${\it Calculus}({\it II})$ 0412 Homework 2 Part II Online 3

Given:

- $a_n, b_n > 0$
- $\lim_{n\to\infty} a_n/b_n = 0$
- (a) $\lim_{n\to\infty} a_n/b_n = 0$ implies that $\forall \epsilon > 0 \quad \exists N \in \mathbb{N}$ such that

$$\left| \frac{a_n}{b_n} - 0 \right| < \epsilon \text{ whenever } n > N.$$

Since b_n is positive, the above inequality gives $a_n < \epsilon b_n$ (otherwise the "<" sign might reverse). If $\sum b_n$ converges, so does $\sum \epsilon b_n$. Thus $\sum a_n$ converges by part (i) of the Comparison Test.

(b) We use part (a) with

$$a_n = \frac{\log n}{n^2} \qquad b_n = \frac{1}{n^{3/2}}$$

and obtain

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\log n}{n^{1/2}} = \lim_{x \to \infty} \frac{\log x}{x^{1/2}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2}x^{-1/2}} = \lim_{x \to \infty} \frac{2}{x^{1/2}} = 0.$$

Since $\sum b_n$ is a *p*-series (p.717) with 3/2 > 1, it converges and therefore $\sum a_n$ also converges by (a).

Note:

- See p.724-725 and Exercises 40-41 of Sec. 11.4
- The Limit Comparison Test in p.724 is valid only when $\lim_{n\to\infty} a_n/b_n = c$, $c \in (0,\infty)$. This Exercise aims to deal with the case when c=0. On the other hand, Exercises 41 in p.727 is the case when $c=\infty$ that both series diverge.
- In (b), we cannot applied the l'Hospital's rule directly since n is DISCRETE and $\log n, n^{1/2}$ are NOT differentiable at all!

Online 4

Given:

• $p_n \leq Cn \log n$ for some constant C > 0.

Clearly, $p_n \leq Cn \log n$ gives

$$\frac{1}{p_n} \ge \frac{1}{Cn\log n}.$$

Note that $\frac{1}{Cn\log n}$ is not defined when $n \leq 1$ due to the logarithm. Since finite terms do not contribute to the convergence, we may consider

$$\sum_{n=2}^{\infty} \frac{1}{p_n} \ge \sum_{n=2}^{\infty} \frac{1}{Cn \log n}.$$

Let $f(x) = \frac{1}{Cx \log x}$. To apply The Integral Test (p.716), first check that

- (i) f(x) is continuous on $[2, \infty)$
- (ii) f(x) is positive on $[2, \infty)$
- (iii) f(x) is decreasing on $[2, \infty)$ since

$$f'(x) = -\frac{\log x + 1}{Cx^2 \log^2 x} < 0.$$

So we use the Integral Test:

$$\int_2^\infty \frac{1}{Cx \log x} dx = \frac{1}{C} \lim_{t \to \infty} \int_2^t \frac{1}{x \log x} dx = \frac{1}{C} \lim_{t \to \infty} \log(\log x) \Big|_2^t = \infty.$$

Therefore $\sum_{n=2}^{\infty} \frac{1}{Cn \log n}$ diverges and by the Comparison Test, $\sum_{n=2}^{\infty} \frac{1}{p_n}$ also diverges. **Note:**

• Again, we cannot integrate $\frac{1}{Cn\log n}$ directly since n is DISCRETE and $\frac{1}{Cn\log n}$ is NOT integrable at all!

Online 5

This is an alternating series that $b_n = \frac{1}{(2n)!}$ and starting from n = 0.

- (a) Use the Alternating Series Test (p.727), $b_n > 0$ and :
 - (i) $b_1 = \frac{1}{2} \le 1 = b_0$; $b_{n+1} = \frac{1}{(2(n+1))!} = \frac{1}{(2n+2)\cdot(2n+1)\cdot(2n)!} \le \frac{1}{(2n)!} = b_n$ for all n.
 - (ii) $\lim_{n\to\infty} \frac{1}{(2n)!} = 0$

Thus the series is convergent.

(b) We apply the Alternating Series Estimation Theorem (p.730), where the assumptions are checked in (a). The error $|R_n| = |s - s_n| \le b_{n+1}$. When n = 4, $b_n = \frac{1}{(2\cdot 4)!} \approx 2.5 \times 10^{-5} > 5 \times 10^{-6}$, and $b_{n+1} = \frac{1}{10!} \approx 2.8 \times 10^{-7} < 5 \times 10^{-6}$. So our approximation can be $s_4 = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \frac{1}{8!} \approx 0.540302$.

Note:

- The inequality $|R_n| = |s s_n| < b_{n+1}$ means:
 - $-s = \sum_{i=0}^{\infty} (-1)^i b_i$ is the exact sum
 - $-s_n = \sum_{i=0}^n (-1)^i b_i$ is the approximate sum
 - $-|R_n|$ is the error term that we need it $< 5 \times 10^{-6}$.
- Since we want an approximation with an error less than $\leq 5 \times 10^{-6}$, we should write the answer at least to 10^{-6} . In fact $|s s_n| \leq b_{n+1}$ implies that

$$-b_{n+1} + s_n \le s \le b_{n+1} + s_n,$$

in this case we have

So if you write the answer as ≈ 0.54 , the error is greater than 3×10^{-4} !