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MMSE Estimator

Consider x and z are jointly Gaussian distributed:[xz] ∼ N ([x̄z̄] , [Cxx Cxz
Czx Czz

])
(1)

The estimate of the r.v. x in terms of z according to the minimum mean
square error (MMSE) criterion is the conditional mean of x given z:

x̂ , E[x|z] = x̄ + CxzC−1
zz (z− z̄) (2)

Cxx|z , E[(x− x̂)(x− x̂)T |z] = Cxx − CxzC−1
zz Czx (3)

I The MMSE estimate – the conditional mean – of a Gaussian r.v. in
terms of another Gaussian r.v. (the measurement) is a linear
combination of:

– The prior (unconditional) mean of the variable to be estimated
– The di�erence btw. the measurement and its prior mean

I The conditional covariance of one Gaussian r.v. given another Gaussian
r.v. (the measurement) is independent of the measurement.
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Linear MMSE Estimator

I MMSE estimate of a random variable in terms of another random
variable is the conditional mean.

I However, in many problems the distributed info needed for the
evaluation of the conditional mean is not available. Even if it were
available, the evaluation could be prohibitively complicated.

I Linear MMSE estimation is such that
– The estimate is unbiased
– The estimation error is uncorrelated from the measurements, that is, they

are orthogonal, which is so called principle of orthogonality
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Linear MMSE Estimation: Formulation

I To estimate a scalar parameter x (which is modeled as the realization
of a random variable) based on the data z = [z(0) · · · z(N − 1)]T . We
do not assume any specific form for the joint pdf p(z, x) but only the
first two moments.

I The linear minimum mean square error (LMMSE) estimator:

min
x̂

E[(x − x̂)2] (4)

s.t. x̂ =
N−1∑
n=0

aiz(n) + aN = aTz + aN (5)

I Note that the estimator will be suboptimal (as we restrict to the class
of linear (actually a�ine) estimators) unless the MMSE estimator
happens to be linear, in analogy to BLUE.

I Note that LMMSE relies on the correlation between random variables,
and a parameter uncorrelated with the data cannot be linearly
estimated.
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Linear MMSE Estimation: Derivation
I We now drive the optimal coe�icients for the LMMSE (4)-(5). We first

find aN :

∂

∂aN
E
[(
x − aTz + aN

)2
]

= −2E
[
x − aTz− aN

]
= 0 (6)

⇒ aN = E[x]− aTE[z] (7)

I The cost function (4) becomes:

E
[(
x−aTz+E[x]−aTE[z]

)2
]

how?
= aTCzza− aTCzx−Cxza+Cxx (8)

where C denotes the covariance matrix.

I We then find the other coe�icients:

∂E(·)
∂a

= 2Czza− 2Czx = 0 ⇒ a = C−1
zz Czx (9)

I Finally, the LMMSE estimator:

x̂ = E[x] + CT
xzC
−1
zz (z− E[z]) (10)
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Linear MMSE Estimation: Example

I Consider the measurement model (DC level in WGN):

z(n) = A + w(n) n = 0, 1, · · · ,N − 1 (11)

where A ∼ U [−A0,A0], w(n) is WGN with variance σ2, and A and w(n)
are independent. We wish to estimate A.

I The MMSE estimator cannot be obtained in closed form due to the
integration (uniform distribution).

I We consider the LMMSE estimator, which is given by:

Â = σ2
A1

T (σ2
A11

T + σ2I
)−1 z (12)

where σ2
A = E[A2].
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Principle of Orthogonality

Figure 1: Orthogonal projection of r.v. x into the subspace spanned by zi . In order to
have the minimum error, it has to be orthogonal to the measurements.
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Illustration with LMMSE Estimation

I Suppose a set of zero-mean random variables (measurements) zi
(i = 1, · · · , n). Two vectors are orthogonal zi ⊥ zj , if and only if their
inner product is zero, i.e.,

< zi, zj >= E[zTi zj] = 0 (13)

which is equivalent to these zero-mean r.v. being uncorrelated.

I The LMMSE estimator of a zero-mean random variable x is given by
x̂ =

∑n
i=1 aizi , and its norm of the estimation error x̃ , x − x̂ is

minimized [see (4)-(5)]:

min
{βi}ni=1

||x̃||2 = E[(x − x̂)2] = E

[
(x −

n∑
i=1

aizi)2

]
(14)

⇒ − 1
2
∂||x̃||2

∂aj
= E

[
(x −

n∑
i=1

aizi)zj

]
= E[x̃zj] =< x̃, zj >= 0 (15)

⇒ x̃ ⊥ zj , ∀j it is orthogonal! (16)

8 / 11



The Vector LMMSE Estimator
I The best linear estimator that minimizes the scalar MSE criterion:

min
A,b

J , E[(x− x̂)T (x− x̂)] (17)

= E[(x− (Az + b))T (x− (Az + b))] (18)

I The linear MMSE estimator is such that the estimation error is
zero-mean and orthogonal to the observation:

E[x̃] = x̄− (Az + b)) = 0 (19)
⇒ b = x̄− Az̄ (20)

E[x̃zT ] = E[(x− x̄− A(z− z̄))zT ] = Pxz − APzz = 0 (21)

⇒ A = PxzP−1
zz (22)

I Therefore, the linear MMSE estimator for the multidimensional case:

x̂ = x̄ + PxzP−1
zz (z− z̄) (23)

E[x̃x̃T ] = Pxx − PxzP−1
zz Pzx =: Pxx|z (24)

which are the fundamental equations of linear estimation.
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Sequential LMMSE Estimation
I Consider the example of DC level in WGN with Gaussian prior pdf:

z(n) = A + w(n) n = 0, 1, · · · ,N − 1 (25)

p(A) = N (0, σ2
A) , w(n) ∼ N (0, σ2) (26)

I The LMMSE estimator based on {z(0), · · · , z(N − 1)} can be found as:

Â(N − 1) =
σ2
A

σ2
A + σ2/N

∑N−1
n=0 z(n)

N
=

σ2
A

σ2
A + σ2/N

z̄ (27)

var(Â(N − 1)) =
σ2
Aσ

2

Nσ2
A + σ2 (28)

I To update the estimator recursively as z(N) becomes available:

Â(N) =
σ2
A

σ2
A + σ2/(N + 1)

∑N
n=0 z(n)

N + 1
(29)

= Â(N − 1) +
σ2
A

(N + 1)σ2
A + σ2︸ ︷︷ ︸

K(N)

(z(N)− Â(N − 1)) (30)
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Sequential LMMSE Estimation (cont.)
I The gain can be computed as:

K(N) =
σ2
A

(N + 1)σ2
A + σ2 =

var(Â(N − 1))

var(Â(N − 1)) + σ2
(31)

I To update the minimum MSE (variance):

var(Â(N)) =
σ2
Aσ

2

(N + 1)σ2
A + σ2 = (1− K(N))var(Â(N − 1)) (32)

I Summarize the sequential LMMSE estimator:
– Estimator Update:

Â(N) = Â(N − 1) + K(N)(z(N)− Â(N − 1)) (33)

K(N) =
var(Â(N − 1))

var(Â(N − 1)) + σ2
(34)

– Variance (MinimumMSE) Update:

var(Â(N)) = (1 − K(N))var(Â(N − 1)) (35)
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