Calculus(II) 0412 Homework 8 Part II

Online 3

Let $x=s+t$ and $y=s-t$. Show that for any differentiable function $f(x, y)$, we have

$$
\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}=\frac{\partial f}{\partial s} \frac{\partial f}{\partial t}
$$

sol.
Applying the chain rule of case 2 in p. 926, we have

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& =\frac{\partial f}{\partial x} \frac{\partial}{\partial s}(s+t)+\frac{\partial f}{\partial y} \frac{\partial}{\partial s}(s-t) \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\
& =\frac{\partial f}{\partial x} \frac{\partial}{\partial t}(s+t)+\frac{\partial f}{\partial y} \frac{\partial}{\partial t}(s-t) \\
& =\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}
\end{aligned}
$$

Therefore,

$$
\frac{\partial f}{\partial s} \frac{\partial f}{\partial t}=\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right)\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}
$$

as claimed.

Online 4

Let $f(x, y, z)=F(r)$ with $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Then,

$$
\nabla f=F^{\prime}(r) \frac{\mathbf{r}}{|\mathbf{r}|}
$$

where $\mathbf{r}=\langle x, y, z\rangle$.
sol.

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

Clearly, $\frac{\partial f}{\partial x}=\frac{\partial F}{\partial x}, \frac{\partial f}{\partial y}=\frac{\partial F}{\partial y}$ and $\frac{\partial f}{\partial y}=\frac{\partial F}{\partial y}$.
$\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ and $\frac{\partial F}{\partial z}$ can derive from the chain rule of general version (p. 927) that
F is a differentiable function of 1 variable r, and r is a differentiable function of 3 variables x, y, z
Hence, we have

$$
\frac{\partial F}{\partial x}=\frac{d F}{d r} \frac{\partial r}{\partial x}, \quad \frac{\partial F}{\partial y}=\frac{d F}{d r} \frac{\partial r}{\partial y} \quad \text { and } \quad \frac{\partial F}{\partial z}=\frac{d F}{d r} \frac{\partial r}{\partial z} .
$$

Thus,

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\frac{d F}{d r}\left\langle\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial r}{\partial z}\right\rangle \\
& =\frac{d F}{d r}\left\langle\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\rangle \\
& =\frac{F^{\prime}(r)}{r}\langle x, y, z\rangle=F^{\prime}(r) \frac{\mathbf{r}}{|\mathbf{r}|} .
\end{aligned}
$$

Note:

- Only when the function f is of single variable can we use the notation $\frac{d f}{d x}$ or f^{\prime}. Otherwise we should use the partial derivative $\frac{\partial f}{\partial x}$ or f_{x}.
- If you work from the right-hand-side, note that

$$
F^{\prime}(r) \neq \frac{\partial F}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial r}
$$

because all of x, y and z are NOT a function of the single variable r.

Online 5

Suppose $f(x, y)$ is differentiable at (a, b) with $\nabla f(a, b) \neq \mathbf{0}$. Find the directional derivative of $f(x, y)$ in the direction of

$$
\frac{\partial f}{\partial y}(a, b) \mathbf{i}-\frac{\partial f}{\partial x}(a, b) \mathbf{j}
$$

Also, give a geometric interpretation of your result.
sol.
Let $\mathbf{v}=\frac{\partial f}{\partial y}(a, b) \mathbf{i}-\frac{\partial f}{\partial x}(a, b) \mathbf{j}$ and $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ be the unit vector.
Then, by equation 9 of p. 936, we have

$$
\begin{aligned}
D_{\mathbf{u}} f(x, y) & =\nabla f(x, y) \cdot \mathbf{u} \\
& =\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle \cdot \frac{\left\langle\frac{\partial f}{\partial y}(a, b),-\frac{\partial f}{\partial x}(a, b)\right\rangle}{\sqrt{f_{y}^{2}(a, b)+f_{x}^{2}(a, b)}} \\
& =\frac{1}{\sqrt{f_{y}^{2}(a, b)+f_{x}^{2}(a, b)}}\left(\frac{\partial f}{\partial x}(x, y) \frac{\partial f}{\partial y}(a, b)-\frac{\partial f}{\partial y}(x, y) \frac{\partial f}{\partial x}(a, b)\right)
\end{aligned}
$$

At the point (a, b),

$$
\begin{aligned}
D_{\mathbf{u}} f(a, b) & =\frac{1}{\sqrt{f_{y}^{2}(a, b)+f_{x}^{2}(a, b)}}\left(\frac{\partial f}{\partial x}(a, b) \frac{\partial f}{\partial y}(a, b)-\frac{\partial f}{\partial y}(a, b) \frac{\partial f}{\partial x}(a, b)\right) \\
& =0
\end{aligned}
$$

Clearly, \mathbf{u} is perpendicular to $\nabla f(a, b)$. As shown in Figure 11 in p. 942, the gradient vector at $(a, b), \nabla f(a, b)$, must be perpendicular to the level curve that passes through (a, b). This implies that \mathbf{u} is the direction of the level curve. Since the function is constant on level curves, the directional derivative, which means the rate of change, must be 0 in the direction of \mathbf{u}.

Note:

- Many students only use the concept given in Section 12.3 that "Two vectors are orthogonal if and only if their dot product is 0 ." Here in Section 14.6, we need to consider that $D_{\mathbf{u}} f(x, y)$ is the directional derivative rather than just a dot product.

