Calculus(II) 0412 Homework 2 Part II

Online 3

Given:

- $a_{n}, b_{n}>0$
- $\lim _{n \rightarrow \infty} a_{n} / b_{n}=0$
(a) $\lim _{n \rightarrow \infty} a_{n} / b_{n}=0$ implies that $\forall \epsilon>0 \quad \exists N \in \mathbb{N}$ such that

$$
\left|\frac{a_{n}}{b_{n}}-0\right|<\epsilon \text { whenever } n>N
$$

Since b_{n} is positive, the above inequality gives $a_{n}<\epsilon b_{n}$ (otherwise the "<" sign might reverse). If $\sum b_{n}$ converges, so does $\sum \epsilon b_{n}$. Thus $\sum a_{n}$ converges by part (i) of the Comparison Test.
(b) We use part (a) with

$$
a_{n}=\frac{\log n}{n^{2}} \quad b_{n}=\frac{1}{n^{3 / 2}}
$$

and obtain

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\log n}{n^{1 / 2}}=\lim _{x \rightarrow \infty} \frac{\log x}{x^{1 / 2}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2} x^{-1 / 2}}=\lim _{x \rightarrow \infty} \frac{2}{x^{1 / 2}}=0
$$

Since $\sum b_{n}$ is a p-series (p.717) with $3 / 2>1$, it converges and therefore $\sum a_{n}$ also converges by (a).
Note:

- See p.724-725 and Exercises 40-41 of Sec. 11.4
- The Limit Comparison Test in p. 724 is valid only when $\lim _{n \rightarrow \infty} a_{n} / b_{n}=c, c \in$ $(0, \infty)$. This Exercise aims to deal with the case when $c=0$. On the other hand, Exercises 41 in p. 727 is the case when $c=\infty$ that both series diverge.
- In (b), we cannot applied the l'Hospital's rule directly since n is DISCRETE and $\log n, n^{1 / 2}$ are NOT differentiable at all!

Online 4

Given:

- $p_{n} \leq C n \log n$ for some constant $C>0$.

Clearly, $p_{n} \leq C n \log n$ gives

$$
\frac{1}{p_{n}} \geq \frac{1}{C n \log n}
$$

Note that $\frac{1}{C n \log n}$ is not defined when $n \leq 1$ due to the logarithm. Since finite terms do not contribute to the convergence, we may consider

$$
\sum_{n=2}^{\infty} \frac{1}{p_{n}} \geq \sum_{n=2}^{\infty} \frac{1}{C n \log n}
$$

Let $f(x)=\frac{1}{C x \log x}$. To apply The Integral Test (p.716), first check that
(i) $f(x)$ is continuous on $[2, \infty)$
(ii) $f(x)$ is positive on $[2, \infty)$
(iii) $f(x)$ is decreasing on $[2, \infty)$ since

$$
f^{\prime}(x)=-\frac{\log x+1}{C x^{2} \log ^{2} x}<0
$$

So we use the Integral Test:

$$
\int_{2}^{\infty} \frac{1}{C x \log x} d x=\frac{1}{C} \lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \log x} d x=\left.\frac{1}{C} \lim _{t \rightarrow \infty} \log (\log x)\right|_{2} ^{t}=\infty
$$

Therefore $\sum_{n=2}^{\infty} \frac{1}{C n \log n}$ diverges and by the Comparison Test, $\sum_{n=2}^{\infty} \frac{1}{p_{n}}$ also diverges.
Note:

- Again, we cannot integrate $\frac{1}{C n \log n}$ directly since n is DISCRETE and $\frac{1}{C n \log n}$ is NOT integrable at all!

Online 5

This is an alternating series that $b_{n}=\frac{1}{(2 n)!}$ and starting from $n=0$.
(a) Use the Alternating Series Test (p.727), $b_{n}>0$ and :
(i) $b_{1}=\frac{1}{2} \leq 1=b_{0} ; b_{n+1}=\frac{1}{(2(n+1))!}=\frac{1}{(2 n+2) \cdot(2 n+1) \cdot(2 n)!} \leq \frac{1}{(2 n)!}=b_{n}$ for all n.
(ii) $\lim _{n \rightarrow \infty} \frac{1}{(2 n)!}=0$

Thus the series is convergent.
(b) We apply the Alternating Series Estimation Theorem (p.730), where the assumptions are checked in (a). The error $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$. When $n=4, b_{n}=\frac{1}{(2 \cdot 4)!} \approx$ $2.5 \times 10^{-5}>5 \times 10^{-6}$, and $b_{n+1}=\frac{1}{10!} \approx 2.8 \times 10^{-7}<5 \times 10^{-6}$. So our approximation can be $s_{4}=1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\frac{1}{8!} \approx 0.540302$.

Note:

- The inequality $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$ means:
$-s=\sum_{i=0}^{\infty}(-1)^{i} b_{i}$ is the exact sum
$-s_{n}=\sum_{i=0}^{n}(-1)^{i} b_{i}$ is the approximate sum
$-\left|R_{n}\right|$ is the error term that we need it $<5 \times 10^{-6}$.
- Since we want an approximation with an error less than $\leq 5 \times 10^{-6}$, we should write the answer at least to 10^{-6}. In fact $\left|s-s_{n}\right| \leq b_{n+1}$ implies that

$$
-b_{n+1}+s_{n} \leq s \leq b_{n+1}+s_{n}
$$

in this case we have

$$
0.5403023 \leq s \leq 0.5403028
$$

So if you write the answer as ≈ 0.54, the error is greater than 3×10^{-4} !

