Math 242 Lab 10 Taylor Polynomials and Series

Li-An Chen
Department of Mathematical Sciences, University of Delaware
November 19, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief response questions from page 3~4)
- Submit "lastnameLab10.nb" and "lastnameLab10.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_10_Taylor Polynomials and Series \rightarrow lab10_examples_hints

Series

- Syntax: Series[f[x], $\{x, a, N\}]$
- Gives expansion of $f[x]$ in terms of $(x-a)^{\wedge} k$ and output up to $(x-a)^{\wedge} N(N-$ th degree Taylor polynomial, around $\mathrm{x}=\mathrm{a}$)

$$
\begin{aligned}
T_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{\prime}(a)}{1!}(x-a)^{1}+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

- The full Taylor series is when n_{\rightarrow} Infinity.

This series equals to $\mathrm{f}[\mathrm{x}]$ itself when it converges. $\sum_{k=0} \frac{f(a)}{k!}(x-a)^{k}$

//Normal

- Add "// Normal" after Series[..] will give us an expression without the Big-O term
- Example: Suppose $f[x]=1 /\left(\operatorname{Sqrt}\left[x^{\wedge} 4+x^{\wedge} 3+\right.\right.$ 1]) was defined. Then
$\ln [30]:=T 3\left[x_{-}\right]=\operatorname{Series}[f[x],\{x, 0,3\}]$
$\operatorname{Out}[30]=1-\frac{x^{3}}{2}+O[x]^{4}$
This " $O[x]^{\wedge} 4$ " will cause error when plotting $\mathrm{T} 3[\mathrm{x}]$.

[^0]This T3[x] can be plot correctly.

SeriesCoefficient

- Syntax: SeriesCoefficient[f[x], \{x, a, N\}]
- Gives the coefficient of the $(x-a)^{\wedge} N$ term of the Taylor series of $\mathrm{f}[\mathrm{x}]$, centered at $\mathrm{x}=\mathrm{a}$
$\ln [61]=\operatorname{Series}[f[x],\{x, 0,10\}]$
Out[61] $=x-2 x^{2}+2 x^{3}-\frac{4 x^{4}}{3}+\frac{2 x^{5}}{3}-\frac{4 x^{6}}{15}+\frac{4 x^{7}}{45}-\frac{8 x^{8}}{315}+\frac{2 x^{9}}{315}-\frac{4 x^{10}}{2835}+\mathrm{O}[x]^{11}$
$\ln [63]:=$ SeriesCoefficient[f[x], $\{x, 0,5\}]$
Out $[63]=\frac{2}{3}$

SeriesCoefficient

- Syntax: SeriesCoefficient[f[x], \{x, a, N\}]
- Gives the coefficient of the $(x-a)^{\wedge} N$ term of the Taylor series of $\mathrm{f}[\mathrm{x}]$, centered at $\mathrm{x}=\mathrm{a}$

```
In[64]:= Series[f[x], {x, 1, 10}]
Out \([64]=\frac{1}{e^{2}}-\frac{x-1}{e^{2}}+\frac{2(x-1)^{3}}{3 e^{2}}-\frac{2(x-1)^{4}}{3 e^{2}}+\frac{2(x-1)^{5}}{5 e^{2}}-\frac{8(x-1)^{6}}{45 e^{2}}+\frac{4(x-1)^{7}}{63 e^{2}}-\frac{2(x-1)^{8}}{105 e^{2}}+\frac{2(x-1)^{9}}{405 e^{2}}-\frac{16(x-1)^{10}}{14175 e^{2}}+0[x-1] 11\)
```

$\ln [65]:=$ SeriesCoefficient[f[x], $\{x, 1,6\}]$
Out[65] $=-\frac{8}{45 e^{2}}$

FindSequenceFunction

- Syntax: FindSequenceFunction[(List) , n]
- FindSequenceFunction will try to find the general formula in terms of n, based on the input List (a list of some numbers).

```
In[69]:= FindSequenceFunction[{2, 4, 6, 8, 10}, n]
Out[[69]= 2 n
In[70]:= FindSequenceFunction[{1, 4, 9, 16, 25}, n]
Out[70]= n'
In[71]:= FindSequenceFunction[{2, 4, 6, 8, 10}, k]
Out[71]= 2 k
```


Having Mathematica Try and Determine the General Term Formula

```
In[1]:= Clear[f,x]
    f[x_] = x Exp[-2 x]
    TaylorList = Table[SeriesCoefficient[f[x],{x, 0, n}], {n, 0, 10}]
Out[2]= e}\mp@subsup{e}{}{-2x}
Out[3]={0, 1, -2, 2, - - , , - , - - 4 , , 4
ln[4]:= a[n_] = FindSequenceFunction [TaylorList, n]
Out[4]=}\frac{(-1\mp@subsup{)}{}{n}\mp@subsup{2}{}{-2+n}}{\mathrm{ Pochhammer [1, -2+n]}
ln[5]:= SumConvergence[a[n]* (*^n, n]
```

Recall from last week, this tells us for which x does the infinite sum of $a[n] x^{\wedge} n$ converges.

Out[5]= True

Having Mathematica Try and Determine the General Term Formula

```
In[1]:= Clear[f,x]
    f[x_] = x Exp[-2 x]
    TaylorList = Table[Seriecoefficient[f[x],{x, 0, n}], {n, 0, 10}]
Out[2]= e}\mp@subsup{e}{}{-2x}
Out[3]={0,1,-2,2,-\frac{4}{3},\frac{2}{3},-\frac{4}{15},\frac{4}{45},-\frac{8}{315},\frac{2}{315},
ln[4]:= a[n_] = FindSequenceFunction[TaylorList, n]
Out[4]=}\frac{(-1\mp@subsup{)}{}{n}\mp@subsup{2}{}{-2+n}}{\mathrm{ Pochhammer [1, -2+n]}
ln[5]:= SumConvergence[a[n] * ( ^^n, n]
```

Repeat the same steps for Q2-(d), but use $f[x]=(1-2 x)^{\wedge}(-5)$ and SeriesCoefficient $[f[x],\{x, 1 / 6, n\}]$ SumConvergence $\left[a[n](x-1 / 6)^{\wedge} n, n\right]$

[^1]
Wrong

Correct

- ClearAll
- $\cos \left(1-e^{\wedge} x\right)$
- Findsequencefunction[TaylorList, n]
- Seriescoefficient $[f[x],\{x, a, n\}]$
- Sumconvergence[x^n, n]
- SumConvergence[$\left.\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{k}\right]$
- SumConvergence[$\left.\mathrm{x}^{\wedge} \mathrm{k}, \mathrm{n}\right]$
- ClearAll[s]
- Clear[s]
- $\operatorname{Cos}[1-\operatorname{Exp}[x]]$
- $\operatorname{Cos}\left[1-E^{\wedge} x\right]$
- FindSequenceFunction[TaylorList, n]
- SeriesCoefficient[f[x], \{x, a, n\}]
- SumConvergence[$\left.\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{n}\right]$

[^0]: $\operatorname{In}[31]:=\mathbf{T 3}\left[x_{-}\right]=\operatorname{Series}[f[x],\{x, 0,3\}] / /$ Normal
 Out[31] $=1-\frac{x^{3}}{2}$

[^1]: Out[5]= True

