Calculus(II) 0412 Homework 7 Part I

Textbook 14.2.25

Find h(x,y) = g(f(x,y)) and the set on which h is continuous.

$$g(t) = t^2 + \sqrt{t}, \quad f(x,y) = 2x + 3y - 6$$

sol.

$$h(x,y) = g(2x+3y-6) = (2x+3y-6)^2 + \sqrt{2x+3y-6}.$$

Since f(x) is a polynomial, it is continuous everywhere on \mathbb{R}^2 . And g(t) is continuous on $\{t:t\geq 0\}$ because of the square root. Hence, h(x,y) is continuous on

$$\{(x,y) \in \mathbb{R}^2 : 2x + 2y - 6 \ge 0\} = \left\{ (x,y) \in \mathbb{R}^2 : y \ge -\frac{2}{3}x + 2 \right\}.$$

Note:

• g(t) and h(x,y) are NOT polynomial.

Textbook 14.2.37

Determine the set of points at which the function is continuous.

$$f(x,y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{if } (x,y) \neq (0,0); \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

 $\underline{sol.}$

When $(x,y) \neq (0,0)$, f(x) is a rational function which is continuous on its domain $\mathbb{R}^2 \setminus (0,0)$. We need to check whether it is continuous on the origin (0,0),

i. e. $\lim_{(x,y)\to(0,0)} f(x,y) \stackrel{?}{=} f(0,0) = 1$. When approaching (0,0) along the x-axis, we have

$$f(x,0) = \frac{x^2 \cdot 0}{2x^2 + 0} = 0$$
 for all $x \neq 0$.

This implies that the limit $\lim_{(x,y)\to(0,0)} f(x,y)$, if exists, is impossible to equal to 1. Therefore f(x,y) is discontinuous on (0,0) and the set of points at which f(x,y) continuous is $\mathbb{R}^2 \setminus (0,0)$.

Textbook 14.3.61

$$u = \cos(x^2 y)$$

$$u_x = -\sin(x^2 y) \cdot 2xy; \qquad u_y = -\sin(x^2 y) \cdot x^2$$

$$u_{xy} = -\cos(x^2 y) 2xy \cdot x^2 - \sin(x^2 y) \cdot 2x$$

$$u_{yx} = -\cos(x^2 y) x^2 \cdot 2xy - \sin(x^2 y) \cdot 2x$$

$$\Rightarrow u_{xy} = u_{yx}.$$

Online 1

Make a sketch of the level curves of the following function

$$f(x,y) = \frac{x}{x^2 + u^2}.$$

<u>sol.</u>

$$f(x,y) = \frac{x}{x^2 + y^2} = k$$

$$\Rightarrow kx^2 - x + ky^2 = 0$$

$$\Rightarrow k\left(x^2 - \frac{x}{k} + \left(\frac{1}{2k}\right)^2 - \left(\frac{1}{2k}\right)^2\right) + ky = 0$$

$$\Rightarrow \left(x - \frac{1}{2k}\right) + y = \left(\frac{1}{2k}\right)^2$$

The level curves are the circles with the center at $(\frac{1}{2k}, 0)$ and the radius $\left|\frac{1}{2k}\right|$.

Online 2

$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$

(a) Show that for all $(x, y) \neq (0, 0), |f(x, y)| \leq |x| + |y|$:

$$\left| \frac{x^3 + y^3}{x^2 + y^2} \right| \le \left| \frac{x^3 + x^2y + xy^2 + y^3}{x^2 + y^2} \right| = \left| \frac{(x+y)(x^2 + y^2)}{x^2 + y^2} \right| = |x+y| \le |x| + |y|.$$

The last equality holds when x and y are of the same sign.

(b) Use part (a) and the precise definition of the limit to show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$:

As shown in Definition 1 of Section 14.2, we need to show that

$$\forall \epsilon>0 \exists \delta>0 \text{ such that}$$

$$(x,y)\in D \text{ and } 0<\sqrt{x^2+y^2}<\delta \Rightarrow |f(x,y)-0|<\epsilon,$$

where $D = \mathbb{R}^2 \setminus (0,0)$ is the domain of f. By (a) and the triangle inequality, we know that

$$|f(x,y)| \le |x| + |y| \le 2\sqrt{|x|^2 + |y|^2} = 2\sqrt{x^2 + y^2} < 2\delta.$$

Thus, for a given ϵ , we can choose $\delta = \frac{\epsilon}{2}$ such that

$$|f(x,y)| \le 2\delta = \epsilon.$$

By definition, this implies that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Note:

• δ cannot be a function of x or y.