(
Lp>mi

LΠ
) LΠ̂

>

‖LΠ̂‖3
−

LΠ̂
>

‖LΠ̂‖
(121)

RPNG-2018-LIPS 13

Appendix D: Anchor Plane Factor Jacobians

D.1: HA Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(122)

We perturb the rotation as follows:

LΠ̂ + LΠ̃ = L
GR

((
I− bδθ×c

)
A
GR̂

)>
(
AnAd− AnGp>L

((
I− bδθ×c

)
A
GR̂
)>

An + AnGp>A

((
I− bδθ×c

)
A
GR̂
)>

An

)
(123)

= L
GR A

GR̂
>(

I + bδθ×c
)

(
AnAd− AnGp>L

A
GR̂
>(

I + bδθ×c
)
An + AnGp>A

A
GR̂
>(

I + bδθ×c
)
An

)
(124)

= L
GR A

GR̂
>(

I + bδθ×c
)

(
AnAd− AnGp>L

A
GR̂
>An− AnGp>L

A
GR̂
> bδθ×cAn

+ AnGp>A
A
GR̂
>An + AnGp>A

A
GR̂
> bδθ×cAn

)
(125)

= L
GR A

GR̂
>(

AnAd− AnGp>L
A
GR̂
>An− AnGp>L

A
GR̂
> bδθ×cAn

+ AnGp>A
A
GR̂
>An + AnGp>A

A
GR̂
> bδθ×cAn

+ bδθ×cAnAd− bδθ×cAnGp>L
A
GR̂
>An + bδθ×cAnGp>A

A
GR̂
>An

)
(126)

= LΠ̂ + L
GR A

GR̂
>
(
− AnGp>L

A
GR̂
> bδθ×cAn + AnGp>A

A
GR̂
> bδθ×cAn

+ bδθ×cAnAd− bδθ×cAnGp>L
A
GR̂
>An + bδθ×cAnGp>A

A
GR̂
>An

)
(127)

= LΠ̂ + L
GR A

GR̂
>
(
AnGp>L

A
GR̂
> ⌊An ×

⌋
− AnGp>A

A
GR̂
> ⌊An ×

⌋
−
⌊
AnAd ×

⌋
+
⌊
AnGp>L

A
GR̂
>An ×

⌋
−
⌊
AnGp>A

A
GR̂
>An ×

⌋)
δθ (128)

RPNG-2018-LIPS 14

Thus, we have the following:

∂ h

∂ A
Gδ̃θ

= L
GR A

GR̂
>(AnGp>L

A
GR̂
> ⌊An ×

⌋
− AnGp>A

A
GR̂
> ⌊An ×

⌋
−
⌊
AnAd ×

⌋
+
⌊
AnGp>L

A
GR̂
>An ×

⌋
−
⌊
AnGp>A

A
GR̂
>An ×

⌋)
(129)

We perturb the position as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
AnAd− An Gp>L

A
GR>An + An(Gp̂A + Gp̃A)> A

GR>An
)

(130)

= L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp̂>A

A
GR>An + AnGp̃>A

A
GR>An

)
(131)

= LΠ̂ + L
GR A

GR>
(
AnGp̃>A

A
GR>An

)
(132)

= LΠ̂ + L
GR A

GR>
(
An (AGR>An)>

)
Gp̃A (133)

= LΠ̂ +
(
L
GR A

GR>An An>AGR
)
Gp̃A (134)

Thus, we have the following:

∂ h

∂ Gp̃A
= L

GR A
GR>An An>AGR (135)

D.2: HL Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(136)

We perturb the rotation as follows:

LΠ̂ + LΠ̃ =
(
I− bδθ×c

)
L
GR̂ A

GR>
(
· · ·
)

(137)

= LΠ̂− bδθ×c L
GR̂ A

GR>
(
· · ·
)

(138)

= LΠ̂ +
⌊
L
GR̂ A

GR>
(
· · ·
)
×
⌋
δθ (139)

Thus, we have the following:

∂ h

∂ L
Gδ̃θ

=
⌊
L
GR̂ A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
×
⌋

(140)

RPNG-2018-LIPS 15

We perturb the position as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
AnAd− An(Gp̂L + Gp̃L)> A

GR>An + AnGp>A
A
GR>An

)
(141)

= L
GR A

GR>
(
AnAd− AnGp̂>L

A
GR>An− AnGp̃>L

A
GR>An + AnGp>A

A
GR>An

)
(142)

= LΠ̂ + L
GR A

GR>
(
− AnGp̃>L

A
GR>An

)
(143)

= LΠ̂ + L
GR A

GR>
(
− An (AGR>An)>

)
Gp̃L (144)

= LΠ̂ +
(
− L
GR A

GR>An An>AGR
)
Gp̃L (145)

Thus, we have the following:

∂ h

∂ Gp̃L
= −LGR A

GR>An An>AGR (146)

D.3: Hnd Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(147)

We perturb the normal vector An as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(

(An̂ + Añ)Ad− (An̂ + Añ)Gp>L
A
GR>(An̂ + Añ)

+ (An̂ + Añ)Gp>A
A
GR>(An̂ + Añ)

)
(148)

= LΠ̂ + L
GR A

GR>
(
AñAd− An̂Gp>L

A
GR>Añ− AñGp>L

A
GR>An̂

+ An̂Gp>A
A
GR>Añ + AñGp>A

A
GR>An̂

)
(149)

= LΠ̂ + L
GR A

GR>
(
Ad− An̂Gp>L

A
GR> − Gp>L

A
GR>An̂

+ An̂Gp>A
A
GR> + Gp>A

A
GR>An̂

)
Añ (150)

Thus, we have the following:

∂ h

∂ Añ
= L

GR A
GR>

(
Ad− An̂Gp>L

A
GR> − Gp>L

A
GR>An̂ + An̂Gp>A

A
GR> + Gp>A

A
GR>An̂

)
= L

GR A
GR>

(
Ad− Gp>L

A
GR>An̂ + Gp>A

A
GR>An̂

)
+ L
GR A

GR>
(
− An̂Gp>L

A
GR> + An̂Gp>A

A
GR>

)
(151)

(152)

We perturb the distance Ad as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
An(Ad̂+ Ad̃)− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(153)

= LΠ̂ +
(
L
GR A

GR>An
)
Ad̃ (154)

(155)

RPNG-2018-LIPS 16

Thus, we have the following:

∂ h

∂ Ad̃
= L

GR A
GR>An (156)

D.4: HΠ Jacobian

An

Ad

 =

 1√
AΠ(x)2+AΠ(y)2+AΠ(z)2

AΠ√
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

 (157)

We can take the element wise derivative to get the following:

∂ An

∂ AΠ̃
=

AΠ(y)2 + AΠ(z)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(x)AΠ(y)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(x)AΠ(z)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(y)AΠ(x)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

AΠ(x)2 + AΠ(z)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(y)AΠ(z)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(z)AΠ(x)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(z)AΠ(y)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

AΠ(x)2 + AΠ(y)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

∂ An

∂ AΠ̃
=

1(
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

) 3
2

AΠ(y)2 + AΠ(z)2 −AΠ(x)AΠ(y) −AΠ(x)AΠ(z)

−AΠ(y)AΠ(x) AΠ(x)2 + AΠ(z)2 −AΠ(y)AΠ(z)

−AΠ(z)AΠ(x) −AΠ(z)AΠ(y) AΠ(x)2 + AΠ(y)2

=
1

Ad̂3

Ad̂2 0 0

0 Ad̂2 0

0 0 Ad̂2

−

AΠ(x)2 AΠ(x)AΠ(y) AΠ(x)AΠ(z)

AΠ(y)AΠ(x) AΠ(y)2 AΠ(y)AΠ(z)

AΠ(z)AΠ(x) AΠ(z)AΠ(y) AΠ(z)2

=

1

Ad̂

(
I3×3 − An̂An̂>

)
∂ An

∂ AΠ̃
=

1

Ad̂

(
I3×3 − An̂ An̂>

)
(158)

We can then take the element wise derivatives in respect to the distance scalar.

∂ Ad

∂ AΠ̃
=

1√
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

[
AΠ(x) AΠ(y) AΠ(z)

]
(159)

= An̂> (160)

∂ Ad

∂ AΠ̃
= An̂> (161)

RPNG-2018-LIPS 17

Appendix E: IMU to LIDAR Transform Jacobian

E.1: ∂LGθ̃ Jacobian

L
GR = L

I R I
GR (162)

We perturb the rotation as follows:(
I− bδθ×c

)
L
GR̂ = L

I R
(
I− bδθ×c

)
I
GR̂ (163)

= L
I R I

GR̂− L
I R bδθ×c IGR̂ (164)

= L
I R I

GR̂− L
I R bδθ×c LI R> L

I R I
GR̂ (165)

=
(
I−

⌊
L
I R δθ×

⌋)
L
GR̂ (166)

Thus, we have the following:

∂LGθ̃

∂IGθ̃
= L

I R (167)

∂LGθ̃

∂Gp̃I
= 03×3 (168)

E.2: ∂Gp̃L Jacobian

GpL = GpI − I
GR> L

I R>LpI (169)

We perturb the rotation as follows:

Gp̂L + Gp̃L = GpI −
(

(I− bδθ×c) I
GR̂
)>

L
I R>LpI (170)

= GpI − I
GR̂
>(

I + bδθ×c
)
L
I R>LpI (171)

= Gp̂L − I
GR̂
> bδθ×c L

I R>LpI (172)

= Gp̂L + I
GR̂
> ⌊L

I R>LpI×
⌋
δθ (173)

∂Gp̃L

∂IGθ̃
= I

GR̂
> ⌊L

I R>LpI×
⌋

(174)

We perturb the position as follows:

Gp̂L + Gp̃L = Gp̂I + Gp̃I − I
GR> L

I R>LpI (175)

= Gp̂L + Gp̃I (176)

∂Gp̃L
∂Gp̃I

= I3×3 (177)

RPNG-2018-LIPS 18

Appendix F: Analytic Jacobians for Quaternion Representation

F.1: Quaternion Representation

The plane can also be represented by the a quaternion q̄π, and the relation with the plane normal
direction nπ and plane distance dπ as:

q̄π =

[
qv
q4

]
=

1√
1 + d2

π

[
nπ
dπ

]
(178)

Therefore, we can use the error states δθπ for quaternion to represent the plane, that is:

q̄π =

[
1
2δθπ

1

]
⊗ ˆ̄qπ (179)

Note that the Jacobians w.r.t. the quaternion error states can be written as:

q̄π = ˆ̄qπ + ˜̄qπ =

[
1
2δθπ

1

]
⊗ ˆ̄qπ (180)

⇒ ˜̄qπ =

[
1
2δθπ

0

]
⊗ ˆ̄qπ =

[
q̂4I3 + bq̂vc q̂v
−q̂>v q̂4

] [
1
2δθπ

0

]
(181)

⇒
[

1
2δθπ

1

]
=

[
03×1

1

]
+ ˜̄qπ ⊗ ˆ̄q−1

π =

[
03×1

1

]
+

[
q̂4I3 − bq̂vc −q̂v

q̂>v q̂4

]
˜̄qπ (182)

F.2: Measurement Noise Covariance

Consider a point pf on the plane, then we write the plane measurement as the following:

z = h (q̄π,np) (183)

= q>v (pf + np)− q4 (184)

We linearize the above equation and get:

z̃ ' Hπδθπ + Hnnp (185)

Hπ =
∂z̃

∂δθπ
=

∂z̃

∂ ˜̄qπ

∂ ˜̄qπ
∂δθπ

(186)

Hn =
∂z̃

∂np
(187)

where:

∂z̃

∂ ˜̄qπ
=
[
p̂>f −1

]
(188)

∂ ˜̄qπ
∂δθπ

=
1

2

[
q̂4I3 + bq̂vc
−q̂>v

]
(189)

∂z̃

∂np
= q̂>v (190)

We can minimize the difference between each point and the quaternion representation to get the
optimal plane parameters. After optimization, we can get the measurement covariance, Rπ, by
looping over all measurements to compute the following:

Rπ =

(∑
i

H>πi

(
HniWiH

>
ni

)−1
Hπi

)−1

(191)

RPNG-2018-LIPS 19

F.3: Jacobians for Anchor Factor

Having compressed the point cloud into the quaternion plane representation, we can add it to
our factor graph. In order to optimize we need the Jacobians of the measurement in respect to
the states that it depends on. We define the following frame of references: {L} current LiDAR
frame, {I} current IMU frame, {A} anchored IMU frame and {La} the anchored LiDAR frame.
The measurement function of the anchored plane projected into the current local frame can be
summarized as follows:

z = h
(
Laq̄π,nR

)
(192)

= h
(
I
GR,GpI ,

A
GR,GpA,

Laq̄π,nR

)
(193)

where I
GR, GpI is the current IMU pose, AGR, GpA is the current anchored IMU pose, Laq̄π is the

plane in the anchor LiDAR frame, and nR is noise corrupting the quaternion plane measurement,
whose covariance is Rπ. Therefore, we can have:

Hx =
∂z̃

∂x̃
=
[
∂δLθπ
∂δθI

∂δLθπ
∂Gp̃I

∂δLθπ
∂δθA

∂δLθπ
∂Gp̃A

∂δLθπ
∂Laθπ

]
(194)

where: [
Lnπ
Ldπ

]
=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
G
AR 03×1

−Ap>G 1

] [
I
LR 03×1

−Lp>I 1

] [
Lanπ
Ladπ

]
(195)

We first compute the Jacobians w.r.t. the current IMU pose I
GR and GpI as:

∂δLθπ
∂δθI

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] ∂
[
Lñπ
Ld̃π

]
∂δθI

(196)

∂δLθπ
∂Gp̃I

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] ∂
[
Lñπ
Ld̃π

]
∂Gp̃I

(197)

The measurement relationship can be described as:[
Lnπ
Ldπ

]
=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
Gnπ
Gdπ

]
(198)

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(199)

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] =
1

[1 + Ld2
π]

3
2

[(
1 + Ld2

π

)
I3 −LdπLnπ

01×3 1

]
(200)

∂

[
Lñπ
Ld̃π

]
∂δθI

=

[
L
I R 03×1

−Ip>L 1

] [
bIGRGnπc

01×3

]
(201)

∂

[
Lñπ
Ld̃π

]
∂Gp̃I

=

[
L
I R 03×1

−Ip>L 1

] [
03

−Gn>π

]
(202)

RPNG-2018-LIPS 20

We then compute the Jacobians w.r.t. the current IMU pose A
GR and GpA as:

∂δLθπ
∂δθA

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] ∂
[
Lñπ
Ld̃π

]
∂δθA

(203)

∂δLθπ
∂Gp̃A

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] ∂
[
Lñπ
Ld̃π

]
∂Gp̃A

(204)

The measurement relationship can be described as:[
Lnπ
Ldπ

]
=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
G
AR 03×1

−Ap>G 1

] [
Anπ
Adπ

]
(205)

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(206)

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] =
1

[1 + Ld2
π]

3
2

[(
1 + Ld2

π

)
I3 −LdπLnπ

01×3 1

]
(207)

∂

[
Lñπ
Ld̃π

]
∂δθA

=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
−GARbAnπc

An>π bAGRGpAc

]
(208)

∂

[
Lñπ
Ld̃π

]
∂Gp̃A

=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
03

An>π
A
GR

]
(209)

Finally, we compute the Jacobians w.r.t. the plane state in the anchored LiDAR frame Laq̄π as:

∂δLθπ
∂δGθπ

=
∂δLθπ
∂L ˜̄qπ

∂C ˜̄qπ

∂

[
Lñπ
Ld̃π

] ∂
[
Lñπ
Ld̃π

]
∂

[
Lañπ
Lad̃π

] ∂
[
Lañπ
Lad̃π

]
∂La ˜̄qπ

∂La ˜̄qπ
∂δLaθπ

(210)

The measurement relationship can be described as:[
Lnπ
Ldπ

]
=

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
G
AR 03×1

−Ap>G 1

] [
I
LR 03×1

−Lp>I 1

] [
Lanπ
Ladπ

]
(211)

RPNG-2018-LIPS 21

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(212)

∂L ˜̄qπ

∂

[
Lñπ
Ld̃π

] =
1

[1 + Ld2
π]

3
2

[(
1 + Ld2

π

)
I3 −LdπLnπ

01×3 1

]
(213)

∂

[
Lñπ
Ld̃π

]
∂

[
Lañπ
Lad̃π

] =

[
L
I R 03×1

−Ip>L 1

] [
I
GR 03×1

−Gp>I 1

] [
G
AR 03×1

−Ap>G 1

] [
I
LR 03×1

−Lp>I 1

]
(214)

∂

[
Lañπ
Lad̃π

]
∂La ˜̄qπ

=
1

[Laq>v
Laqv]

3
2

[
−bLaqvc2 03×1

−Laq4
Laq>v

Laq>v
Laqv

]
(215)

∂La ˜̄qπ
∂δLaθπ

=
1

2

[
Laq̂4I3 + bLaq̂vc
−Laq̂>v

]
(216)

RPNG-2018-LIPS 22

References

[1] Nikolas Trawny and Stergios I. Roumeliotis. Indirect Kalman Filter for 3D Attitude Estimation.
Tech. rep. University of Minnesota, Dept. of Comp. Sci. & Eng., Mar. 2005.

[2] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-time.” In: Robotics:
Science and Systems. Vol. 2. 2014.

[3] Averil B. Chatfield. Fundamentals of High Accuracy Inertial Navigation. Reston, VA: American
Institute of Aeronautics and Astronautics, Inc., 1997.

[4] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. “Continuous Preintegration Theory
for Graph-based Visual-Inertial Navigation”. In: CoRR abs/1805.02774 (2018). arXiv: 1805.
02774. url: http://arxiv.org/abs/1805.02774.

[5] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Continuous Preintegration Theory
for Visual-Inertial Navigation. Tech. rep. RPNG-2018-CPI. Available: http://udel.edu/

~ghuang/papers/tr_cpi.pdf. University of Delaware, 2018.

[6] A. I. Mourikis and S. I. Roumeliotis. “A multi-state constraint Kalman filter for vision-aided
inertial navigation”. In: Proceedings of the IEEE International Conference on Robotics and
Automation. Rome, Italy, 2007, pp. 3565–3572.

RPNG-2018-LIPS 23

http://arxiv.org/abs/1805.02774
http://arxiv.org/abs/1805.02774
http://arxiv.org/abs/1805.02774
http://udel.edu/~ghuang/papers/tr_cpi.pdf
http://udel.edu/~ghuang/papers/tr_cpi.pdf

	Graph Based Optimization
	IMU State Definition
	Plane State Definition

	Closest Point Plane Representation
	Representation Formulation
	Singularity Discussion

	Point Cloud to Plane Compression
	Anchor Plane Graph Factor
	IMU to LiDAR State Transform
	Initial Plane Graph Factor
	Plane Correspondences
	Continuous Preintegration
	Inertial Measurement Model
	Continuous Preintegrated Measurements
	Continuous Preintegrated Jacobians
	Continuous Preintegrated Covariance

	Appendix Gauss-Newton Plane Weights
	Appendix Gradient of Gauss-Newton Cost Function
	Appendix Plane Measurement Compression Jacobian
	Appendix Anchor Plane Factor Jacobians
	 Jacobian
	 Jacobian
	 Jacobian
	 Jacobian

	Appendix IMU to LIDAR Transform Jacobian
	 Jacobian
	 Jacobian

	Appendix Analytic Jacobians for Quaternion Representation
	Quaternion Representation
	Measurement Noise Covariance
	Jacobians for Anchor Factor

	References

