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Inclass 1

Use the method of Lagrange multipliers to find the minimum value of

f(x, y) = x2 + (y − 2)2 on the hyperbola x2 − y2 = 1.

sol.

First, we need to solve the system of ∇f = λ∇g and g(x, y):
fx = λgx : 2x = 2xλ⇒ 2x(λ− 1) = 0 . . . . . . (1)

fy = λgy : 2(y − 2) = −2yλ⇒ 2y(1 + λ) = 4 . . . . . . (2)

x2 − y2 = 1 . . . . . . (3)

(1) gives two cases, x = 0 or λ = 1:

• If x = 0, then (3) gives
y2 = −1,

which has no real solution for y. Thus, x 6= 0.

• If λ = 1, then (2) gives
4y = 4⇒ y = 1,

and therefore (3) gives
x2 = 2⇒ x = ±

√
2.

Therefore, we have two solutions for the system:

(x, y, λ) = (
√

2, 1, 1) and (x, y, λ) = (−
√

2, 1, 1).

Substituting two points (x, y) = (
√

2, 1) and (x, y) = (−
√

2, 1) into f yields

f(
√

2, 1) = (
√

2)2 + (1− 2)2 = 3 and f(−
√

2, 1) = (−
√

2)2 + (1− 2)2 = 3.

Hence, the minimum value of f on g is f(±
√

2, 1) = 3.

Note:

• We need to find ALL solutions of the system of ∇f = λ∇g and g(x, y) to make sure
that we really get the minimum value.

• Some students might get confuse when solving the system of ∇f = λ∇g and g(x, y).
You can just view λ as another variable that you find comfortable with, say z. Then
it is actually a high school problem.

• Some students have shown that another point on g gives greater value then (±
√

2, 1)
and concluded by this that f(±

√
2, 1) = 3 is really the minimum value. This

is WRONG since we need to check the whole neighbourhood rather than just an
arbitrary point.
In fact, given the existence of the extreme values, the method of Lagrange multipliers
already guarantees that the values of f on the solutions of the system must contain
the extreme values. So here, it is okay not to prove the minimality if you already
check all solutions of the system.
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Inclass 2

Consider the function
f(x, y) = 2x2 + y2 − xy − 7y.

Show that (1, 4) is a critical point and compute f(1 + h, 4 + k).

Use this result and the definition of a local minimum to show that (1, 4) is a local
minimum.

sol.

(i) According to the definition of critical point on p. 946, we need to check whether
fx(1, 4) = 0 and fy(1, 4) = 0. Substituting (x, y) = (1, 4) into

fx(x, y) = 4x− y and fy(x, y) = 2y − x− 7

yields
fx(1, 4) = 4− 4 = 0 and fy(1, 4) = 8− 1− 7 = 0.

Therefore, (1, 4) is a critical point.

(ii)

f(1 + h, 4 + k) = 2(1 + 2h+ h2) + 16 + 8k + k2 − 4− 4h− k − kh− 28− 7k

= 2h2 − kh+ k2 − 14.

The definition of local minimum is on p. 946:

If f(x,y) ≥ f(a,b) when (x, y) is near (a, b), then f has a local minimum at (a, b)
and f(a, b) is a local minimum value.

So, we need to show that

f(1 + h, 4 + k)− f(1, 4) ≥ 0.

Note that
f(1, 4) = 2 + 16− 4− 28 = −14.

Hence,
f(1 + h, 4 + k)− f(1, 4) = 2h2 − kh+ k2

= 2

(
h2 − 1

2
kh+

k2

16

)
+ k2 − 2 · k

2

16

= 2

(
h− k

4

)2

+
7

8
k2 ≥ 0

for any h, k ∈ R. Therefore, (1, 4) is a local minimum.

Note:

• Don’t confuse ”f(x, y) ≥ f(a, b) when (x, y) is near (a, b)” with ”lim(x,y)→(a,b) f(x, y) ≥
f(a, b)”. Even if lim(x,y)→(a,b) f(x, y) ≥ f(a, b), the values near (a, b) can be anything,
not necessarily ≥ f(a, b).
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