Math 242 Lab 5 More on Numerical Integration

Li-An Chen
Department of Mathematical Sciences, University of Delaware
October 6, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and essay questions in page 3~4)
- Submit "lastnameLab05.nb"
 and "lastnameLab05.pdf" (File->Save As → pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas → Files → Lab → Lab_05_More on Numerical Integration → lab05_examples_hints

Recall: Four methods from Lab 4

Left endpoint (rectangle)

Midpoint (rectangle)

Right endpoint (rectangle)

Trapezoid

width*Sum[$(f[a + i*width] + f[a + (i + 1)*width])/2, {i, 0, n - 1}] // N$

Approximate the **curve** by **straight line** segments

- Left endpoint
- Right endpoint

Midpoint

Trapezoid

Approximate the **curve** by **parabola** segments

 Simpson's method (new introduced in Lab 5)

Red line: the curve f(x)
Blue line: parabolas segments

We need three points to determine a parabola, so each small approx. area uses two intervals.

---> n must be an even number!

Simpson's method

Midpoint:

$$\sum_{i=0}^{n-1} f(x_i) \Delta x$$
 width*Sum[f[a + (i + 1/2)*width], {i, 0, n - 1}] // N

$$x_i = a + (i + \frac{1}{2})\Delta x$$

Trapezoid:

$$\sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \Delta x$$
$$x_i = a + i\Delta x$$
$$x_{i+1} = a + (i+1)\Delta x$$

width*Sum[(f[a + i*width] + f[a + (i + 1)*width])/2, {i, 0, n - 1}] // N

Simpson's:

$$\frac{\Delta x}{3} \sum_{i=0}^{n/2-1} f(a+2i\Delta x) + 4f(a+(2i+1)\Delta x) + f(a+(2i+2)\Delta x)$$

n must be even!

(width/3)*Sum[f[a + 2i*width] + 4 f[a + (2i+1)*width] +f[a + (2i +2)*width], {i, 0, n/2 - 1}] // N

Question 1 – compare Trapezoid & Simpson's

Trapezoid method:

Repeat Lab 04 Q3(a) and (b), but modify nList={...} and the range of target approximation should be within exact*1.01 and exact*0.99

Question 1 – compare Trapezoid & Simpson's

Simpson's method:

Remember that **n must be even** in Simpson's method. So....

- If you use While Loop:
 - -Replace "n=1" by "n=2" in the initialization.
 - -Replace "n++" by "n+=2" or "n=n+2" in the While Loop.
 - -Replace the code for trapezoid method for Simpson's method.
- If you change n manually:
 - -Start with n=2, only use **even number** for your n.
 - -Replace the code for trapezoid method for Simpson's method.

Question 2 – Degree of exactness

- For each methods (midpoint, trapezoid, Simpson's), we want to find the largest value p such that the method can calculate the integral of x^p exactly.
- Start with p=0, compute $\int_0^1 x^p dx$ with exact answer (Integrate[....]) and each approximation method. Stop when approx \neq exact

$$\int_0^1 1 \, dx$$

$$\int_0^1 x \, dx$$

$$\int_0^1 x^2 \, dx$$
...

Question 2 – Degree of exactness

• For example, you should find midpoint method approximate 1, x perfectly, but sightly off for x^2. That means the midpoint method is exact for degree 1 polynomial (straight line).

Wrong

- e^2x
- exp^2x
- Exp^[2x]
- e(2x)
- Cos[2Pix]
- Cos[2pi x]
- cos(2pix)

Correct

- $E^{(2x)}$
- Exp[2x]
- Note: "E" is the number e=2.71828..., and "Exp[x]" is the function e^x.
- Cos[2Pi x]
- Cos[2Pi*x]