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MMSE Estimator

Consider x and z are jointly Gaussian distributed:
X CXX CXZ
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The estimate of the r.v. x in terms of z according to the minimum mean
square error (MMSE) criterion is the conditional mean of x given z:

X £ E[x|z] = x + C,C,'(z — 2) (2)
Coxlz 2 E[(x — X)(x — X)7[z] = Co — C,C,'Cux (3)

» The MMSE estimate - the conditional mean - of a Gaussian r.v. in
terms of another Gaussian r.v. (the measurement) is a linear

combination of:
— The prior (unconditional) mean of the variable to be estimated
— The difference btw. the measurement and its prior mean

> The conditional covariance of one Gaussian r.v. given another Gaussian
r.v. (the measurement) is independent of the measurement.



Linear MMSE Estimator

» MMSE estimate of a random variable in terms of another random
variable is the conditional mean.

» However, in many problems the distributed info needed for the

evaluatjon of the conditional mean is not available. Even if it were
available, the evaluation could be prohibitively complicated.

» Linear MMSE estimation is such that

- The estimate is unbiased .
— The estimation error is uncorrelated from the measurements, that is, they

are orthogonal, which is so called principle of orthogonality



Linear MMSE Estimation: Formulation

> To estimate a scalar parameter x (which is modeled as the realization
of a random variable) based on the data z = [z(0) - z(N — 1)]". We
do not assume any specific form for the joint pdf p(z, x) but only the
first two moments.

» The linear minimum mean square error (LMMSE) estimator:

mf(in E[(x — %)?] (4)

=
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s.t. X = aiz(n) +ay =a'z + ay (5)
0

n

> Note that the estimator will be suboptimal (as we restrict to the class
of linear (actually affine) estimators) unless the MMSE estimator
happens to be linear, in analogy to BLUE.

» Note that LMMSE relies on the correlation between random variables,
and a parameter uncorrelated with the data cannot be linearly
estimated.



Linear MMSE Estimation: Derivation
> We now drive the optimal coefficients for the LMMSE (4)-(5). We first

find ay:
a(ZN E [(x —a'z+ aN)z] = —2F [x —a'z— aN] =0 (6)
= ay=E[x] —a'E[z] @)

> The cost function (4) becomes:

E [(x—aTZ—FE[x]—aTE[z])Z] how? a'Cha—a'C,u—Cya+Cy (8)

where C denotes the covariance matrix.
» We then find the other coefficients:
OE(-
9E() =2C,a—2C,=0 = a=C,'C, 9)
Oa
> Finally, the LMMSE estimator:

X = E[X] +sz 2z (Z - E[Z]) (10)



Linear MMSE Estimation: Example

» Consider the measurement model (DC level in WGN):
Z(n):A+W(n) n=20,1,--- ,N—1 (11)

where A ~ U[—Ay, Ao], w(n) is WGN with variance 0%, and A and w(n)
are independent. We wish to estimate A.

> The MMSE estimator cannot be obtained in closed form due to the
integration (uniform distribution).

> We consider the LMMSE estimator, which is given by:
A:UE\IT(UZ\HT—FUzl)qz (12)

where 03 = E[A?).



Principle of Orthogonality

Figure 1: Orthogonal projection of r.v. x into the subspace spanned by z;. In order to
have the minimum error, it has to be orthogonal to the measurements.



[[lustration with LMMSE Estimation

> Suppose a set of zero-mean random variables (measurements) z;
(i=1,---,n). Two vectors are orthogonal z; L z;, if and only if their
inner product is zero, i.e.,

<z,z; >=E[z]z] =0 (13)
which is equivalent to these zero-mean r.v. being uncorrelated.

» The LMMSE estimator of a zero-mean random variable x is given by
~ n . . . ~ A A .
X =", az;, and its norm of the estimation error X = x — X is
minimized [see (4)-(5)]:

min |\x|\2 —E[(x—%)?=E [(x - Za,zi)z] (14)

(8} -

—1M:E (x—zn:a-z-)z- = E[xz] =< X,z >=0 (15)
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=X 1z, Vj itisorthogonall (16)



The Vector LMMSE Estimator

» The best linear estimator that minimizes the scalar MSE criterion:
min J £ E[(x = %) (x = %)] (17)
= E[(x — (Az + b)) (x — (Az + b))] (18)

> The linear MMSE estimator is such that the estimation error is
zero-mean and orthogonal to the observation:

E[X] =% — (Az+b)) =0 (19)
= b=x—Az (20)
E[xz") = E[(x —x — A(z—2))z2'] =P, — AP, =0  (21)
= A=P,P, (22)

» Therefore, the linear MMSE estimator for the multidimensional case:

X=x+P,P. ' (z—2) (23)
E[XX] = Py — PP, 'Po =1 Py, (24)

which are the fundamental equations of linear estimation.



Sequential LMMSE Estimation
» Consider the example of DC level in WGN with Gaussian prior pdf:

z(n)=A+w(n) n=0,1,--- ,N—1 (25)
p(A) = N(0,03), w(n)~ N(0,07%) (26)

» The LMMSE estimator based on {z(0),--- ,z(N — 1)} can be found as:

N—1
A(N _ -I) — O’Z\ Zn:O Z(n) — 0/24 z (27)
2 2 2 2
o4+ 0%/N N o4+ d%/N
N o%o?

AN=-1))= £ 28
var(A(N = 1)) = 55 (@)

> To update the estimator recursively as z(N) becomes available:

N

A(N) _ Ui ano Z(”) (29)

o4 +02/(N+1) N+1

%
(N+ 1)0 + o2
N——

K(N)

=AN-1)+ (z(N) = A(N=1)) (30
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Sequential LMMSE Estimation (cont.)

> The gain can be computed as:

o4 _ var(A(N — 1))
(N+1)0i+02  var(AN — 1)) + 02

K(N) =

» To update the minimum MSE (variance):

var(A(N)) = m = (1— K(N))var(A(N — 1))

» Summarize the sequential LMMSE estimator:
- Estimator Update:

~

A(N) = A(N — 1) + K(N)(z(N) — AN — 1))

K(N) = vaAr(A(N -1))
var(A(N — 1)) 4+ o2

- Variance (Minimum MSE) Update:

var(A(N)) = (1 — K(N))var(A(N — 1))

31

32)
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(34)

(35)
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