Interpreting DNA Matches

Michael Markowski

mike.ab3ap@gmail.com

May 2021

1 Introduction

DNA testing makes it possible for those interested to easily and inexpensively
take a DNA test. Due to privacy concerns as well as business model, however,
only partial data is made available to customers. As a result, it is difficult
to piece the raw data together to build up information. Making sense of the
data is a challenge.

This paper is an initial effort at drawing deeper information from raw
data provided by DNA testing. Two methods are presented to model the
data and how it can then be interconnected. Steps to reduce complexity
of interconnection are also presented. Both methods yield a connectivity
matrix, though each is reduced differently. They are then fed as input to the
widely used, open source graph drawing program, Graphviz.

2 Ancestry.com Data

As an Ancestry.com subscriber, the method presented stems from my desire
to make sense of the somewhat disconnected raw data from Ancestry into
easier to understand information. Ancestry provides two basic categories of
information:

1. Direct DNA matches. A list of people who share DNA segments with
yOu.

2. Common DNA matches. For every Direct Match, a list of people who
match both you and that direct match.

1

As mentioned, the challenge is that this is partial data. By limiting data
access and not connecting customer trees in the fashion of WikiTree.org,
customers must maintain subscriptions to continue their work. While some
work will be identical performed in parallel with other customers, i.e., rel-
atives, doing the same, this business model increases Ancestry revenue. To
remain competitive, Ancestry uses some of the income for further document
acquisition and digitization. So, there is a trade-off of pros and cons, both
helping and hindering genealogical research.

A more practical challenge from the software developer’s point of view is
that there is no remote access to Ancestry’s database. All information must
be acquired through their web site. Web sites, by their nature, are designed
for people as opposed to programmatic interaction. With these limitations
in mind, the next steps are an approach to model the data and then present
it in a useful manner.

3 Method 1: Complete Connectivity

This method is a useful way to view all direct matches and common matches
between them and the primary person. Because it shows all data, it can also
be a little overwhelming to make use of. This method in conjunction with
the one presented later can make powerful allies, however, in determining
where a DNA match is likely to reside in the family tree.

3.1 Manual Method

The technique is easily performed by hand, but becomes challenging with
more people. The steps are simply:

1. Write down direct matches of interest around the edges of a large sheet
of paper.

2. Draw lines between all common matches.
3. Patience and perseverance!

Software does nothing more than the above, but tracks more details and of
course is faster. The graphing software also has heuristics to group similar
nodes together, making it easier to pick out different lines in a family tree.

3.2 Data Visualization Technique

The software version of the technique is also straightforward, and revolves
around use of an adjacency matrix from graph theory. A square matrix is
constructed such that rows and columns are named with each direct DNA
match. Each element of the matrix is a zero if those two people do not share
a common match, and a one if they do.

An example describes it better. Suppose we have a graph of four people
whose DNA connects them like this:

o
LGS

The adjacency matrix looks like this:

[A[B|C|D
AJL1|1]1]0
B 1111
Cl1[1][1]1
Dlo|1]1]1

Notice that along the diagonal there is redundant information indicating
that A is related to A, B to B, and so on. This seemingly redundant data
turns out to be helpful when reducing graph complexity. Because rows B
and C are identical—and they wouldn’t be, if the diagonal elements weren’t
1—they can be collapsed into one node:

It contains the same information as the first graph, is more concise, and
easier to understand. The software does nothing more than implement the
steps in this example, but on a larger scale. It also tackles the problems
of converting an Ancestry web page into more regularly formatted input to
more easily construct the adjacency matrix.

3.3 Software Design

3.3.1 Modeling People

There are two important items in a DNA match: name and amount of shared
cM’s (centiMorgans). As a result, modeling a DNA match is simple. The
larger challenge is modeling the relationship between people sharing DNA. Tt
is important to note that the goal is not to build a family tree, but to create
a graph showing who shares DNA segments with who. The graph is similar
to a family tree, but not exactly that. By using cM levels, this technique can
likely be enhanced to become a bit more like a tree. But for this first effort,
simple results are the goal.

Ancestry DNA match lists are familiar to customers. Matches in 2021

look like the following.

Parent/Child
3,444 cM | 50% shared DNA

1st - 2nd Cousin
1,013 cM | 15% shared DNA

1st - 2nd Cousin
842 cM | 12% shared DNA

1st - 2nd Cousin
690 cM | 10% shared DNA

1st - 2nd Cousin
671 cM | 10% shared DNA

33 No Trees

=z Public linked tree
9 People
& Common ancestor

=3 Public linked tree
32 People
& Common ancestor

=z Public linked tree
50 People

8 Private linked tree
660 People
& Common ancestor

Because direct database access is not available, two approaches are pos-
sible. One, is to use programmatic retrieval of web pages, parse them, and
reformat name/cM data as desired. That is unquestionably the best way be-
cause it involves no human interaction. However, it works only for Ancestry

pages as presented on the web today and is work intensive for the program-
mer. Because this is a spare time effort, I opted for the second and lazier
approach. Each page of Common Matches is copy/pasted into a plain text
file. Then, a program converts the data into a list like the following, where
names in this paper are partially obscured with Xs:

XXXMurphy
XXXMarkowski | 3445
XXXMarkowski | 3444
XXXntag888|1013
XXXBrosnan| 359
XXXFraser|210
XXXieleenj|181
XXXNolan|172
XXXBrosnan|95
XXXFitzgerald|75
XXXconway | 68
XXXBrosnan |68
XXXFreeman |65
--B. |65

--C. |56
XXXAdair|55

An advantage to this is that DNA data from any source can be used as
long as it is eventually presented in the form above. The program expects
files in that format as input, and each file name must exactly match the
name as entered. That is, suppose the file above is for direct matches with
fictional customer Joe Smith. If a file exists with common matches between
Joe Smith and XXXMurphy, the first name in the list, then that file of
common matches must be named XXXMurphy, in this example. If such a
file does not exist, XXXMurphy is ignored because he is such a distant match
that he has no common matches between the Joe Smith and other matches.
It isn’t that he is uninteresting overall, but that this match can provide no
DNA interconnection data and is unhelpful here.

3.3.2 Modeling Interconnections of People

Once all the people are read in with name and cM level stored, interconnec-
tions are modeled. This is performed just as in the small example presented
earlier. Looking at intermediate output as the program runs on a small
example,

Everyone
0: XXXN|396
: XXXTobiansky|842
: XXXGode|361
: XXXFinnegan|690
: XXXC. 618
: XXXGode|671
: XXXBrosnan| 359
: XXXntag888[1013

~N o O WN -

At this point the program has read in direct matches, then read in common
matches for each direct one. In the following steps, names are replaced
with numbers above for easier construction of the adjacency matrix. Next,
the complete matrix is constructed. For readability, zeros are replaced with
dashes.

Matrix Raw
0: [’00° 111111--]

1: [’01” 111111--]
2: [’02° 111-11--]
3: [703” 11-1----]
4: [’04° 111-11--]
5: [’05” 111-11--]
6: [06° —-————- 11]
7: [P07 —————- 11]

The matrix is then sorted in preparation for combining identical rows,
i.e., people with identical common matches, into a single row. Again, this is
why it is important to set all diagonal elements to 1 in the original matrix,
above.

Matrix Sorted
0: [’06° —————- 11]

[’03’ 11-1----]
[’02° 111-11--]
111-11--]
[’05° 111-11--]
[’00° 111111--]
[’01” 111111--]

~N O O WD -
m
o
=

Finally, the reduced matrix is created, the final output of the program, where
duplicate rows and columns have been combined.

Matrix Reduced

0: [’00,01° -11-]

1: [’02,04,05° 1---]
2: [’03’ 1---]

3: [’°06,07° ———-]

In reality, the program does not output what is shown above. It outputs the
connectivity matrix in the dot language, a simple formal language that the
open source graph visualization package, Graphviz, uses. Currently, it uses
Graphviz’s circo program, but no problems are posed if more elaborate dot
output is generated for any of the Graphviz programs.

The examples above illustrate a small number of relatives, from 350 to
3000 cM. A more typical example, below, ranges from 40 to 3000 ¢cM, making
apparent the appeal of software.

Matrix Reduced
['8a"
['e1’
['ez2"
['e3"
['B4"
['es’

(=== R R S T SR]

13: ['15"
16: ['16"

19: ['19"
28: ['28°
21: ['21"
22: ['22°
23: ['23"
24: ['24"
25: ['25"

T2 --11-1---

3.4 Running the Software

This is hobbyist software without time or resources to knock off the rough
edges! Please feel free to contribute if you are a programmer and are so
inclined. Install python and Graphviz if not already on your computer. Then,
to use the software:

1. Move into your work directory and then:
unzip dna.zip
mkdir matches; cd matches

2. Copy/paste direct DNA matches into a file. I pasted mine into a file
named mike_markowski.raw. The pasted file must have extension .raw.
You might have to scroll down multiple times to get all matches.

3. For every name in your direct DNA matches, bring up that person’s
page in your web browser, and paste the page into hisName.raw, on
and on...If a name is M.M., then the file name is M.M..raw. As with
direct matches, the pasted file must have extension .raw.

That is by far the most work intensive part. With all these files in a
directory, the easy part is to generate the graphs.

4. cd .. where the dna directory (folder) must reside.

5. At the command line, type python dna/dna -c -d -f matches mainPerson,
where mainPerson is your Ancestry username and matches points to
the directory where your match files reside that you copy/pased. For
me, ['d type python dna/dna -c -d -f ancestry mike markowski.

Finally, display the generated output dnaCirco.png and dnaDigraph.png
can be displayed with your favorite image viewing program. The -c argument
creates a fully interconnected, circular graph that can take many minutes
with a hundred or so copy/pasted files. The -d option creates a directed
graph, which is usually more helpful and is generated quickly.

An optional -t name argument will highlight a target person and all
matches in common.

Note: the software is preliminary and has shortcomings. Ancestry does
not require that displayed names are unique. I discovered I have DNA
matches with two men who chose the identical display name. At the mo-
ment, the only way around this is to manually rename one of them and use

9

that same new name when referenced by other matches. No doubt there are
other shortcomings yet to be discovered.

3.5 Results

The following graphs are purposely not legible, in case Ancestry customers
who match me don’t want their data published. That is ok, however, because
it is only the shapes of the graphs that matter for this discussion.

The program, dna, accepts command line arguments so that you can
specify low and high thresholds of shared ¢cM values. For example, suppose |
use a lower threshold of 40 ¢cM, meaning I only want to see extended family,
the command is

python dna -c -1 40 mike_markowski

which generates a large graph of my extended family out to 40 cM shared
DNA.

10

Suppose, however, that I filter out my sons and their many links similar
to mine. Children share about 3500 cM’s with parents, so I cap the cM’s to
3000. Similarly, instead of going out to 40 cM, I only go out to 100 cM for
this graph to keep it small:

python dna -c -1 100 -h 3000 mike_markowski

Now, my maternal and paternal trees are clearly delineated.

11

I can continue by narrowing the focus to my grandparents, filtering out first
cousins:

python dna -c -1 37 -h 200 mike_markowski

Notice that there are three groups rather than the four expected, one for
each grandparent.

12

My Irish grandparents are from a small Irish farming village that even today
has a population of only 700 people. Over centuries, people found spouses
within walking distance. You can see on the left that the tree is almost, but
not quite, split into two due to overlapping family trees.

Trying to split trees further to my great-grandparents becomes much more
uncertain due to the relatively small number of people who have taken DNA
tests.

python dna -c -1 37 -h 60 mike_markowski

There are eight subtrees as expected.

13

F

While we have eight subtrees, some have one member. Only research will
show if this is correct or, more likely, simply a side effect of not having enough
DNA data. When there is not enough data like in this example, it is time to
resort to documents.

4 Method 2: Directed Graph

This method tries to eliminate redundant paths, making it easier to study
interconnections. The graph produced is much smaller than those created
by the exhaustive Method 1. As before, an example is the easiest way to
describe it. Suppose we have the following graph of DNA matches:

14

Using Method 1, the graph generated is:

For such a small graph this is ok. But imagine on a graph with a 100 nodes
or more, links like the unnecessary A-D link significantly clutter the diagram.
Method 2’s directed graph is reduced to this:

There is still a path from A to D, but is not explicitly shown as a direct link.
In general, this is not a problem because we are looking for DNA paths. But

15

when the detail is required, Method 1 is the preferred approach. Method
2 is clearly the preferred method when trying to view how the extended
family is interconnected. It is most definitely not a family tree, but the DNA
connections can give some insight into the tree underlying this data. The
graphs are oriented from most shared DNA at top to least at bottom. For
this method, there is no collapsing of people with similar matches into one
node. This has to do with algorithm details of matrix simplification.

4.1 Algorithm

As before, an adjacency matrix is used to capture connections between com-
mon matches. The technique up to the point of creating the initial matrix in
Method 1 is identical. The difference is how the matrix is simplified. In this
case, paths are compared between every two nodes. In the illustration above
where a link is shown between nodes A and D, the algorithm notes that the
path A-B,C-D is length 2 and the path A-D is length 1. The longest path
is always used because this eliminates the long, sweeping links running from
top to bottom. Because this results in a sparse matrix, the method is very
fast compared to Method 1.

4.2 Results

The software is run identically to Method 1 and is selected with dna program’s
-d, for digraph, argument. Again, everything about the program initially is,
in fact, exactly what Method 1 does to create the adjacency matrix. It is
only the matrix simplification and the method that Graphviz plotting that
changes.

After running

python dna -d -1 40 mike_markowski

the output, again purposely blurred, shows my two sons at the very top
followed by a split with paternal to left, maternal to right. Because the
maternal grandparent lines represent two continents, the subtrees are neat
and orderly without crossover.

My paternal side, however, represents the small Irish farming village de-
scribed earlier. The farther out (less ¢M in common) that the graph goes,
the greater crossover and tangling is seen between my grandparents’ lines.

16

Just as the software for Method 1, the lower and higher thresholds for ¢cM
levels to consider can be adjusted. As before using thresholds of 100 ¢cM to
3000 cM yields a graph with maternal and paternal lines cleanly split.

17

—_
Wil B 1 Pk S 44 el
{ A

e e Lol e b

2%

Cr—n e

achells Maagariosd 10° | | Kafhioen Willamms 181

=

Threshold range of 80 cM—200 ¢cM once results in nearly, but not quite,
four graphs representing grandparent lines.

18

5 Utility

The goal is for the programs to useful tools, helpful in creating a more com-
plete family tree. They present the same information as Ancestry web pages
but in different ways. An advantage is that data from multiple web pages is
presented in one or two pictures, coalescing more information in one place.
A major use is to help locate a general area in the family where a new match
might exist. Often, a DNA match tells you that you are related to someone,
but the path is a mystery. While a graph can’t necessarily provide all the
answers, with any luck it will at least narrow down areas of search.

6 Summary

For business concerns and, to a lesser extent, privacy concerns, Ancestry
limits access to its data. The simple device of an adjacency matrix allows
customers to more efficiently visualize the partial DNA data provided by
Ancestry. This effort can be extended, providing better graphing and repre-
sentation of data. The work described here makes no effort to create a family
tree because having only DNA data results in a tree with uncertainty. The
uncertainty could be represented by “clouds” of unknown detail that connect
known segments of the tree. Ideally, the result would be a fully correct family
tree, with unknown areas represented by clouds similar to computer network
diagrams.

19

