Calculus(II) 0412 Homework 5 Part II

Online 3

Let $\mathbf{a} \neq \mathbf{0}$. Show that $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$ and $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$ implies that $\mathbf{b}=\mathbf{c}$.
sol.
(i) From No. 4 of Theorem 11 of Section 12.4 (p. 812), we know that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c} \Longrightarrow \mathbf{a} \times(\mathbf{b}-\mathbf{c})=\mathbf{0}
$$

Let θ be the angle between \mathbf{a} and $\mathbf{b}-\mathbf{c}$ such that $0 \leq \theta \leq \pi$.
Then Theorem 9 (p. 810) gives

$$
|\mathbf{a}||\mathbf{b}-\mathbf{c}| \sin \theta=0 .
$$

If $\mathbf{b}-\mathbf{c} \neq 0$ (i.e. $\mathbf{b} \neq \mathbf{c}$), then the above equation implies that \mathbf{a} and $\mathbf{b}-\mathbf{c}$ are parallel by Corollary 10 (p. 811).
(ii) From No. 3 of Theorem 2 of Section 12.3 (p. 801), we know that

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c} \Longrightarrow \mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=0
$$

Then Theorem 3 (p. 801) gives

$$
|\mathbf{a}||\mathbf{b}-\mathbf{c}| \cos \theta=0 .
$$

This implies that \mathbf{a} and $\mathbf{b}-\mathbf{c}$ are orthogonal by Corollary 7 (p. 803).
Clearly, it is impossible that two nonzero vectors are both parallel and orthogonal. Since $\mathbf{a} \neq \mathbf{0}, \mathbf{b}-\mathbf{c}$ must be $\mathbf{0}$. Thus, $\mathbf{b}=\mathbf{c}$.

Note:

- Some students apply Theorem 9 (p. 810) and Theorem 3 (p. 801) directly:

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c} \Longrightarrow|\mathbf{a}||\mathbf{b}| \sin \theta_{1}=|\mathbf{a}||\mathbf{c}| \sin \theta_{2}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c} \Longrightarrow|\mathbf{a}||\mathbf{b}| \cos \theta_{1}=|\mathbf{a} \| \mathbf{c}| \cos \theta_{2} \tag{2}
\end{equation*}
$$

where θ_{1} (resp. θ_{2}) is the angle between \mathbf{a} and \mathbf{b} (resp. \mathbf{c}). $0 \leq \theta_{1} \leq \pi$ and $0 \leq \theta_{2} \leq \pi$. Then argue that $(1) \div(2): \tan \theta_{1}=\tan \theta_{2} \Longrightarrow \theta_{1}=\theta_{2}$. Be careful that you should first assume that $|\mathbf{b}|,|\mathbf{c}|, \cos \theta_{1}$ and $\cos \theta_{2}$ are nonzero before you divide (1) by (2). After that, you should discuss the case when those are zero since we are asking for a general case.

Online 4

Show that

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}
$$

for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w}.
sol.
Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$.
Then,

$$
\begin{aligned}
\mathbf{u} \times & (\mathbf{v} \times \mathbf{w})= \\
\mathbf{u} \times & \left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right) \\
= & \left(u_{2}\left(v_{1} w_{2}-v_{2} w_{1}\right)-u_{3}\left(v_{3} w_{1}-v_{1} w_{3}\right),\right. \\
& u_{3}\left(v_{2} w_{3}-v_{3} w_{2}\right)-u_{1}\left(v_{1} w_{2}-v_{2} w_{1}\right), \\
& \left.\quad u_{1}\left(v_{3} w_{1}-v_{1} w_{3}\right)-u_{2}\left(v_{2} w_{3}-v_{3} w_{2}\right)\right) \\
= & \left(\left(u_{2} w_{2}+u_{3} w_{3}\right) v_{1}-\left(u_{2} v_{2}+u_{3} v_{3}\right) w_{1}-u_{1} v_{1} w_{1}+u_{1} v_{1} w_{1},\right. \\
& \left(u_{1} w_{1}+u_{3} w_{3}\right) v_{2}-\left(u_{1} v_{1}+u_{3} v_{3}\right) w_{2}-u_{2} v_{2} w_{2}+u_{2} v_{2} w_{2}, \\
& \left.\left(u_{1} w_{1}+u_{2} w_{2}\right) v_{3}-\left(u_{1} v_{1}+u_{2} v_{2}\right) w_{3}-u_{3} v_{3} w_{3}+u_{3} v_{3} w_{3}\right) \\
= & \left(\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right) v_{1}-\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) w_{1},\right. \\
& \left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right) v_{2}-\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) w_{2}, \\
& \left.\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right) v_{3}-\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) w_{3}\right) \\
= & \mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} .
\end{aligned}
$$

Online 5

The hyperbola $c^{2} y^{2}-b^{2} z^{2}-b^{2} c^{2}=0$ is revolved about the z-axis. Find an equation for the resulting surface. Is it a quadratic surface? If yes, which one; if no, why not?
sol.
Divide $c^{2} y^{2}-b^{2} z^{2}-b^{2} c^{2}=0$ by $b^{2} c^{2}$:

$$
\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

This is a hyperbola according to p. 674 .

When we revolve the hyperbola about the z-axis, the horizontal traces (parallel to the $x y$-plane) are circles:

$$
x^{2}+y^{2}=r^{2} .
$$

Moreover, the radius r is determine by the y component on the hyperbola:

$$
\begin{array}{r}
\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \\
\Longrightarrow y^{2}=b^{2}+\frac{b^{2} z^{2}}{c^{2}} .
\end{array}
$$

Therefore, the equation of the resulting surface is

$$
\begin{equation*}
x^{2}+y^{2}=r^{2}=b^{2}+\frac{b^{2} z^{2}}{c^{2}} \Longrightarrow \frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \tag{3}
\end{equation*}
$$

By comparing (3) with the equations on Table 1 of Section 12.6 (p. 830), we conclude that this is a hyperboloid of one sheet.

