MATH241-073D/101D Discussion Worksheet
 A Quick Review for 2.8, 3.1-3.6, 4.1-4.3

Sec 2.8

- Definition of the derivative of $f(x)$: (a picture might be helpful)

$$
f^{\prime}(x)=
$$

- A function f is differentiable at a if the limit $f^{\prime}(a)$ exists, i.e.,

$$
\lim _{h \rightarrow 0^{+}} \quad=\lim _{h \rightarrow 0^{-}} \quad=L<\infty
$$

or

$$
\lim _{x \rightarrow a^{+}}=\lim _{x \rightarrow a^{-}}=L<\infty,
$$

- f is differentiable at $a \Rightarrow f$ is continuous at a. (equivalently, not diff. \Leftarrow not cont.) But \Leftarrow is NOT necessarily true! Counterexample: $f(x)=|x|$ at $x=0$.
- How to determine if f is differentiable at a ?

1. First check if f is defined at a. If not, then f is not differentiable at a.
2. If f is defined at a, then check if f is continuous at a, i.e., is $f(a)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$? If not, then f is not differentiable at a.
3. If f is continuous at a, then we need to check the left and the right derivatives: $\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}=L<\infty$.

* Caution: Do not use $\lim _{x \rightarrow a^{+}} f^{\prime}(x)=\lim _{x \rightarrow a^{-}} f^{\prime}(x)$, i.e., do not take derivatives with rules and then plug in a.
* Caution: If it's a break point of a piecewise defined funtion, be careful about which branch to use for evaluating $f(a)$ (see DQ3).

Sec.3.1-Sec.3.6 Most of the contents are derivative tools that were in the previous review worksheet. Here I only put some miscellaneous facts. Also see LQ2.

- Differentiation Rules: Please see the worksheet given at 10/15,
or "F19_MATH241073D101D_1015T_DiffRules_ sec3-1to3-6.pdf" on Discussion Canvas.
- General equation for the tangent line at $(a, f(a))$:
- General equation for the normal line at $(a, f(a))$:
- Two limits from 3.3. Do examples (e.g., \#39-50 from the textbook).

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\quad \quad \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=
$$

\qquad
Examples:

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t+\tan t} \quad \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{2 \theta^{2}} \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}
$$

- e as a limit from 3.6

$$
e=\lim _{x \rightarrow 0}
$$

Sec 4.1

- Definition of a critical number c of f (there're two cases):
*Note that c must be in the domain of f. Otherwise, say $f=1 / x, f^{\prime}=-1 / x^{2}$, then $x=0$ is not a critical number.
- Fermat's Theorem: f has a local extremum at $c \Rightarrow c$ is a critical number of f.

But \Leftarrow is NOT necessarily true! Counterexample: $f(x)=x^{3}$ at $x=0$.

- The Closed Interval Method

Example: Given $f(x)$ and an interval $[a, b]$, say $f(x)=x^{3}-3 x^{2}+1,\left[-\frac{1}{2}, 4\right]$, find the absolute maximum and minimum values of f in the given interval. (f is continuous on $[a, b]$)
*The possible candidates are critical nubmers (when $f^{\prime}(x)=0$ or DNE), or the endpoints a, b.

1. Take derivatives of f :

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

2. Find critical numbers, i.e., solve for $f^{\prime}(x)=0$ or DNE:
$3 x^{2}-6 x=0 \Rightarrow 3 x(x-2)=0 \Rightarrow x=0,2$ *heck if they're in the given interval.
3. Plug in the critical numbers and the endpoints to the original function f :
$f(0)=0^{3}-3 \cdot 0^{2}+1=1, f(2)=2^{3}-3 \cdot 2^{2}+1=8-12+1=-3$, $f(-1 / 2)=-\frac{1}{8}-\frac{3}{4}+1=\frac{1}{8}, f(4)=64-48+1=17$.
4. The largest number in step 3 is the absolute maximum, while the smallest is the absolute minimum:
Ans: f has absolute maximum at 4 , abs. max. value $f(4)=17 ; f$ has abs. min. at 2 , abs. min. value $f(2)=-3$.

Sec.4.2

Four theorems: Here I give the theorems in short. Please try to rewrite/state in your own words. Also see the table in the worksheet given at 10/17. Pictures might be helpful. Those with names are the most important, i.e., Rolle's and MVT.

Symbols: $\forall=$ "For all", $\exists=$ "exists", $\Rightarrow=$ "then", $\in=$ "in", s.t. $=$ "such that".

- Rolle's Theorem:
f is continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b) \Rightarrow \exists c \in(a, b)$ s.t. $f^{\prime}(c)=0$.

- The Mean Value Theorem:

f is continuous on $[a, b]$, differentiable on $(a, b) \Rightarrow \exists c \in(a, b)$ s.t.

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \text { or }(b-a) f^{\prime}(c)=f(b)-f(a) .
$$

- Theorem 5: $\forall x \in(a, b), \quad f^{\prime}(x)=0 \Rightarrow f$ is constant on (a, b).
- Corollary 7: $\forall x \in(a, b), \quad f^{\prime}(x)=g^{\prime}(x) \Rightarrow f-g$ is constant on (a, b), i.e., $f(x)=g(x)+c$.

Sec 4.3
Relationships between f and f^{\prime} :

- $f^{\prime}>0$:
- $f^{\prime}<0$:
- $f^{\prime}=0$:

Relationships between f and $f^{\prime \prime}$:

- $f^{\prime \prime}>0$:
- $f^{\prime \prime}<0$:
- $f^{\prime \prime}=0$:

Two tests for local maximum/minimum:

- The First Derivative Test:

Suppose c is a critical number, and f is continuous

1. If \qquad , then f has a local maximum at c.
2. If \qquad , then f has a local minimum at c.
3. If there's no sign changes of f^{\prime} at c, then f has no local extremum at c.

- The Second Derivative Test:

Suppose $f^{\prime \prime}$ is continuous near c.

1. If \qquad , and \qquad , then f has a local maximum at c.
2. If \qquad , and \qquad , then f has a local minimum at c.

Remarks: Here are a few general questions you can ask yourself. Even better to explain to your classmate(s). "If you can't explain clearly, then you don't really understand. "-my Fluid Dynamics professor.

- About definitions:
- Can you state the definition clearly in math symbols and terminologies?
- Can you explain to anyone what is \qquad in simple words or graphs?
- About theorems/"tests":
- Can you state the theorem clearly? What are the hypotheses? What's the conclusion(s)?
- Can you come up with a counterexample that the theorem fails, when any of the hypotheses is not satisfied?
- Is the converse of the theorem true? If not, can you come up with a counterexample?

