Math 242 Lab 8 Series

Li-An Chen
Department of Mathematical Sciences, University of Delaware October 29, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief essay questions from page 2~3)
- Submit "lastnameLab08.nb" and "lastnameLab08.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_08_Series \rightarrow lab08_examples_hints

Partial Sums

- s[n_]=Sum[1/k,\{k,1,n\}]
- This is the sum of the first n terms of the sequence $\{1,1 / 2,1 / 3,1 / 4, \ldots\}$
- $s[1]=1, s[2]=1+1 / 2, s[3]=1+1 / 2+1 / 3$, and $s o$ on.
- $\mathrm{s}[\mathrm{n}]$ only depends on n (the sum of the first n term), but not k .
- $s[n]$ itself is a sequence, called "the sequence of partial sums"

Partial Sums

- The "series" is s[Infinity], or Limit[s[n],n->Infinity]
- "Does the series converges?" is the same as asking "Does the sequence of partial sums converges?"
- So the series converges if and only if the sequence of partial sums converges, which means (recall last lab) if Limit $[\mathrm{s}[\mathrm{n}], \mathrm{n} \rightarrow$ Infinity] is a finite number, which means s[Infinity] is a finite number.

Q2

- Recall Lab2 Newton's Method when we learned List and Append
- t[n]= Sum[1/k!, $\{k, 0, n\}]$
- errors=\{\}

Define an empty list whose name is "errors"

- exact $=\mathrm{E} \quad$ Because in Q1 we found that s[lnfinity] $=\mathrm{E} e=\sum_{k=0}^{\infty} \frac{1}{k!}$
- For[m = 1, m<=10, m++, errors = Append[errors, Abs[t[m] exact]]] See next page
- errors//N - Print the result computed by For Loop
- ListLogLogPlot[errors]

Q2

- For[m = 1,
$\mathrm{m}<=10$,
m++,
errors $=$ Append[errors, $\operatorname{Abs}[t[m]$ exact]]]

Wrong

Correct

- $\ln (k)$
- e
- $\mathrm{pi}^{\wedge} 2 / 6$
- Log[k]
- E, or Exp[1]
- Pi^2/6

