Math 242 Lab 7 Sequences

Li-An Chen Department of Mathematical Sciences, University of Delaware October 20, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief essay questions from page 2~3)
- Submit "lastnameLab07.nb"
 and "lastnameLab07.pdf" (File->Save As → pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas → Files → Lab → Lab_07_Sequences → lab07_examples _hints

Table

- Table[Sqrt[i], {i, 1, 10}]
 creates the list √1,√2,√3,...,√10
- Table[{i, Sqrt[i]}, {i, 1, 10}] creates the list [1,\sqrt[1],[2,\sqrt[1],[3,\sqrt[10],\sqrt[10]]]

Abridged table

Suppose we already defined
 a[n_] = (3 n^2 - (-1)^n*n)/(7 n^2 - 6 n + 4)
 seq = Table[{n, a[n]}, {n, 1, 101}] // N

Then this code
 seq[[;; ;; 10]] // TableForm // N
 prints every 10th term: 1st, 11th, 21st, ..., 101st

Abridged table

- Syntax: seq[[(starts) ;; (ends) ;; (increment)]]
- If we left (starts) or (ends) as a space, then it'll use default value (the first and the last term in seq).
- seq[[;; 50;; 10]] will print the 1st, 11th, ..., 41st term.
- seq[[2;; ;; 10]] will print the 2nd, 22nd, ..., 92nd term.
- seq[[2;; 50;; 10]] will print the 2nd, 22nd, 32nd, 42nd term.
- seq[[3;; 50;; 5]] will print the 3rd, 8th, 13th, ..., 43rd, 48th term.

ListPlot

- ListPlot[seq]
 Here seq is a two columns table that have been defined, such as seq=Table[{n,a[n]},{n,1,101}]
- Note: Do NOT add //TableForm to the definition of seq.

Limit

Limit[a[n],a->Infinity]

Sum (Q4)

- Syntax: Sum[(expression in n), {n, n min, n max}]
- So 0+1+2+3+...+10 is Sum[n, {n, 0, 10}]
- 0+1+2+3+...+n+...(go on forever) is
 Sum[n, {n, 0, Infinity}]
- $\sum_{n=0}^{\infty} f_n$ means f[0]+f[1]+f[2]+...+f[n]+...(go on forever) so it's Sum[<math>f[n], $\{n, 0, Infinity\}$]

Wrong

- $a[n] = 3 n^2 (-1)^n + n/7 n^2 6 n + 4$
- bn=...
- seq=Table[{n,a[n]},{n,1,101}]//TableForm ListPlot[seq]
- In(n)
- sin(tan(sqrt(...)))

Correct

- $a[n] = (3 n^2 (-1)^n * n)/(7 n^2 6 n + 4)$
- b[n_]=...
- seq=Table[{n,a[n]},{n,1,101}]
 ListPlot[seq]
- Log[n]
- Sin[Tan[Sqrt[...]]]
- Remember to modify the names:
 b[n],c[n],d[n],f[n] accordingly everywhere in the codes; or just keep using the same name for every question.