Math 242 Lab 7 Sequences

Li-An Chen
Department of Mathematical Sciences, University of Delaware October 20, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief essay questions from page 2~3)
- Submit "lastnameLab07.nb" and "lastnameLab07.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_07_Sequences \rightarrow lab07_examples _hints

Table

- Table[Sqrt[i], \{i, 1, 10\}] creates the list $\sqrt{1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{10}}$
- Table[\{i, Sqrt[i]\}, \{i, 1, 10\}] creates the list
$\{1, \sqrt{1}\},\{2, \sqrt{2}\},\{3, \sqrt{3}\}, \ldots,\{10, \sqrt{10}\}$

Abridged table

- Suppose we already defined
$a[n]=\left(3 n^{\wedge} 2-(-1)^{\wedge} n^{\star} n\right) /\left(7 n^{\wedge} 2-6 n+4\right)$
seq $=$ Table[\{n, a[n]\}, $\{n, 1,101\}] / / \mathrm{N}$
- Then this code
seq[[;; ;; 10]] // TableForm // N prints every $10^{\text {th }}$ term: $1^{\text {st }}, 11^{\text {th }}, 21^{\text {st }}, \ldots, 101^{\text {st }}$

Abridged table

- Syntax: seq[[(starts) ;; (ends) ;; (increment)]]
- If we left (starts) or (ends) as a space, then it'll use default value (the first and the last term in seq).
- seq[[;; 50;; 10]] will print the $1^{\text {st }}, 11^{\text {th }}, \ldots, 41^{\text {st }}$ term.
- seq[[$2 ; ; ; ; 10]]$ will print the $2^{\text {nd }}, 22^{\text {nd }}, \ldots, 92^{\text {nd }}$ term.
- seq[[$2 ; ; 50 ; ; 10]]$ will print the $2^{\text {nd }}, 22^{\text {nd }}, 32^{\text {nd }}, 42^{\text {nd }}$ term.
- seq[[3 ;; 50;; 5]] will print the $3{ }^{\text {rd }}, 8^{\text {th }}, 13^{\text {th }}, \ldots, 43^{\text {rd }}, 48^{\text {th }}$ term.

ListPlot

- ListPlot[seq] Here seq is a two columns table that have been defined, such as seq=Table[\{n,a[n]\},\{n,1,101\}]
- Note: Do NOT add //TableForm to the definition of seq.

Limit

- Limit[a[n],a->Infinity]

Sum (Q4)

- Syntax: Sum[(expression in n), \{n, n min, n max\}]
- So $0+1+2+3+\ldots+10$ is $\operatorname{Sum}[n,\{n, 0,10\}]$
- $0+1+2+3+\ldots+n+\ldots$ (go on forever) is

Sum[n, \{n, 0, Infinity\}]

- $\sum_{n=0}^{\infty} f_{n}$ means $\mathrm{f}[0]+\mathrm{f}[1]+\mathrm{f}[2]+\ldots+\mathrm{f}[\mathrm{n}]+\ldots$ (go on forever) so it's Sum[f[n], \{n, 0, Infinity\}]

Wrong

Correct

- $a\left[n _\right]=3 n^{\wedge} 2-(-1)^{\wedge} n^{*} n / 7 n^{\wedge} 2-6 n+4$
- bn=...
- seq=Table[\{n,a[n]\},\{n,1,101\}]//TableForm ListPlot[seq]
- $\ln (n)$
- $\sin (\tan (\operatorname{sqrt}(. .))$.
$\cdot a[n]=\left(3 n^{\wedge} 2-(-1)^{\wedge} n^{*} n\right) /\left(7 n^{\wedge} 2-6 n+4\right)$
- b[n_]=...
- seq=Table[\{n,a[n]\},\{n,1,101\}] ListPlot[seq]
- Log[n]
- $\operatorname{Sin}[\operatorname{Tan}[S q r t[. .]]$.
- Remember to modify the names: b[n],c[n],d[n],f[n] accordingly everywhere in the codes; or just keep using the same name for every question.

