Math 242 Lab 5
 More on Numerical Integration

Li-An Chen
Department of Mathematical Sciences, University of Delaware

October 6, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and essay questions in page 3~4)
- Submit "lastnameLab05.nb" and "lastnameLab05.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_05_More on Numerical Integration \rightarrow lab05_examples_hints

Recall: Four methods from Lab 4

- Left endpoint (rectangle)

$$
\begin{array}{r|l}
\begin{array}{r}
600 \\
{ }_{400}^{500} \\
400
\end{array} & \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \\
200 & x_{i}=a+i \Delta x \\
\hline
\end{array}
$$

width*Sum[f[a + i*width], $\{\mathrm{i}, \mathrm{O}, \mathrm{n}-1\}] / / \mathrm{N}$

- Midpoint (rectangle)

$$
\begin{array}{r|}
{ }^{500} \\
{ }_{400}^{600} \\
{ }^{500}
\end{array} \quad \begin{aligned}
& \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \\
& \\
& x_{i}=a+\left(i+\frac{1}{2}\right) \Delta x
\end{aligned}
$$

width*Sum[f[a + (i + 1/2)*width], $\{\mathrm{i}, \mathrm{O}, \mathrm{n}-1\}] / / \mathrm{N}$

- Right endpoint (rectangle)

$$
\begin{array}{r|l|}
\begin{array}{r}
400 \\
{ }^{400} \\
{ }^{500}
\end{array} & \sum_{i=0}^{n-1} f\left(x_{i+1}\right) \Delta x \\
{ }_{200} & x_{i+1}=a+(i+1) \Delta x
\end{array}
$$

width*Sum[f[a + (i + 1)*width], $\{i, 0, n-1\}] / / N$

- Trapezoid

Approximate the curve by straight line segments

- Left endpoint
- Right endpoint
- Midpoint

- Trapezoid

Approximate the curve by parabola segments

- Simpson's method (new introduced in Lab 5)

Red line: the curve $f(x)$
Blue line: parabolas segments

We need three points to determine a parabola, so each small approx. area uses two intervals.
---> n must be an even number!

Simpson's method

- Midpoint:

$$
\left.\left.\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \quad \text { width*Sum[f[a }+(\mathrm{i}+1 / 2)^{\star} \text { width }\right],\{\mathrm{i}, 0, \mathrm{n}-1\}\right] / / \mathrm{N}
$$

$$
x_{i}=a+\left(i+\frac{1}{2}\right) \Delta x
$$

- Trapezoid:

$$
\begin{aligned}
& \sum_{i=0}^{n-1} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} \Delta x \\
& x_{i}=a+i \Delta x \\
& x_{i+1}=a+(i+1) \Delta x
\end{aligned}
$$

width*Sum[(f[a + i*width] $+\mathrm{f}\left[\mathrm{a}+(\mathrm{i}+1)^{*}\right.$ width $\left.\left.]\right) / 2,\{\mathrm{i}, 0, \mathrm{n}-1\}\right] / / \mathrm{N}$

- Simpson's:

$$
\frac{\Delta x}{3} \sum_{i=0}^{n / 2-1} f(a+2 i \Delta x)+4 f(a+(2 i+1) \Delta x)+f(a+(2 i+2) \Delta x)
$$

n must be even!
(width/3)*Sum[f[a + 2i*width] $+4 f\left[a+(2 i+1)^{*}\right.$ width $]+f\left[a+(2 i+2)^{*}\right.$ width $\left.],\{i, 0, n / 2-1\}\right] / / N$

Question 1 compare Trapezoid \& Simpson's

-Trapezoid method:
Repeat Lab 04 Q3(a) and (b), but modify nList=\{...\} and the range of target approximation should be within exact*1.01 and exact*0.99

Question 1 compare Trapezoid \& Simpson's

- Simpson's method:

Remember that n must be even in Simpson's method. So....

- If you use While Loop:
-Replace " $\mathrm{n}=1$ " by " $\mathrm{n}=2$ " in the initialization.
-Replace " $\mathrm{n}++$ " by " $\mathrm{n}+=\mathbf{2}$ " or " $\mathrm{n}=\mathrm{n}+2$ " in the While Loop.
-Replace the code for trapezoid method for Simpson's method.
- If you change n manually:
-Start with $\mathrm{n}=2$, only use even number for your n .
-Replace the code for trapezoid method for Simpson's method.

Question 2 - Degree of exactness

- For each methods (midpoint, trapezoid, Simpson's), we want to find the largest value p such that the method can calculate the integral of $x^{\wedge} p$ exactly.
- Start with $\mathrm{p}=0$, compute $\int_{0}^{1} x^{p} d x$
with exact answer (Integrate[...]) and each approximation method. Stop when approx \neq exact

Question 2 - Degree of exactness

- For example, you should find midpoint method approximate $1, x$ perfectly, but sightly off for $x^{\wedge} 2$. That means the midpoint method is exact for degree 1 polynomial (straight line).
$\operatorname{deg} 1\left[\begin{array}{l}\operatorname{mid}-e^{\text {cact for }} \\ \text { Trap }-1\end{array}\right.$
$\operatorname{deg} 3 \cdot\left(\operatorname{simp}-1, x, x^{2}, x^{3}\right.$.

Wrong

Correct

- $\mathrm{e}^{\wedge} 2 \mathrm{x}$
- $\exp ^{\wedge} 2 x$
- $\operatorname{Exp}^{\wedge}[2 x]$
- e(2x)
- Cos[2Pix]
- $\operatorname{Cos[2pix]}$
- $\cos (2 \mathrm{pix})$
- $E^{\wedge}(2 x)$
- $\operatorname{Exp}[2 x]$
- Note: " E " is the number $e=2.71828 \ldots$, and "Exp[x]" is the function $\mathrm{e}^{\wedge} \mathrm{x}$.
- $\operatorname{Cos}[2 \mathrm{Pi} x]$
- $\operatorname{Cos}\left[2 \mathrm{Pi}^{*} \mathrm{x}\right]$

