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1 Introduction

Autonomous driving is an emerging technology that enables the reduction of traffic accidents and
allows for those who are unable to drive for various medical conditions to regain their independence,
by performing intelligent perception and planning based on multimodal sensors such as LIDARs,
cameras, IMUs and GPS. It is critical for an autonomous vehicle to perform precise, robust lo-
calization for decision making as it is a sub-system that cannot fail during online autonomous
operation. There have been a large amount of research efforts focused on multi-sensor fusion for
localization [1], which has reached a certain level of maturity, yielding a bounded problem given
the well structured environment a vehicle operates in. In particular, graph-based optimization has
recently prevailed for robot mapping and localization [2]. Due to the different sampling rates of
the heterogeneous sensors, measurements arrive at different times. Accurate alignment of such
out-of-sequence (i.e., asynchronous) measurements before optimally fusing them through graph op-
timization, while essential, has not been sufficiently investigated in the literature. It should be
noted that the asynchronous measurement alignment under consideration is different from the time
synchronization (or temporal sensor calibration) [3]; that is, even if sensors are well synchronized,
their observations still arrive asynchronously.

Factor graph-based formulation [4] is desirable due to its ability to allow for the delayed incor-
poration of asynchronous measurements. Indelman et al. [5] address the problem of the inclusion of
asynchronous measurements by taking advantage of IMU preintegrated terms. This allows them to
incorporate any set of asynchronous sensors whose rates are longer than that of the IMU. Sünderhauf
et al. [6] looked to address the incorporation of measurements with unknown time delays. Using
high frequency odometry measurements, they create a state for each incoming odometry measure-
ment so that delayed factors can be directly connected to its closest state. While both of these
can be used to address arbitrary amounts of delay between sensors, they add a large amount of
additional factors and edges to the graph. In contrast, the proposed approach incorporates mea-
surements of different frequencies without significant increase of the overall graph complexity. It
should be noted that while this does reduce the computational cost of optimization, reductions in
graph size are always welcomed as a robot’s physical memory becomes less of an issue.

From the theoretical perspective, as the main contribution of this paper, we accurately align
both asynchronous unary and binary graph factors based on our analytically derived linear 3D pose
interpolation. This interpolation allows for the direct addition of asynchronous measurements into
the graph, without the need for extra nodes to be added or for the naive ignoring of the measurement
delay. Patron-Perez et al. [7] first proposed a spline-based trajectory method that allows for the
fusion of delayed measurements with the consequence of an increase of overall system complexity and
deviation from a pure pose graph. Outside of graph-based optimization, interpolation has been used
to correct time offsets of continuous measurements such as LIDAR point clouds and rolling shutter
cameras [8, 9]. In particular, Guo et al. [9] introduced the idea of linear interpolation between
past camera poses, which allow for the use of extracted features from rolling shutter cameras.
Ceriani et al. [8] used a linear interpolation between two poses in SE(3) to unwarp LIDAR point
measurements. In this work, however, we focus on analytically deriving such SE(3) interpolation
and applying it inside of a graph-based optimization framework to allow for the efficient alignment
of asynchronous measurements.

From the system perspective, we design and implement a modular framework for fusing a variety
of sensors, where we separate the sensor fusion and pose estimation to allow for any sensor to be
incorporated. This system design permits the easy incorporation of additional sensors, while also
allowing for active sensor pose estimation modules to be changed without affecting the multi-sensor
fusion. This is achieved by fusing emitted 3D pose estimates from sensor odometry (ego-motion)
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modules. The proposed sensor framework can then leverage these 3D poses, emitted in their own
local frame of reference, in the global estimation of the robot’s pose.

2 Key Related Works

2.1 Async Measurements in Batch Optimization

• Indelman et al. avoid the asynchronous measurement problem by inserting a new state into
the graph and connecting it using IMU preintegration. Link

• Ranganathan et al. introduced a Dynamic Bayes Net for fixed-lag smoothing for processing
out of sequence measurements with square-root smoothing. Link

• Sünderhauf et al. look at differences between ignoring the time delay, performing a maximum
likelihood selection, and explicit delay estimation for handling the incoming measurement of
unknown delay. They show that if these measurements are to be included directly into the
graph, explicit delay estimation is most optimal. Link

2.2 Measurement Interpolation

• Patron-Perez et al. proposed a spline-based trajectory method that allows for the fusion of
delayed measurements with the consequence of an increase of overall system complexity and
deviation from a pure pose graph. Link

• Guo et al. introduce the idea of interpolation between past camera poses, allowing the use of
rolling shutter measurements. Link

• Ceriani et al. use a linear interpolation between two SE3 poses to unwarp lidar point mea-
surements. Γ12t = Γ1 · Expv

(
tsLogv

(
Γ−1

1 Γ2

))
. Link

3 Graph-based Estimation

X1 L12 X2 L23 X3 L34 X4

V12 V23 V34

G1 G2 G3

Figure 1: Example of a factor graph that our system created. States that will be estimated are denoted in circles
and measurements are denoted in squares. Note that we differentiate interpolated factors with dashed outlines.

As the vehicle moves through the environment, a set of measurements, z, is collected from its
sensors, such as LIDAR scans, images, GPS, etc. These measurements relate to the underlying
state to be estimated, x. This process can be represented by a graph, where nodes correspond to
parameters to be estimated (i.e., historical vehicle poses). Incoming measurements are represented
as edges connecting their involved nodes (see Figure 1). Under the assumption of independent
Gaussian noise corruption of our measurements, we formulate the Maximum Likelihood Estimation
(MLE) problem as the following nonlinear least-squares problem [10]:

x̂ = arg min
x

∑
i

||ri (x)||2Pi
(1)
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where ri is the zero-mean residual associated with measurement i, Pi is the measurement covariance,
and ||v||2P = v>P−1v is the energy norm. This problem can be solved iteratively by linearizing
about the current estimate, x̂−, and defining a new optimization problem in terms of the error
state, ∆x:

∆x− = arg min
∆x

∑
i

∣∣∣∣ri (x̂−)+ Hi∆x
∣∣∣∣2
Pi

(2)

where Hi = ∂ri(x̂
−�∆x)
∂∆x is the Jacobian of i-th residual with respect to the error state. We define

the generalized update operation, �, which maps a change in the error state to one in the full state.

Given the error state {iGθ̃,Gp̃i}, this update operation can be written as {Expv
(
−iGθ̃

)
i
GR,Gpi +

Gp̃i} (note that notation and identities can be found in Appendix A). After solving the linearized
system, the current state estimate is updated as x̂+ = x̂− � ∆x−.

In this work, we parameterize the pose of each time step as {iGR,Gpi}, which describes the
rotation from the global frame {G} to the local frame {i} and the position of the frame {i} seen from
the global frame {G} of reference. This linearization process is then repeated until convergence.
While there are openly available solvers [11, 12, 10], the computational complexity of the graph
based optimization can reach O(n3) in the worst case, with n being the dimension of x.

4 Unary Measurement Synchronization

4.1 Unary Measurement Interpolation

It is clear from the previous section that a reduction in the number of states being estimated can
both help with the overall computational complexity and the physical size of a graph during long
term SLAM. Naively, if a new node is to be created at each sensor measurement time instance, the
overall graph optimization frequency can suffer. To prolong high frequency graph optimization, in
this section, we present our novel method of measurement alignment which allows for the estimation
of the poses of a single sensor’s measurements.

Figure 2: Given two measurements in the global frame of reference {1} and {2}, we interpolate to a new pose {i}.
The above λ is the time-distance fraction that defines how much to interpolate the pose.

Unary factors can appear when sensors measure information with respect to a single node. For
example, GPS can provide global position measurements indirectly through latitude, longitude,
and altitude readings, while LIDAR scan-matching to known maps can provide a direct reading
of the global pose. Motivated to not add new graph nodes when receiving asynchronous data, we
add a “corrected” measurement to an existing node by preforming pose interpolation between two
sequential sensor measurements. Note that for GPS measurements we only need to perform 3D
position interpolation, however for completeness we have derived the following interpolation for a
3D pose.
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We define a time-distance fraction corresponding to the time-instance between two consecutive
poses as follows:

λ =
(ti − t1)

(t2 − t1)
(3)

where t1 and t2 are the timestamps of the bounding measurements, and ti is the desired interpolation
time (i.e. the timestamp of the existing node). Under the assumption of a constant velocity motion
model, we interpolate between the two pose readings:

i
GR = Expv

(
λ Logv(2

GR1
GR>)

)
1
GR (4)

Gpi = (1− λ)Gp1 + λGp2 (5)

where {iGR,Gpi} is the interpolated measurement 3D pose and {1GR,Gp1} and {2GR,Gp2} are the
bounding poses. While this interpolated measurement can now be directly added to the graph, the
last step is to correctly compute the corresponding covariance needed in graph-based optimization.

Taking the expectation of our error state z̃ =
[
i
Gθ̃
> Gp̃>i

]>
we can analytically derive the following

covariance propagation:

Pi = HuP1,2Hu
T =

 δiGθ̃

δ1Gθ̃
03×3

δiGθ̃

δ2Gθ̃
03×3

03×3
δGp̃i
δGp̃1

03×3
δGp̃i
δGp̃2

[ P1 06×6

06×6 P2

] δiGθ̃

δ1Gθ̃
03×3

δiGθ̃

δ2Gθ̃
03×3

03×3
δGp̃i
δGp̃1

03×3
δGp̃i
δGp̃2

T (6)

where P1,2 is the joint covariance matrix from the bounding poses, and θ̃ and p̃ are the error states
of each angle and position measurement, respectively. For detailed calculations of each Jacobian
please see Appendix B. The resulting Jacobian matrix Hu is defined as the following:

Hu =


−i1R̂

(
Jr(λ Logv(2

1R̂))

λ J−1
r (Logv(2

1R̂))− I
) 03×3

i
1R̂ Jr

(
− λ Logv(2

1R̂
>))

λ J−1
r (Logv(2

1R̂
>)
) 03×3

03×3 (1− λ) I 03×3 λ I

 (7)

where the Right Jacobian of SO(3) denoted as Jr(φ) and its inverse J−1
r (φ) can both be found in

Appendix A.

5 Relative Measurement Synchronization

Designing multi-sensor systems for state estimation often requires fusing asynchronous odometry
readings from different sensor modules (e.g., ORB-SLAM2 [13] or LOAM [14]). A difficulty that
arises is the unknown transformation between the different global frame of references of each mod-
ule. This unknown comes from both the rigid transformation between sensors (which can be found
through extrinsic calibration) and each module initializes its own global frame of reference indepen-
dently. Rather than directly modifying the codebase of each module or performing sophisticated
initialization, we combine the sequential odometry measurements into relative transforms; thereby,
we remove the ambiguity of each module-to-module transformation.
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5.1 Visual Relative Measurement

Given two poses in the second sensor’s global frame, {1oR, op1} and {2oR, op2} with the joint covari-
ance P1,2, we calculate the relative transformation as follows:

2
1R = 2

oR
1
oR
> (8)

1p2 = 1
oR (op2 −o p1) (9)

where we define the unknown global frame of these 3D pose measurements as {o} and their corre-
sponding reference frames as {1} and {2}. Next we can take the expected value of our error state

z̃ =
[
1
oθ̃
> op̃>1

2
oθ̃
> op̃>2

]>
to analytically derive the corresponding covariance propagation:

P12 = HrP1,2Hr
T =

 δ21 θ̃

δ1o θ̃
03×3

δ21 θ̃

δ2o θ̃
03×3

δ1p̃2
δ1o θ̃

δ1p̃2
δop̃1

03×3
δ1p̃2
δop̃2

[ P1 06×6

06×6 P2

] δ21 θ̃

δ1o θ̃
03×3

δ21 θ̃

δ2o θ̃
03×3

δ1p̃2
δ1o θ̃

δ1p̃2
δop̃1

03×3
δ1p̃2
δop̃2

T (10)

where P1,2 is the joint covariance matrix from the global visual pose in the {o} frame of reference.
For detailed calculations of each Jacobian please see Appendix C. The resulting Jacobian matrix
Hr is defined as the following:

Hr =

[
−2

1R̂ 03×3 I3×3 03×3

b1oR̂ (op̂2 −o p̂1)×c −1
oR̂ 03×3

1
oR̂

]
(11)

5.2 Camera to Lidar Static Transformation

We now have the {C2
C1R,

C1pC2} relative transform between two camera poses with a corresponding
covariance P12. Because the to be estimated graph nodes are lidar states this relative camera
measurement needs to be transformed into the lidar frame of reference. This can be easily done as
follows:

L2
L1R = L

CR
C2
C1R

L
CR
> (12)

L1pL2 = L
CR

(
C2
C1R

> CpL + C1pC2 − CpL

)
(13)

where we define the lidar frame of reference as {Li}, i ∈ {1, 2} and the camera frame of reference
as {Ci}, i ∈ {1, 2}. It is assumed that the static transform, {LCR,C pL}, from the lidar to camera
frame of reference are known from offline calibration. Given the above transform, special care
needs to be taken to calculate the relative covariance matrix in the lidar frame of reference. We
can take the expected value of our error state z̃ =

[
C2
C1θ̃

> C1p̃>C2

]>
to compute the corresponding

covariance.

PL12 = HsPC12Hs
> =

 δL2
L1 θ̃

δC2
C1 θ̃

03×3

δL1p̃L2

δC2
C1 θ̃

δL1p̃L2

δC1p̃C2

PC12

 δL2
L1 θ̃

δC2
C1 θ̃

03×3

δL1p̃L2

δC2
C1 θ̃

δL1p̃L2

δC1p̃C2


>

(14)

where PC12 is the relative camera covariance calculated in Section 5.1. For detailed calculations of
each Jacobian please see Appendix D. The resulting Jacobian matrix Hs is defined as the following:

Hs =

[ L
CR 03×3

−LCR C2
C1R̂

>bCpL×c L
CR

]
(15)
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5.3 Relative Measurement Interpolated

Figure 3: Given a relative transformation, calculated using (12) and (13), between the {1} and {2} frame of reference,
we extrapolate this relative transformation to the desired beginning {b} and end {e} poses. The above λs are the
time-distance fractions that we use to extrapolate the relative transformation.

We now have the {21R, 1p2} relative transform between two poses in the correct frame of reference
and a corresponding covariance P12. Due to the asynchronous nature of the measurements from two
different sensors, the times corresponding to the beginning and end of the relative transformation
will not align with matched existing state poses. Therefore, under the assumption of a constant
velocity motion, we extrapolate the relative transformation across the desired interval. This in-
tuitively corresponds to a “stretching” of the relative pose measurement in time. We define two
time-distance fractions that determine how much the relative transformation needs to be extended
(see Figure 3):

λb =
t1 − tb
t2 − t1

λe =
te − t2
t2 − t1

(16)

The λ’s describe the magnitude that the relative transformation is to be “stretched” in each
direction, with the subscripts b and e denoting the beginning and end state poses. These time-
distance fractions can also be negative, corresponding to the “shrinking” of the relative trans-
formation. Given the relative transform and the time-distance fractions, we define the following
extrapolation equations:

e
bR = Expv

[
(1 + λb + λe)Logv

(
2
1R
)]

(17)

bpe = (1 + λb + λe)Expv
[
−λbLogv

(
2
1R
)]

1p2 (18)

The covariance propagation is then given by:

Pbe = HiP12Hi
> =

 δeb θ̃

δ21 θ̃
03×3

δbp̃e
δ21 θ̃

δbp̃e
δ1p̃2

P12

 δeb θ̃

δ21 θ̃
03×3

δbp̃e
δ21 θ̃

δbp̃e
δ1p̃2


>

(19)

where P12 is the transformed relative covariance calculated in Section 5.2. For detailed calcula-
tions of each Jacobian please see Appendix E. The resulting Jacobian matrix Hi is defined as the
following:

Hi =


Jr

[
(1 + λb + λe)Logv(2

1R̂
>)
]

(1 + λb + λe)J
−1
r

[
Logv(2

1R̂
>)
]

03×3(
− (1 + λb + λe)Expv

[
λbLogv(2

1R̂
>)
]

⌊
1p̂2×

⌋
Jr(λbLogv(2

1R̂
>))λbJ

−1
r (Logv(2

1R̂
>))
)

(1 + λb + λe)Expv
[
−λbLogv

(
2
1R̂
)]
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Figure 4: Overview of the flow of data through the system, where all incoming measurements are denoted on the far
left of each figure. These measurements are first processed through an odometry module if needed (seen in blue) and
then converted into factors (seen in red) that can be added to factor graph. The prior map system (left) leverages
RTK GPS measurements to create a prior map in the GPS frame of reference. The GPS denied estimation system
(right) uses the generated LIDAR maps to ensure that the pose estimation is in the GPS frame of reference.

6 System Design

6.1 Design Motivations

The proposed method allows for the reduction of the overall graph complexity during asynchronous
sensor fusion. We now propose a system that leverages the use of asynchronous sensors in the
application of autonomous driving. To both facilitate the flexibility of the vehicle design and
reduce cost, we aim to run the system on a vehicle without access to a GPS unit and with low
cost asynchronous sensors (i.e., without the use of electronic triggering). This design constraint
presents the unique challenge of still needing to localize the vehicle in the GPS frame of reference
without the use of a traditional GPS sensor. By publishing the vehicle state estimate in the GPS
frame of reference, we allow for existing global path planning and routing modules to continue to
work as expected. To overcome this challenge, we present a unique prior LIDAR map that allows
for the vehicle to both initialize and localize in the GPS frame of reference. Specifically we design
a framework with two separate sub-systems as follows:

1. Creation of an accurate prior map using a vehicle that has an additional Real Time Kinematic
(RTK) GPS sensor unit.

2. GPS-denied localization leveraging the prior map to localize in the GPS frame of reference.

This framework is flexible and cost effective as only a single “collection” vehicle is needed to
build the prior map that multiple lower cost vehicles can leverage. Specifically, this prior map allows
for localization in the GPS frame of reference without the use of GPS measurements during runtime
and can support localization in GPS-denied environments (e.g., tunnels or parking garages). Both
sub-systems can leverage the proposed asynchronous factor interpolation to enable the use of low
cost asynchronous sensors while ensuring a reduction of overall graph complexity.

6.2 System Overview - Prior Map

The first sub-system we propose is one that generates an accurate prior map that can be leveraged
by the second sub-system to localize in the GPS frame of reference. Shown in Figure 4, we fuse
odometry measurements from openly available stereo and LIDAR modules, ORB-SLAM2 [13] and
LOAM [14], respectively, with a RTK GPS unit. Both of these modules provide six degree of
freedom pose estimates.

Note that both modules do not normally provide a corresponding covariance needed for batch
optimization. We reference the reader to the appendices G and F for details on how we computed
these covariances. We run LOAM in the default mode, while ORB-SLAM2 is run first in “mapping”
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mode to generate a map of the environment. We then use ORB-SLAM2 in “localization” mode to
limit jumps due to loop closures. One could run ORB-SLAM2 in either mode, but since a prior
visual map can be created using the same dataset used to generate the LIDAR prior cloud we can
leverage this to provide additional information. We also note that both odometry modules must
provide “to-scale” information. We found that ORB-SLAM2 is susceptible to small errors in the
stereo calibration and could cause emitted global poses to not be “to-scale”.

We estimate LIDAR states connected with consecutive non-interpolated binary factors from
LOAM LIDAR odometry. To provide additional robustness and information into the graph, we
connect consecutive states with interpolated binary factors (Section 5) from ORB-SLAM2 visual
odometry. To ensure that the estimated states are in the GPS frame of reference, we attach
interpolated unary factors (Section 4) from the RTK GPS sensor. Both ORB-SLAM2 visual binary
factors and RTK GPS unary factors need to be interpolated because both sensors are asynchronous
to the LIDAR sensor.

The graph can be solved in real-time using an incremental solver such as iSAM2 [12] or offline
with a full batch solver. It is then simple to construct a prior map using the estimated states and
their corresponding LIDAR point clouds. To evaluate the overall quality of the generated prior
map point cloud, the cloud is visually inspected for misalignment on environmental planes such as
walls or exterior of buildings. The generated prior map from the experimental dataset can be see
in Figure 5.

Figure 5: Prior map generated from the experimental dataset.

6.3 System Overview - GPS-Denied Localization

Using the generated prior map, localization in the GPS frame can be performed without the use
of a GPS sensor. As seen in Figure 4, we estimate LIDAR states that are connected with non-
interpolated and interpolated binary factors (Section 5) from LOAM and ORB-SLAM2 odometry
modules, respectively. In addition to these two binary factors, we preform Iterative Closest Point
(ICP) matching between the newest LIDAR point cloud to the generated prior map. This ICP
transform can then be added as a non-interpolated unary factor into the factor graph. These unary
factors constrain the graph to be in the GPS frame of reference during 3D pose estimation.
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To provide real-time localization capabilities, we leverage the iSAM2 solver during GPS-denied
state estimation. The estimation operates at the frequency of the LIDAR sensor limited only
by the speed the LOAM module can process measurements. It was found that when creating a
unary factor using ICP matching to the prior map took upwards of 1-2 seconds. To overcome this
long computation time, incoming LIDAR clouds are processed at a lower frequency in a secondary
thread, and then added to the graph after successful ICP matching.

7 Experiential Results

7.1 System Validation

To access the overall performance of the GPS denied system, we constructed a data collection vehicle
with both a combination of low cost sensors and a RTK GPS sensor. The vehicle is equipped with a
8 channel Quanergy M8 LIDAR [15], ZED stereo camera [16], and RTK enabled NovAtel Propak6
GPS sensor [17]. The Quanergy M8 LIDAR was run at 10Hz, while the ZED stereo camera was
run at 30Hz with a resolution of 672 by 376. The RTK enabled NovAtel Propak6 GPS sensor
operated at 20Hz with an average accuracy of ±15 centimeters. The GPS solution accuracy allows
for the creation of a high quality prior map (see Figure 5). To facilitate the GPS denied system, a
dataset was first collected on the vehicle and then processed using a full batch solver. Following the
proposed procedure in Section 6.2, LIDAR factors are added to the factor graph, while both stereo
and GPS factors are interpolated and then directly connected to corresponding LIDAR states. The
resulting LIDAR point cloud, created in the GPS frame of reference, can then be used during GPS
denied navigation.

To represent the real world, the GPS denied system was tested on the day following the data
collection for the prior map. This was to introduce changes in the environment, such as changes
in car placement and shrubbery, while also showing that the prior map can still be leveraged.
The same vehicle was used with the only difference being that the RTK GPS was not used in the
GPS denied localization. This RTK GPS was instead used to provide an accurate ground truth
comparison. Following the proposed procedure in Section 6.3, incoming LIDAR point clouds are
matched to the map generated the previous day and then added to the factor graph after successful
ICP alignment.
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Figure 6: Position of the vehicle over the 10 runs. Vehicle starts in the top right corner and drives around the circle.

Figure 7: Average position error in the x,y,z over 10 runs. GPS denied estimation compared at each time instance,
of the 500 meter long run, with the RTK GPS position. Average vehicle speed of 6mph.

Figure 8: Average position error magnitude over 10 runs. GPS denied estimation compared at each time instance,
of the 500 meter long run, with the RTK GPS position. Average vehicle speed of 6mph.
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The estimated vehicle state is compared to the corresponding output of the RTK GPS. As seen
in Figure 8, when performing GPS denied localization, the system was able to remain within a
stable 2 meter accuracy. We compared the proposed factor interpolation method against a naive
approach of factor addition into the graph which ignores the issue of time delay and directly attaches
incoming factors to the closest nodes without interpolation. The average RMSE was 0.71 meters
for the proposed method and 0.93 meters for the naive approach (overall 23.6% decrease).

7.2 Evaluating the Asynchronous Measurement Alignment

Having shown that the system is able to accurately localize in real-time without the use of GPS,
we next evaluated how the interpolation impacts the estimation. To do so, we did not use the ICP
matching to the LIDAR prior cloud and instead only used the pure odometry from LOAM and
ORB-SLAM2.

Figure 9: Comparison of the proposed method and naive approach position over 10 runs. Vehicle starts in the top
right corner and drives around the circle.
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Figure 10: Comparison of the proposed method and naive approach, over 10 runs, using pure odometry measurements.

Figure 11: Comparison of the proposed method and naive approach, over 10 runs, using pure odometry measurements.

Seen in Figure 11, the proposed factor interpolation outperformed the estimation accuracy of
the naive approach. The RMSE of the naive approach was 26.74 meters and the proposed method’s
average error was 7.026 meters (overall 73.7% decrease). This shows that the use of interpolation
on incoming binary factors can greatly increase the estimation accuracy, without increasing graph
complexity.

8 Conclusions and Future Work

In this paper, we have developed a general approach of asynchronous measurement alignment
within the graph-based optimization framework of mapping and localization in order for optimal
fusion of multimodal sensors. The designed framework provides a modular system with the ability
to replace individual modules and allow for any sensor to be incorporated. The system has been
tested on an experimental dataset and compared to a naive approach to show the improvement
due to the proposed asynchronous measurement alignment. Looking forward, we will incorporate
other sensors, such as Inertial Measurement Units (IMUs), through the use of analytically IMU
preintegration developed in our prior work [18] to improve the system fault tolerance, if the main
sensor fails. We will also investigate how to improve the current mapping and localization, in
particular, when autonomously driving in dynamic urban environments.
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Appendix A: Useful Identities

A.1: Skew Symmetric Matrices

b · ×c : R3 → S3
x

bv×c = bv×c (20)

Given a rotation matrix R ∈ SO(3) we can perform the following:

R bv×cR> = bRv×c (21)

Given two vectors v,p ∈ R3 we can perform the following:

−bv×cp = bp×cv (22)

A.2: Matrix Exponential

Exp: S3
x → SO(3)

Exp
(
bGI θ×c

)
= G

I R (23)

Expv: R3 → SO(3)

Expv(GI θ) = G
I R (24)

A.3: Matrix Logarithm

Log: SO(3)→ S3
x

Log(GI R) =
⌊
G
I θ×

⌋
(25)

Logv: SO(3)→ R3

Logv(GI R) = G
I θ (26)

A.4: First-order Approximation

Given some small value δθ we can apply the following approximation:

Expv(φ+ δθ) ≈ Expv(φ)Expv(Jr(φ)δθ) (27)

First-order approximation for small angles with Logarithm applied:

Logv(Expv(φ)Expv(δθ)) ≈ φ+ J−1
r (φ)δθ (28)

A.5: Small Angle

Exp(bδθ×c) ≈ I + bδθ×c (29)
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A.6: Right Jacobian

The Right Jacobian of SO(3) Jr(φ) is defined by [19, 20]:

Jr(φ) = I− 1− cos(‖ φ ‖)
‖ φ ‖2

bφ×c+
‖ φ ‖ −sin(‖ φ ‖)

‖ φ ‖3
bφ×c2 (30)

The Right Jacobian inverse of SO(3) J−1
r (φ) is defined by [19, 20]:

J−1
r (φ) = I +

1

2
bφ×c+

(
1

‖ φ ‖2
− 1 + cos(‖ φ ‖)

2 ‖ φ ‖ sin(‖ φ ‖)

)
bφ×c2 (31)
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Appendix B: Jacobians for Unary Measurement

B.1:
δiGθ̃

δ1Gθ̃
Jacobian Derivation

To find
δiGθ̃

δ1Gθ̃
we perturb the measurement function by a error angle 1

Gθ̃ and define 1
GR ≈ Expv(−1

Gθ̃)1
GR̂

to get the following:

Expv(−iGθ̃)iGR̂ = Expv

[
λ Logv

(
2
GR̂

(
Expv(−1

Gθ̃)1
GR̂
)>)]

Expv(−1
Gθ̃)1

GR̂ (32)

= Expv
[
λ Logv

(
2
GR̂1

GR̂
> Expv(1

Gθ̃)
)]

Expv(−1
Gθ̃)1

GR̂ (33)

= Expv
[
λ Logv

(
2
1R̂ Expv(1

Gθ̃)
)]

Expv(−1
Gθ̃)1

GR̂ (34)

By applying Equation 28 and defining Logv(2
1R̂) = 2

1φ we get:

≈ Expv
[
λ 2

1φ+ λ J−1
r (2

1φ)1
Gθ̃
]

Expv(−1
Gθ̃)1

GR̂ (35)

Applying Equation 27 we get:

≈ Expv
(
λ 2

1φ
)

Expv
(
Jr(λ

2
1φ) λ J−1

r (2
1φ)1

Gθ̃
)

Expv(−1
Gθ̃)1

GR̂ (36)

Next we use our small angle approximation, Equation 29, and by removing all error squared terms,
we get the following:

≈ i
1R̂
(
I +

⌊
Jr(λ

2
1φ) λ J−1

r (2
1φ)1

Gθ̃ ×
⌋)(

I +
⌊
−1
Gθ̃ ×

⌋)
1
GR̂ (37)

≈ i
1R̂
(
I +

⌊(
Jr(λ

2
1φ) λ J−1

r (2
1φ)− I

)
1
Gθ̃ ×

⌋)
1
GR̂ (38)

Applying the R bv×cR> = bRv×c property of skew symmetric matrices, we can perform the
following:

≈ i
1R̂
(
I +

⌊
(. . . ) 1

Gθ̃ ×
⌋)

1
GR̂ (39)

≈ i
1R̂

1
GR̂+ i

1R̂
⌊
(. . . ) 1

Gθ̃ ×
⌋

1
GR̂ (40)

≈ i
GR̂+ i

1R̂
⌊
(. . . ) 1

Gθ̃ ×
⌋
i
1R̂
>i

1R̂
1
GR̂ (41)

≈ i
GR̂+

⌊
i
1R̂ (. . . )1

Gθ̃ ×
⌋
i
GR̂ (42)

≈ i
GR̂+

⌊
i
1R̂

(
Jr(λ

2
1φ) λ J−1

r (2
1φ)− I

)
1
Gθ̃ ×

⌋
i
GR̂ (43)

≈ Expv
(
i
1R̂

(
Jr(λ

2
1φ) λ J−1

r (2
1φ)− I

)
1
Gθ̃
)
i
GR̂ (44)

Thus, we have the following:

δiGθ̃

δ1
Gθ̃

= −i1R̂
(
Jr(λ Logv(2

1R̂)) λ J−1
r (Logv(2

1R̂))− I
)

(45)
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B.2:
δiGθ̃

δ2Gθ̃
Jacobian Derivation

To find
δiGθ̃

δ2Gθ̃
we perturb the measurement function by a error angle 2

Gθ̃ and define 2
GR ≈ Expv(−2

Gθ̃)2
GR̂

to get the following:

Expv(−iGθ̃)iGR̂ = Expv
[
λ Logv

(
Expv(−2

Gθ̃) 2
GR̂ 1

GR̂
>
)]

1
GR̂ (46)

= Expv
[
−λ Logv

(
2
1R̂
> Expv(2

Gθ̃)
)]

1
GR̂ (47)

By applying Equation 28 and defining Logv(2
1R̂
>) = 1

2φ we get:

≈ Expv
[
−λ 1

2φ− λ J−1
r (1

2φ)2
Gθ̃
]

1
GR̂ (48)

Applying Equation 27 we get:

≈ Expv
(
−λ 1

2φ
)

Expv
(
−Jr(−λ 1

2φ) λ J−1
r (1

2φ)2
Gθ̃
)

1
GR̂ (49)

Next we use our small angle approximation, Equation 29, to get the following:

≈ i
1R̂
(
I +

⌊
−Jr(−λ 1

2φ) λ J−1
r (1

2φ)2
Gθ̃ ×

⌋)
1
GR̂ (50)

Applying the R bv×cR> = bRv×c property of skew symmetric matrices, we can perform the
following:

≈ i
1R̂
(
I +

⌊
(. . . ) 2

Gθ̃ ×
⌋)

1
GR̂ (51)

≈ i
1R̂

1
GR̂+ i

1R̂
⌊
(. . . ) 2

Gθ̃ ×
⌋

1
GR̂ (52)

≈ i
GR̂+ i

1R̂
⌊
(. . . ) 2

Gθ̃ ×
⌋
i
1R̂
>i

1R̂
1
GR̂ (53)

≈ i
GR̂+

⌊
i
1R̂ (. . . )2

Gθ̃ ×
⌋
i
GR̂ (54)

≈ i
GR̂+

⌊
−i1R̂ Jr(−λ 1

2φ) λ J−1
r (1

2φ)2
Gθ̃ ×

⌋
i
GR̂ (55)

≈ Expv
(
−i1R̂ Jr(−λ 1

2φ) λ J−1
r (1

2φ)2
Gθ̃
)
i
GR̂ (56)

Thus, we have the following:

δiGθ̃

δ2
Gθ̃

= i
1R̂ Jr(−λ Logv(2

1R̂
>)) λ J−1

r (Logv(2
1R̂
>)) (57)

B.3: δGp̃i
δGp̃1

Jacobian Derivation

To find δGp̃i
δGp̃1

we perturb the measurement function by a error value of Gp̃1.

Gp̂i +G p̃i = (1− λ)(Gp̂1 + Gp̃1) + λGp̂2 (58)

= (1− λ)Gp̂1 + λGp̂2 + (1− λ)Gp̃1 (59)

(60)

Thus, we have the following:

δGp̃i
δGp̃1

= (1− λ) I (61)
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B.4: δGp̃i
δGp̃2

Jacobian Derivation

To find δGp̃i
δGp̃2

we perturb the measurement function by a error value of Gp̃2.

Gp̂i +G p̃i = (1− λ)Gp̂1 + λ(Gp̂2 + Gp̃2) (62)

= (1− λ)Gp̂1 + λGp̂2 + λGp̃2 (63)

(64)

Thus, we have the following:

δGp̃i
δGp̃2

= λ I (65)
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Appendix C: Jacobians for Relative Transformation

C.1:
δ21 θ̃

δ1o θ̃
Jacobian Derivation

To find
δ21 θ̃

δ1o θ̃
we perturb the measurement function by a error angle 1

oθ̃ and define 1
oR ≈

(
I − b1oθ̃×c

)
1
oR̂

to get the following: (
I− b21θ̃×c

)
2
1R̂ = 2

oR̂
[(

I− b1oθ̃×c
)

1
oR̂
]>

(66)

= 2
oR̂

1
oR̂
>
(
I + b1oθ̃×c

)
(67)

= 2
1R̂+ 2

1R̂b1oθ̃×c (68)

Applying the R bv×cR> = bRv×c property of skew symmetric matrices, we can perform the
following:

= 2
1R̂+ 2

1R̂b1oθ̃×c21R̂>2
1R̂ (69)

= 2
1R̂+ b21R̂1

oθ̃×c21R̂ (70)

=
(
I− b−2

1R̂
1
oθ̃×c

)
2
1R̂ (71)

Thus, we have the following:

δ2
1θ̃

δ1
o θ̃

= −2
1R̂ (72)

C.2:
δ21 θ̃

δ2o θ̃
Jacobian Derivation

To find
δ21 θ̃

δ2o θ̃
we perturb the measurement function by a error angle 2

oθ̃ and define 2
oR ≈

(
I − b2oθ̃×c

)
2
oR̂

to get the following: (
I− b21θ̃×c

)
2
1R̂ =

(
I− b2oθ̃×c

)
2
oR̂

1
oR̂
> (73)

=
(
I− b2oθ̃×c

)
2
1R̂ (74)

Thus, we have the following:

δ2
1θ̃

δ2
o θ̃

= I3×3 (75)

C.3: δ1p̃2
δ1o θ̃

Jacobian Derivation

To find δ1p̃2
δ1o θ̃

we perturb the measurement function by a error angle 1
oθ̃ and define 1

oR ≈
(
I − b1oθ̃×c

)
1
oR̂

to get the following:

1p̂2 +1 p̃2 =
(
I − b1oθ̃×c

)
1
oR̂ (op̂2 −o p̂1) (76)

= 1
oR̂ (op̂2 −o p̂1)− b1oθ̃×c1oR̂ (op̂2 −o p̂1) (77)
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Applying the −bv×cp = bp×cv property of skew symmetric matrices, we can perform the follow-
ing:

= 1
oR̂ (op̂2 − op̂1) + b1oR̂ (op̂2 − op̂1)×c1oθ̃ (78)

Thus, we have the following:

δ1p̃2

δ1
o θ̃

= b1oR̂ (op̂2 −o p̂1)×c (79)

C.4: δ1p̃2
δop̃1

Jacobian Derivation

To find δ1p̃2
δop̃1

we perturb the measurement function by a error value of op̃1.

1p̂2 +1 p̃2 = 1
oR̂ (op̂2 − op̂1 − op̃1) (80)

= 1
oR̂ (op̂2 − op̂1)− 1

oR̂
op̃1 (81)

(82)

Thus, we have the following:

δ1p̃2

δop̃1
= −1

oR̂ (83)

C.5: δ1p̃2
δop̃2

Jacobian Derivation

To find δ1p̃2
δop̃2

we perturb the measurement function by a error value of op̃2.

1p̂2 +1 p̃2 = 1
oR̂ (op̂2 + op̃2 − op̂1) (84)

= 1
oR̂ (op̂2 − op̂1) + 1

oR̂
op̃2 (85)

(86)

Thus, we have the following:

δ1p̃2

δop̃2
= 1

oR̂ (87)
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Appendix D: Jacobians for Lidar to Camera Static Transformation

D.1:
L2
L1θ̃
C2
C1θ̃

Jacobian Derivation

To find
L2
L1θ̃
C2
C1θ̃

we perturb the measurement function by a error angle C2
C1θ̃ and define 1

oR ≈
(
I − bC2

C1θ̃×c
)
C2
C1R̂

to get the following:(
I − bL2

L1θ̃×c
)
L2
L1R̂ = L

CR
(
I − bC2

C1θ̃×c
)
C2
C1R̂

L
CR
> (88)

= L2
L1R̂− L

CRbC2
C1θ̃×cC2

C1R̂
L
CR
> (89)

= L2
L1R̂− L

CRbC2
C1θ̃×cLCR> L

CR
C2
C1R̂

L
CR
> (90)

Applying the R bv×cR> = bRv×c property of skew symmetric matrices, we can perform the
following:

= L2
L1R̂− bLCR C2

C1θ̃×cL2
L1R̂ (91)

=
(
I − bLCR C2

C1θ̃×c
)
L2
L1R̂ (92)

Thus, we have the following:
L2
L1θ̃
C2
C1θ̃

= L
CR (93)

D.2:
L1p̃L2
C2
C1θ̃

Jacobian Derivation

To find
L1p̃L2
C2
C1θ̃

we perturb the measurement function by a error angle C2
C1θ̃ and define 1

oR ≈(
I − bC2

C1θ̃×c
)
C2
C1R̂ to get the following:

L1p̂L2 + L1p̃L2 = L
CR

([(
I − bC2

C1θ̃×c
)
C2
C1R̂

]>
CpL + C1p̂C2 − CpL

)
(94)

= L
CR

(
C2
C1R̂

>
(
I + bC2

C1θ̃×c
)

CpL + C1p̂C2 − CpL

)
(95)

= L1p̂L2 + L
CR

C2
C1R̂

>bC2
C1θ̃×c CpL (96)

Applying the −bv×cp = bp×cv property of skew symmetric matrices, we can perform the follow-
ing:

= L1p̂L2 − L
CR

C2
C1R̂

>bCpL×cC2
C1θ̃ (97)

(98)

Thus, we have the following:
L1p̃L2

C2
C1θ̃

= −LCR C2
C1R̂

>bCpL×c (99)
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D.3:
L1p̃L2
C1p̃C2

Jacobian Derivation

To find
L1p̃L2
C1p̃C2

we perturb the measurement function by a error value of C1p̃C2.

L1p̂L2 + L1p̃L2 = L
CR

(
C2
C1R̂

> CpL + C1p̂C2 + C1p̃C2 − CpL

)
(100)

= L1p̂L2 + L
CR

C1p̃C2 (101)

(102)

Thus, we have the following:
L1p̃L2

C1p̃C2
= L

CR (103)
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Appendix E: Jacobians for Relative Measurement Interpolation

E.1:
δeb θ̃

δ21 θ̃
Jacobian Derivation

To find
δeb θ̃

δ21 θ̃
we perturb the measurement function by a error angle 2

1θ̃ and define 1
2R ≈ Expv(−2

1θ̃)2
1R̂.

Expv(−ebθ̃)ebR̂ = Expv
[
(1 + λb + λe)Log

(
Expv(−2

1θ̃)2
1R̂
)]

(104)

= Expv
[
−(1 + λb + λe)Log

(
2
1R̂
>Expv(2

1θ̃)
)]

(105)

By applying Equation 28 and defining Logv(2
1R̂
>) = 1

2φ we get:

≈ Expv
[
−(1 + λb + λe)

(
1
2φ+ J−1

r (1
2φ)2

1θ̃
)]

(106)

By taking the transpose and applying Equation 27 we get:

e
bR̂
>Expv(ebθ̃) ≈ Expv

[
(1 + λb + λe)

(
1
2φ+ J−1

r (1
2φ)2

1θ̃
)]

(107)

≈ Expv
[
(1 + λb + λe)

1
2φ
]

Expv
[
Jr((1 + λb + λe)

1
2φ)(1 + λb + λe)J

−1
r (1

2φ)2
1θ̃
]

(108)

≈ e
bR̂
>Expv

[
Jr((1 + λb + λe)

1
2φ)(1 + λb + λe)J

−1
r (1

2φ)2
1θ̃
]

(109)

(110)

Thus, we have the following:

δeb θ̃

δ2
1θ̃

= Jr

[
(1 + λb + λe)Logv(2

1R̂
>)
]

(1 + λb + λe)J
−1
r

[
Logv(2

1R̂
>)
]

(111)

E.2: δbp̃e
δ21 θ̃

Jacobian Derivation

To find δbp̃e
δ21 θ̃

we perturb the measurement function by a error angle 2
1θ̃ and define 1

2R ≈ Expv(−2
1θ̃)2

1R̂.

bp̂e + bp̃e = (1 + λb + λe)Expv
[
−λbLogv

(
Expv(−2

1θ̃)2
1R̂
)]

1p̂2 (112)

= (1 + λb + λe)Expv
[
λbLogv

(
2
1R̂
>Expv(2

1θ̃)
)]

1p̂2 (113)

By applying Equation 28 and defining Logv(2
1R̂
>) = 1

2φ we get:

≈ (1 + λb + λe)Expv
[
λb

1
2φ+ λbJ

−1
r (1

2φ)2
1θ̃
]

1p̂2 (114)

Applying Equation 27 we get:

≈ (1 + λb + λe)Expv
[
λb

1
2φ
]

Expv
[
Jr(λb

1
2φ)λbJ

−1
r (1

2φ)2
1θ̃
]

1p̂2 (115)
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Finally we can apply the small angle Equation 29 and the properties of a skew symmetric, see 22,
we get:

≈ (1 + λb + λe)Expv
[
λb

1
2φ
] (
I3×3 +

⌊
Jr(λb

1
2φ)λbJ

−1
r (1

2φ)2
1θ̃×

⌋)
1p̂2 (116)

≈ bp̂e − (1 + λb + λe)Expv
[
λb

1
2φ
] ⌊

1p̂2×
⌋
Jr(λb

1
2φ)λbJ

−1
r (1

2φ)2
1θ̃ (117)

Thus, we have the following:

δbp̃e

δ2
1θ̃

= −(1 + λb + λe)Expv
[
λbLogv(2

1R̂
>)
] ⌊

1p̂2×
⌋
Jr(λbLogv(2

1R̂
>))λbJ

−1
r (Logv(2

1R̂
>)) (118)

E.3: δbp̃e
δ1p̃2

Jacobian Derivation

To find δbp̃e
δ1p̃2

we perturb the measurement function by a error angle 1p̃2.

bp̂e + bp̃e = (1 + λb + λe)Expv
[
−λbLogv

(
2
1R̂
)]

(1p̂2 + 1p̃2) (119)

= bp̂e + (1 + λb + λe)Expv
[
−λbLogv

(
2
1R̂
)]

1p̃2 (120)

Thus, we have the following:

δbp̃e
δ1p̃2

= (1 + λb + λe)Expv
[
−λbLogv

(
2
1R̂
)]

(121)
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Appendix F: Covariance for ORB-SLAM Pose

The goal is to arbitrary construct a covariance based on information provided on the current pose.
We naively assume that the information of global features in the environment are only a function
of the current pose. Thus we look to construct the covariance based on the following measurement
model of a feature seen in the global in the left and/or right stereo camera.

Lpf = L
GR (Gpf − GpL) (122)

Rpf = R
LR L

GR (Gpf − GpL) + RpL (123)

where we have denoted the position of the feature seen in the undistorted right camera frame
rotated and translated as follows:

R
LR =

1 0 0
0 1 0
0 0 1

 (124)

RpL =
[
fbaseline 0 0

]
(125)

To calculate the covariance we can perform the following summation over all features:

P =

[
k∑
i=1

H>Λ−1H

]−1

=

[
k∑
i=1

(H1H2)>Λ−1H1H2

]−1

(126)

where k is the total number of features and Λ is the zero-mean white Gaussian of the measurements.
We can define the jacobians for both features seen in the the left and right camera frames as the
following:

HL1 =


1

Lpf (3)
0

− Lpf (1)

(Lpf (3))2

0
1

Lpf (3)

− Lpf (2)

(Lpf (3))2

 (127)

HL2 =
[⌊
Lpf×

⌋
−LGR

]
(128)

HR1 =


1

Rpf (3)
0

− Rpf (1)

(Rpf (3))2

0
1

Rpf (3)

− Rpf (2)

(Rpf (3))2

 (129)

HR2 =
[
R
LR

⌊
Lpf×

⌋
−RLR L

GR
]

(130)

Finally we can define our noise matrix Λ as the following:

Λ =


1

(fx)2
0

0
1

(fy)2

 (131)

where fx and fy are the focal lengths in the x and y directions respectively. We now have all
values needed to calculate the covariance for a given pose in ORB-SLAM. We can use the following
algorithm structure to calculate the final covariance.
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1: procedure calc orb covariance(LGR, GpL, RLR, RpL, features)
2: A← 06×6

3: Λ← eq (131)
4: for each feature do
5: Lpf ← eq. (122)
6: Rpf ← eq. (123)
7: if feature seen in left then
8: HL1 ← eq. (127)
9: HL2 ← eq. (128)

10: A← A + (HL1HL2)>Λ−1 HL1HL2

11: end if
12: if feature seen in right then
13: HR1 ← eq. (129)
14: HR2 ← eq. (130)
15: A← A + (HR1HR2)>Λ−1 HR1HR2

16: end if
17: end for
18: return A−1

19: end procedure
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Appendix G: Covariance for LOAM Pose

Given the most recent odomentry measurement and corresponding lidar point cloud from the LOAM
package we would like to create a corresponding covariance. In this case we look at the feature
found in the first lidar point cloud projected into a matching point in the second point cloud.

2pf = 2
1R (1pf − 1p2) (132)

where 2
1R and 1p2 are the relative transforms from LOAM and 1pf is a 3d point from the matching

lidar pointcloud. From this we want to compute the covariance based on the summation over all
matched lidar point cloud features:

P =

[
k∑
i=1

H>Λ−1H

]−1

(133)

where k is the total number of features and Λ is the zero-mean white Gaussian of the measurements.
We can define the jacobian as follows:

H =
[⌊

2pf×
⌋
−2

1R
]

(134)

Finally we can define our noise matrix Λ as the following:

Λ =


2σx

2 0 0

0 2σy
2 0

0 0 2σz
2

 (135)

where we define σx, σy, σz as the noise sigma (in meters) in the x, y, and z-axis respectively. The
sigmas are multiplied by two since both 1pf and 2pf are affected by this noise. For our Velodyne
we have chosen a noise respective to 5cm accuracy. We can use the following algorithm structure
to calculate the final covariance.

1: procedure calc loam covariance(2
1R, 1p2, points)

2: A← 06×6

3: Λ← eq (135)
4: for each point do
5: 2pf ← eq. (132)
6: H← eq. (134)
7: A← A + H>Λ−1 H
8: end for
9: return A−1

10: end procedure

RPNG-2017-ASYNC 28


	Introduction
	Key Related Works
	Async Measurements in Batch Optimization
	Measurement Interpolation

	Graph-based Estimation
	Unary Measurement Synchronization
	Unary Measurement Interpolation

	Relative Measurement Synchronization
	Visual Relative Measurement
	Camera to Lidar Static Transformation
	Relative Measurement Interpolated

	System Design
	Design Motivations
	System Overview - Prior Map
	System Overview - GPS-Denied Localization

	Experiential Results
	System Validation
	Evaluating the Asynchronous Measurement Alignment

	Conclusions and Future Work
	References
	Appendix Useful Identities
	Skew Symmetric Matrices
	Matrix Exponential
	Matrix Logarithm
	First-order Approximation
	Small Angle
	Right Jacobian

	Appendix Jacobians for Unary Measurement
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation

	Appendix Jacobians for Relative Transformation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation

	Appendix Jacobians for Lidar to Camera Static Transformation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation

	Appendix Jacobians for Relative Measurement Interpolation
	  Jacobian Derivation
	  Jacobian Derivation
	  Jacobian Derivation

	Appendix Covariance for ORB-SLAM Pose
	Appendix Covariance for LOAM Pose

