Math 242 Lab 6 Integration by Partial Fractions

Li-An Chen
Department of Mathematical Sciences, University of Delaware
October 15, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and essay questions in page 3~4)
- Submit "lastnameLab06.nb" and "lastnameLab06.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_06_Integration by Partial Fractions \rightarrow lab06_examples_hints

Apart

- Apart[rational function]

Express the given rational function as a sum of partial fractions.

- Example
$p[x]=\operatorname{Apart}\left[(x+5) /\left(x^{\wedge} 2+x-2\right)\right]$
output: $\frac{2}{-1+\mathrm{x}}-\frac{1}{2+\mathrm{x}}$

Solve

- Solve[equation , variable]
- Solve[\{equation1, equation2,...\} , \{variable1,variable2,...\}]
- Solve[\{
- $a+b==0$,
- $c-b=1$,
- $8 a+4 b-c+d==10$,
- $-4 b+4 c-d+e==3$,
- $16 \mathrm{a}-4 \mathrm{c}-\mathrm{e}==36\}$,
- ab, b, c, d, e] $]$
- Note: The concept "equal" in the equations must use double equal signs.

The single equal sign is for "assign".

- Note: This code is only for reference. We don't need this "Solve" for assignemnt questions.

Wrong

Correct

$$
q[x]=\operatorname{Apart}\left[x^{\wedge} 4+3 x^{\wedge} 2+1 / x^{\wedge} 5+5 x^{\wedge} 3+5 x\right]
$$

Integrate[q[x], x]
$\int \frac{x^{4}+3 x^{2}+1}{x^{5}+5 x^{3}+5 x} d x$
$q[x]=\operatorname{Apart}\left[\left(x^{\wedge} 4+3 x^{\wedge} 2+1\right) /\left(x^{\wedge} 5+5 x^{\wedge} 3+5 x\right)\right]$ Integrate[q[x], x]

This is

$$
\int x^{4}+3 x^{2}+\frac{1}{x^{5}}+5 x^{3}+5 x d x
$$

$$
\int \frac{1}{x^{3}-1} d x
$$

$$
q[x]=\operatorname{Apart}\left[1 / x^{\wedge} 3-1\right]
$$

$$
\text { Integrate }[q[x], x]
$$

This is

$$
\int \frac{1}{x^{3}}-1 d x
$$

$\mathrm{q}[\mathrm{x}]=\operatorname{Apart}\left[1 /\left(\mathrm{x}^{\wedge} 3-1\right)\right]$ Integrate[$\mathrm{q}[\mathrm{x}], \mathrm{x}]$

