Math 242 Lab 3 Areas and Volumes of Revolution

Li-An Chen
Department of Mathematical Sciences, University of Delaware September 24, 2020

Lab Assignment

- Complete ALL Lab Assignment Questions (with codes, computation results, and brief answer question in page 6)
- Submit "lastnameLab03.nb" and "lastnameLab03.pdf" (File->Save As \rightarrow pdf) on Canvas
- Deadline: Tomorrow 11:59pm
- Correct computation results (without codes) are available on Canvas \rightarrow Files \rightarrow Lab \rightarrow Lab_03_Lab_03_Areas and Volumes of Revolution \rightarrow lab03_examples_hints

NSolve \& Solve

- NSolve[f[x]==g[x],x,Reals]
will solve x in $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$, and output the real number solutions in numerical values.
- Solve[f[x]==g[x],x,Reals]
also works, but it'll give exact formula.

Plot

- Only one curve: $\operatorname{Plot}[f[x],\{x, 0,1\}]$
- Multiple curves on the same plot: Plot[\{f[x],g[x],h[x],.....\}, \{x,0,1\}]
-PlotLegends:
Plot[\{f[x], g[x]\}, \{x, -5, 5\}, PlotLegends -> "Expressions"] or:
-Plot[[f[x], g[x]\}, \{x, -5, 5\}, PlotLegends -> \{"f[x]","g[x]"\}]

Plot : "Filling" option

- Filling->Axis

$\ln [8]:=P \operatorname{lot}[\{f[x], g[x]\},\{x, 0,1\}, F i l l i n g \rightarrow$ Axis, PlotLegends \rightarrow "Expressions"]

Plot : "Filling" option

- Filling->\{1->\{2\}\}

$\ln [9]=\operatorname{Plot}[\{f[x], g[x]\},\{x, 0,1\}, F i l l i n g \rightarrow\{1->\{2\}\}$, PlotLegends \rightarrow "Expressions"]

Washer method and Shell Method

- Here we only integrate with respect to dx . So washer=horizontal axis, shell=vertical axis
-Washer: when rotate about $y=h, g(x)$ is further than $f(x)$ to the axis
-Pi*Integrate[(h-g[x])^2-(h-f[x])^2, $\{x, a, b\}]$
- Shell: when rotate about $x=h, g(x)>=f(x)$ on interval $[a, b]$
-2*Pi*Integrate[Abs[h - x] (g[x] - f[x]), \{x, a, b\}]

Wrong

Correct

- $e^{\wedge}-x$
- $\exp ^{\wedge}-x$
- $\operatorname{Exp}^{\wedge}[-x]$
- e(-x)
- $E^{\wedge}(-x)$
- $\operatorname{Exp}[-x]$
- Note: "E" is the number e=2.71828..., and " $\operatorname{Exp}[x]$ " is the function $e^{\wedge} x$.

Wrong

Correct

- ClearAll
- Clear
- clear[f]
- Clear(f)
- Clear f,x
- Clear f[x]
- Clear $[f[x]]$
- Clear[f]
- Clear[f,g]
- Clear[f,g,x]
- ClearAll[f]
- ClearAll[f,g]

