# Math 242 Lab 9 Power Series

Li-An Chen
Department of Mathematical Sciences, University of Delaware
November 10, 2020

# Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief response questions from page 3~4)
- Submit "lastnameLab09.nb"
   and "lastnameLab09.pdf" (File->Save As → pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas
  - $\rightarrow$  Files  $\rightarrow$  Lab  $\rightarrow$  Lab \_09\_Power Series  $\rightarrow$  lab09\_examples\_hints

## SumConvergence

- Syntax: SumConvergence[ (summand), (index)]
- Example:
- In: SumConvergence[x^n, n]
- Out: Abs[x] < 1
- This means that the series Sum[x^n,{n,0,Infinity}] converges if Abs[x] < 1</li>

#### NumberLinePlot

- Syntax: NumberLinePlot[ (an interval), (variable)]
- Recall that SumConvergence will give us some inequalities, which implicitly gives an interval of x that satisfies these inequalities.
- Example:
- NumberLinePlot[SumConvergence[x^n, n],x]

## Series

- Previous we've been thinking what a series converge to. Now work backward. Given a function f, we can express f as a series
- Syntax: Series[ f[x], {x, a, N}]
- Gives expansion of f[x] in terms of  $c_k(x-a)^k$  and output up to  $c_N(x-a)^N$

## Series

In[14]:= Series[Log[5 - x], {x, 0, 5}]

Out[14]= Log[5] - 
$$\frac{x}{5}$$
 -  $\frac{x^2}{50}$  -  $\frac{x^3}{375}$  -  $\frac{x^4}{2500}$  -  $\frac{x^5}{15625}$  +  $0[x]^6$ 

In[87]:= Series[Log[5 - x], {x, 1, 5}]

Out[87]=  $2 \text{ Log}[2]$  -  $\frac{x-1}{4}$  -  $\frac{1}{32}$  (x - 1)<sup>2</sup> -  $\frac{1}{192}$  (x - 1)<sup>3</sup> -  $\frac{(x-1)^4}{1024}$  -  $\frac{(x-1)^5}{5120}$  +  $0[x-1]^6$ 

#### **Plot**

- Syntax: Plot[f[x], {x, a, b}]
   Plot the function f[x] from a to b
- Syntax: Plot[ {f1[x],f2[x],f3[x]}, {x, a, b}]
- Plot multiple functions f1[x],f2[x],f3[x] from a to b, all on the same graph.
- Plot[ {f1[x],f2[x],f3[x]}, {x, a, b}, PlotLegends -> "Expressions"] Add PlotLegends -> "Expressions" so that we know which plot corresponds to which function.

## Plot the "Series" – Remove O[x]^k

- The output of the function "Series" will include an error term at the end. We should remove it (by only copy the other terms) when plotting.
- Wrong example 1:

"Series" will give an expression includes O[x]^6 which causes error (see previous pages for more about "Series")

```
ln[1]:= Plot[Series[Log[5-x], \{x, 0, 5\}], \{x, -2, 2\}]
      ... General: -1.99992 is not a valid variable.
      ... General: -1.99992 is not a valid variable.
      ... General: -1.99992 is not a valid variable.
      ... General: Further output of General::ivar will be suppressed during this calculation.
                                 1.0
                                0.5
                                -0.5
```

## Plot the "Series" – Remove O[x]^k

- The output of the function "Series" will include an error term at the end. We should remove it (by only copy the other terms) when plotting.
- Wrong example 2:
  - +O[x]^6 will cause error

```
In[2]:= Plot [Log[5] - \frac{x}{5} - \frac{x^2}{500} - \frac{x^3}{375} - \frac{x^4}{2500} - \frac{x^5}{15625} + O[x]<sup>6</sup>, {x, -2, 2}]

... SeriesData: Attempt to evaluate a series at the number -1.99992. Returning Indeterminate.

... SeriesData: Attempt to evaluate a series at the number -1.83665. Returning Indeterminate.

... SeriesData: Attempt to evaluate a series at the number -1.83665. Returning Indeterminate.
```

••• General: Further output of SeriesData::ssdn will be suppressed during this calculation.



# Plot the "Series" – Remove O[x]^k

- The output of the function "Series" will include an error term at the end. We should remove it (by only copy the other terms) when plotting.
- Correct example:

Remove the O[x]^6 term.

$$ln[3]:= Plot \left[ Log[5] - \frac{x}{5} - \frac{x^2}{50} - \frac{x^3}{375} - \frac{x^4}{2500} - \frac{x^5}{15625}, \{x, -2, 2\} \right]$$



## Wrong

- ClearAll
- In(k), log[k]
- Sumconvergence[x^n, n]
- Numberlineplot[...,x]
- SumConvergence[x^n, k]
- SumConvergence[x^k, n]

### Correct

- ClearAll[s], Clear[s]
- Log[k]
- SumConvergence[x^n, n]
- NumberLinePlot[...,x]