Calculus(II) 0412 Homework 1 Part I

Textbook

11.1.48.

Since $-1 \leq \sin 2 n \leq 1$,

$$
\frac{-1}{1+\sqrt{n}} \leq \frac{\sin 2 n}{1+\sqrt{n}} \leq \frac{1}{1+\sqrt{n}}
$$

And

$$
\lim _{n \rightarrow \infty} \frac{ \pm 1}{1+\sqrt{n}} \rightarrow 0
$$

Therefore by the Squeeze Theorem, a_{n} is also converges to 0 as $n \rightarrow \infty$.

11.1.77.

$$
a_{n}=\frac{n}{n^{2}+1}
$$

Let

$$
f(x)=\frac{x}{x^{2}+1}
$$

be a continuous function on positive x. Then

$$
f^{\prime}(x)=\frac{1-x^{2}}{x^{2}+1}
$$

The denominator is always positive for real x, and the numerator is ≤ 0 for all $x \geq 1$. Hence $f(x)$ is decreasing and so does $\left\{a_{n}\right\}$.
To check whether a_{n} is bounded, first note that $a_{n} \geq 0$ for $n>0$. So $\left\{a_{n}\right\}$ is bounded below by 0 . Also, the fact that $\left\{a_{n}\right\}$ is decreasing implies that $a_{1}=\frac{1}{2}$ is an upper bound of $\left\{a_{n}\right\}$.
11.2.32.

$$
\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}
$$

- $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}:|r|=\frac{1}{2}<1$ converge
- $\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}:|r|=\frac{3}{2} \geq 1$ diverge

Therefore the series $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$ diverges.

Online 1

Let $b_{n}=\frac{1}{n}$, then $\lim _{n \rightarrow \infty} b_{n}=0$. Consider a continuous function $f(x)=a^{x}$. By Theorem 7 of the textbook, we obtain

$$
\lim _{n \rightarrow \infty} f\left(b_{n}\right)=\lim _{n \rightarrow \infty} a^{\frac{1}{n}}=f(0)=1
$$

Online 2
(a) By the precise definition of limit,
$\lim _{n \rightarrow \infty} a_{2 n}=a$ implies that

$$
\forall \epsilon>0 \exists N_{1} \text { such that }\left|a_{2 n}-a\right|<\epsilon \text { whenever } 2 n>N_{1},
$$

and $\lim _{n \rightarrow \infty} a_{2 n+1}=a$ implies that

$$
\forall \epsilon>0 \exists N_{2} \text { such that }\left|a_{2 n+1}-a\right|<\epsilon \text { whenever } 2 n+1>N_{2} \text {. }
$$

Let $N=\max \left(N_{1}, N_{2}\right)$ and consider $n>N$.

- When $n=2 k$ is even,

$$
\forall \epsilon>0 \exists N_{1} \text { such that }\left|a_{2 k}-a\right|<\epsilon \text { whenever } 2 k>N>N_{1},
$$

- When $n=2 k+1$ is odd,
$\forall \epsilon>0 \exists N_{2}$ such that $\left|a_{2 k+1}-a\right|<\epsilon$ whenever $2 k+1>N>N_{2}$.
Therefore we have

$$
\forall \epsilon>0 \exists N \text { such that }\left|a_{n}-a\right|<\epsilon \text { whenever } n>N \text {. }
$$

(b) Again, $\lim _{n \rightarrow \infty} a_{n}=a$ implies that

$$
\forall \epsilon>0 \exists N \text { such that }\left|a_{n}-a\right|<\epsilon \text { whenever } n>N \text {. }
$$

Clearly, $2 n+1>2 n>n>N$, so we have $\lim _{n \rightarrow \infty} a_{2 n}=a$ and $\lim _{n \rightarrow \infty} a_{2 n+1}=a$.

