Calculus(II) 0412 Homework 7 Part I

Textbook 14.2.25

Find $h(x, y)=g(f(x, y))$ and the set on which h is continuous.

$$
g(t)=t^{2}+\sqrt{t}, \quad f(x, y)=2 x+3 y-6
$$

sol.

$$
h(x, y)=g(2 x+3 y-6)=(2 x+3 y-6)^{2}+\sqrt{2 x+3 y-6} .
$$

Since $f(x)$ is a polynomial, it is continuous everywhere on \mathbb{R}^{2}. And $g(t)$ is continuous on $\{t: t \geq 0\}$ because of the square root. Hence, $h(x, y)$ is continuous on

$$
\left\{(x, y) \in \mathbb{R}^{2}: 2 x+2 y-6 \geq 0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq-\frac{2}{3} x+2\right\}
$$

Note:

- $g(t)$ and $h(x, y)$ are NOT polynomial.

Textbook 14.2.37

Determine the set of points at which the function is continuous.

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}
$$

sol.
When $(x, y) \neq(0,0), f(x)$ is a rational function which is continuous on its domain $\mathbb{R}^{2} \backslash(0,0)$. We need to check whether it is continuous on the origin $(0,0)$,
i. e. $\lim _{(x, y) \rightarrow(0,0)} f(x, y) \stackrel{?}{=} f(0,0)=1$. When approaching $(0,0)$ along the x-axis, we have

$$
f(x, 0)=\frac{x^{2} \cdot 0}{2 x^{2}+0}=0 \quad \text { for all } x \neq 0
$$

This implies that the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, if exists, is impossible to equal to 1 . Therefore $f(x, y)$ is discontinuous on $(0,0)$ and the set of points at which $f(x, y)$ continuous is $\mathbb{R}^{2} \backslash(0,0)$.

Textbook 14.3.61

$$
\begin{aligned}
u & =\cos \left(x^{2} y\right) \\
u_{x} & =-\sin \left(x^{2} y\right) \cdot 2 x y ; \quad u_{y}=-\sin \left(x^{2} y\right) \cdot x^{2} \\
u_{x y} & =-\cos \left(x^{2} y\right) 2 x y \cdot x^{2}-\sin \left(x^{2} y\right) \cdot 2 x \\
u_{y x} & =-\cos \left(x^{2} y\right) x^{2} \cdot 2 x y-\sin \left(x^{2} y\right) \cdot 2 x \\
& \Rightarrow u_{x y}=u_{y x} .
\end{aligned}
$$

Online 1

Make a sketch of the level curves of the following function

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}
$$

sol.

$$
\begin{aligned}
f(x, y) & =\frac{x}{x^{2}+y^{2}}=k \\
& \Rightarrow k x^{2}-x+k y^{2}=0 \\
& \Rightarrow k\left(x^{2}-\frac{x}{k}+\left(\frac{1}{2 k}\right)^{2}-\left(\frac{1}{2 k}\right)^{2}\right)+k y=0 \\
& \Rightarrow\left(x-\frac{1}{2 k}\right)+y=\left(\frac{1}{2 k}\right)^{2}
\end{aligned}
$$

The level curves are the circles with the center at $\left(\frac{1}{2 k}, 0\right)$ and the radius $\left|\frac{1}{2 k}\right|$.

Online 2

$$
f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}
$$

(a) Show that for all $(x, y) \neq(0,0),|f(x, y)| \leq|x|+|y|$:

$$
\left|\frac{x^{3}+y^{3}}{x^{2}+y^{2}}\right| \leq\left|\frac{x^{3}+x^{2} y+x y^{2}+y^{3}}{x^{2}+y^{2}}\right|=\left|\frac{(x+y)\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}\right|=|x+y| \leq|x|+|y| .
$$

The last equality holds when x and y are of the same sign.
(b) Use part (a) and the precise definition of the limit to show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$:

As shown in Definition 1 of Section 14.2, we need to show that

$$
\begin{aligned}
& \forall \epsilon>0 \exists \delta>0 \text { such that } \\
& (x, y) \in D \text { and } 0<\sqrt{x^{2}+y^{2}}<\delta \Rightarrow|f(x, y)-0|<\epsilon,
\end{aligned}
$$

where $D=\mathbb{R}^{2} \backslash(0,0)$ is the domain of f. By (a) and the triangle inequality, we know that

$$
|f(x, y)| \leq|x|+|y| \leq 2 \sqrt{|x|^{2}+|y|^{2}}=2 \sqrt{x^{2}+y^{2}}<2 \delta .
$$

Thus, for a given ϵ, we can choose $\delta=\frac{\epsilon}{2}$ such that

$$
|f(x, y)| \leq 2 \delta=\epsilon
$$

By definition, this implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

Note:

- δ cannot be a function of x or y.

