Calculus(II) 0412 Inclass Homework 3

Inclass 1

Find radius and interval of convergence of the two power series
(1)

$$
\sum_{n \geq 1} \frac{(-1)^{n}}{n^{2}}(x+2)^{n}
$$

We use the ratio test with $a_{n}=\frac{(-1)^{n}}{n^{2}}(x+2)^{n}$:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(n+1)^{2}}(x+2)^{n+1}}{\frac{(-1)^{n}}{n^{2}}(x+2)^{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}|x+2|=|x+2|
$$

The series converges if $|x+2|<1$. The endpoints:

- When $x=-3$

$$
\sum_{n \geq 1} \frac{(-1)^{2 n}}{n^{2}}=\sum_{n \geq 1} \frac{1}{n^{2}}
$$

is a convergent p-series.

- When $x=-1$

$$
\sum_{n \geq 1} \frac{(-1)^{n}}{n^{2}}
$$

converges since $\sum_{n \geq 1}\left|\frac{(-1)^{n}}{n^{2}}\right|=\sum_{n \geq 1} \frac{1}{n^{2}}$ is a convergent p-series.
Therefore the radius of convergence is $R=1$ and the interval of convergence is $[-3,-1]$.
(2)

$$
\sum_{n \geq 1} \frac{(-1)^{n}}{n^{n}}(x+2)^{n}
$$

We use the root test with $a_{n}=\frac{(-1)^{n}}{n^{n}}(x+2)^{n}$:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(-1)^{n}}{n^{n}}(x+2)^{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x+2|}{n}=0<1
$$

Therefore the series always converges and the radius of convergence is $R=\infty$ and the interval of convergence is $\mathbb{R}=(-\infty, \infty)$.

Note:

- See p.734-736.

Inclass 2

(a) Given:

- a_{n} converges to 0
$-\sum_{n \geq 1} b_{n}$ is absolute convergent.
a_{n} converges to 0 implies that $\forall \epsilon>0 \quad \exists N$ such that

$$
\left|a_{n}-0\right|<\epsilon \quad \text { whenever } n>N .
$$

We can choose $\epsilon=1$ then $\exists N$ such that if $n>N$

$$
\begin{gathered}
\left|a_{n}\right|<1 \\
\left|a_{n} b_{n}\right|<\left|b_{n}\right|
\end{gathered}
$$

Since $\sum_{n \geq 1}\left|b_{n}\right|$ converges, $\sum_{n \geq 1}\left|a_{n} b_{n}\right|$ also converges by comparison test and therefore $\sum_{n \geq 1} a_{n} b_{n}$ also converges.
(b) If we only given " $\sum_{n \geq 1} b_{n}$ is convergent" instead of " $\sum_{n \geq 1} b_{n}$ is absolute convergent", there is a counter example: Consider

$$
a_{n}=\sum_{n \geq 1} \frac{(-1)^{n}}{\sqrt{n}} \quad b_{n}=\sum_{n \geq 1} \frac{(-1)^{n}}{\sqrt{n}}
$$

By the Alternating Series Test,
(i) $\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}$ for all n
(ii) $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$

Therefore both $\sum a_{n}$ and $\sum b_{n}$ converges.
However,

$$
\sum_{n \geq 1} a_{n} b_{n}=\sum_{n \geq 1} \frac{1}{n}
$$

diverges (harmonic series).

Note:

- The ratio (root) test cannot reverse. A series $\sum a_{n}$ converges does NOT implies that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ nor $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists and of course NOT implies that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ nor $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$.
- You can also apply $\# 3$ of the last homework, but need to be careful that the Limit Comparison Test is valid only when both a_{n} and b_{n} are POSITIVE. So the test should be done under the absolute values:

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n} b_{n}\right|}{\left|b_{n}\right|}=\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 .
$$

Since $\sum_{n \geq 1}\left|b_{n}\right|$ converges, $\sum_{n \geq 1}\left|a_{n} b_{n}\right|$ also converges by \#3-(a) of Homework 3 and therefore $\sum_{n \geq 1} a_{n} b_{n}$ also converges.

