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1 Problem Formulation

The goal of this utility is to construct a groundtruth trajectory pose of the inertial measurement unit
(IMU) sensor. To do so, we typically rely on an external motion capture system (e.g. an OptiTrack'
or Vicon? system), which can provide accurate 6 degree-of-freedom (DoF) pose measurements of
markers placed on the sensor rig. While it is straightforward to capture a 6 DoF pose once the
motion capture system is calibrated, how we can leverage these poses to robustly recover the pose
of the inertial state of the trajectory need carefully studying. In the following we will introduce our
toolbox developed specifically for recovering a 15 DoF state containing the orientation, position,
velocity and biases of the IMU sensor frame at every timestep over a dataset. This requires handling
of the calibration of the motion capture system world frame in respect to the IMU global inertial
frame, the motion capture marker frame, and the time offset between the two systems. We will
first introduce the state which we are estimating and the frame of references and then dive into
how each measurement model is formulated.
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Figure 1: Sensor frames in the system. The motion capture frame {V'} which poses are capture in and is not
gravity aligned along with the motion capture marker body frame {B} and inertial IMU frame {I} can be seen.
Also seen is the gravity vector g which is is perfectly along the z-axis in the the global inertial frame {G}.

Shown in Figure 1, we have a series of frames that we need to define. The first is what we
consider is the “global” frame in this estimation problem. As compared to estimating in the
inertial global frame, we instead estimate in the motion capture system frame of reference {V'}.
This is primarily motivated to simplify the motion capture measurement model and allow explicit
definition of the frame which gravity is represented in. This motion capture system global frame
{V'} is what the collected poses are in and thus is defined during the motion capture system setup.
The poses collected are of the markers which are attached to the sensor platform and thus the
frame {B} is arbitrarily defined to how the markers are placed and can change from dataset to
dataset. This marker frame itself is not normally very useful to the end user.

The trajectory frame we are interested in is the IMU sensor frame {I} which is defined by the
accelerometer sensor axis sensor and is rigidly connected to the marker body frame. The issue that
arises is that our global motion capture frame is not gravity aligned, thus we have to have special
care when handling our gravity as it is defined in our global inertial frame. Specifically we estimate

https://optitrack.com/
https://www.vicon.com/
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the following states:
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Xr = [{}(f b;,i VVZ b;r,i VPITZ} ! (2)

xc=[pa" 'pp VtI}T (3)
where we are estimating IV inertial states at an arbitrary frequency, along with a calibration state
Xc containing the spacial-temporal parameters between the motion capture and IMU sensors, and
the rotation between the motion capture frame and global inertial frame. {/’ch is the unit quaternion
parameterizing the rotation R({/’? 7) = R from the global frame of reference {V'} to the IMU local
frame {I}} at time t; [1], b, and b, are the gyroscope and accelerometer biases, and Vvj,_ and
ijk are the velocity and position of the IMU expressed in the global frame, respectively. It is
important to note here that we are estimating the IMU states at the true IMU clock time, meaning
that the states which occur at time ¢; are in the IMU clock frame, ¢, and can be related a time
in motion capture clock by:

I =Vi4 Vi, (4)

The inertial state xj, lies on the manifold defined by the product of the unit quaternions H with the
vector space R'? (i.e. M = H x R'?) and has 15 DoF. For quaternions, we define the quaternion
boxplus operation as:

00

=N h] ®q ~ G (5)

We additionally define our rotation from the gravity aligned inertial frame to the motion capture
frame using the following roll-pitch-yaw rotation:

gR - Ry(gey)Rx(gax) (6)
cosg% 0 sin gﬁy 1 0 0
= 0 1 0 0 coshly —sino, (7)

—singﬁy 0 cosgﬁy 0 singﬁw cosgﬁx

Note that here we are fixing the yaw to be zero since the gravity aligned frame has arbitrary yaw and
thus this rotation is only 2 DoF. For vector variables, the “boxplus” and “boxminus” operations,
which map elements to and from a given manifold [2], equate to simple addition and subtraction
of their vectors.
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Figure 2: Example of a factor graph that our system created. States that will be estimated are
denoted in circles and measurements are denoted in squares. Note that we differentiate interpolated
factors with dashed outlines. For visualization we have grouped all calibration parameters into a
single node C'1, and G; is the rotation from gravity aligned to motion capture frame.
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An overview of the non-linear factor graph that we will solve is shown in Figure 2. In the
following section we will explicitly explain which states the measurements are a function of. As a
sneak-peak, the inertial IMU preintegration will be a function of the two bounding states and the
inertial gravity frame transformation, while the motion capture 6 DoF pose measurements are a
function of the spacial-temporal parameters between the two sensors.

2 Continuous Preintegration

2.1 Inertial Measurement Model

We model the linear acceleration and angular velocity inertial measurements as:

wm = w + by, + 10y, (8)
a,=a+b,+n,+ {/RgRGg (9)

where Cg is the gravity in the global gravity aligned inertial frame, {GY}, which is [0,0,9.81]. The
motion capture frame, {V'}, is not gravity aligned, thus we need to take into account that there is
a rotation into the inertial frame. This rotation is only a 2 DoF orientation where the yaw rotation
around the gravity vector has been fixed to zero (e.g., a rotation about yaw will not change the
direction of gravity in the {G} frame). w is the angular velocity, a is the linear acceleration, and
n,, 1N, are the continuous measurement noises. The underlying IMU dynamics are [3]:

vi= %ﬂ(wm — by —ny)1q (10)
by = nyp (11)
Vvr =YR(a, — b, —n,) — LR (12)
b, = ng (13)
Vpr="vi (14)

where nyp, ng are the random walk noises and €(-) is:

aw) = |l e (15)

—w 0

2.2 Continuous Preintegrated Measurements

Continuous preintegration [1] is the factorization of the integration of equation (10)-(14) between
two state timesteps as follows (the IMU frame {Ij} has been shorten to {k}):

1

Vpri1 = "pp + VAT — 5gRGgAT2 + VRFay (16)

Vvirr = Vv — GRYgGAT + Y RF By (17)
vila=1aevg (18)
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where AT is the difference between the bounding pose timestamps (¢, tx41) and a1, ¥Bry1 are
defined by the following integrations of the IMU measurements:

tei1 s
Fogy = / *R (ay, — by — n,) duds (19)
tr ty
tr4+1
FBrs1 = / *R (a, — b, — ng) du (20)
tr

We note that the preintegrated measurements, *au 1, *Bri1, ﬁ“c} are dependent on the true biases.
This dependency is addressed through a first order Taylor series expansion about the current bias
estimates b,, and b, at time ¢j:

oo
kak+1 ~ kak+1 + — 5‘b 5 Ab ab Abw (21)
0 0
EBpr = * Bt + abﬁ Ab, + 6{ _ Ab, (22)
Mg ~ G(Aby) ' @ TG (23)

where ¥y 1, 5k+17 k 1§ are the preintegrated measurements evaluated at the current bias es-

timates. In particular, k+1q can be found using the zeroth order quaternion integrator [!]. The

quaternion which models multiplicative orientation corrections due to linearized bias change is:

) [ sin Ll
q(Aby) = ol (24)
oq -
0 = oo 5. (buw@k) — bw) (25)

where Aby, 1= by — b, and Ab, := bok) — b, are the differences between the true biases and
the current bias estimate used as the linearization point. The new preintegration measurements
can now be computed once and changes in the bias estimates can be taken into account through
the above Taylor series. The final measurement residual is as follows:

2vec (qu R "1t ® g(Aby, ))
bw,k+1 - bw,k

(“,R(Vvkﬂ Vv + VRGgAT)
—F Bt — %’ Ab, — 5=|_ Ab,,

w

r(x) =
ba,k+1 - ba,k
]\C/R(Vpkﬂ —Vpy — Vi AT + %ERGgATQ)

kX Ja JoleY
—ak+1_87baBAb W*Abw

where vec(+) returns the vector portion of the quaternion (i.e., the top three elements) and the bias
errors are the difference between biases in the bounding states.
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We use combined continuous preintegration factors that included both the inertial and bias
errors together and relate to the full 15 degree-of-freedom state (see Equation 1). This combined
continuous preintegration factor better models the measurement error state dynamics due to bias
drift over the integration interval.

2.3 Continuous Preintegrated Jacobians

The analytical Jacobians needed for graph optimization, bias Jacobians, and closed-form prein-

tegrated measurements are included in the preintegration technical report [5] where the above
Jacobians correspond to the following equations:
8812; b Equation (49) (26)
9| _ pquations (53)-(58),(84) (27)
by by 4 :
gfa b= Equation (49) (28)
9B Equations (59)-(61),(84) (29)
oby by ’
f;}b(i b= Equation (81) (30)

We additionally have the following two Jacobians in respect to the two angles which rotate the
gravity vector into the motion capture frame. This can be found by directly taking the derivative
in respect to the rotation matrix:

Oa 1, 9
———— = —vRAT"H, 31
et 60, 2" oy
B %
——— =vRATH, 32
oGta &0 o

where we define the derivative in respect to ‘C/;RGg as:

—sin géy sin g@w cos gey cos g@x
H, =981 — cos 0 0 (33)
— cos g0y sin g&m —sin g0y cos g@x

2.4 Continuous Preintegrated Covariance

To find the covariance of the above residual, we can look at the continuous IMU error state dy-
namics. Consider the time ¢, € [ty, t;11]. Defining *R as the rotation from the IMU frame at ¢, to
the beginning IMU time ¢, a as the corrected acceleration (a = a,, — Ba), and w as the corrected
angular velocity (@ = wy, — by,), the linearized measurement error state system can be defined as
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the following:

%(59 — LL:JXJ —13 03 03 03 ;;50 —13 03 03 03 n
éb,, 03 03 O3 03 03 ob,, 035 Is 03 03 “
k0B, | = |[-MRlax] 05 05 AR 0s] |98, + |05 05 —FR 0] |
dbyg 03 03 03 03 03| | dbg 03 03 03 Ig| |- “
kS, 03 05 I3 03 03] [Foa, 03 03 03 O3 “
= r©=Fr+Gn (34)

It can be noted that the above is equivalent to the standard VINS error state propagation equations
in the local frame of reference [(]. Based on the above equations, we can define the state transi-
tion matrix ®(t,41,t,;) which describes how the error transitions across the measurement interval
[trytr1] C [tg,trk+1]. Starting with covariance Py = 015x15 we perform the following propagation
for all IMU measurements in the preintegration interval [tx, txy1].

P7—+1 - (I'(tﬂ'—l-la t’r)PT@(tT—i—la tT)T + Qpr
t7'+1

Q= [ @t )G WQGW) Bltrir 1) du
tr

where Q. is the continuous time noise covariance matrix. The final covariance of the preintegrated
measurement is the ending cumulative covariance Py .

3 Motion Capture 6 DoF Pose Factor

Figure 3: Example interpolation problem where two bounding motion capture poses {Bo} and {Bi}.
The motion capture pose is first interpolated to the pose time creating frame {B;}, then the rigid
extrinsic transformation can transform it into the IMU sensor frame {I;}.

The core methodology of this measurement model is based on [7] which has been expanded to
support time offset calibration. As shown in Figure 3, we construct a measurement by calculating
an artificial pose {B;} which should occur at the state time. This can then be related to our state
through the extrinsic transformation between the motion capture marker frame and the IMU sensor
frame. This means that this measurement function is only a function of the state it is interpolated
to and the calibration.

Another way to approach this problem (which we do not use), is to instead interpolate two
bounding states to each motion capture pose measurement, { By} and {B;}, and introduce a mea-
surement for every motion capture pose measurement. This method likely has more robustness to
noisy motion capture poses but likely more sensitivity to the interpolation model if state frequencies
are low.
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3.1 Measurement Model

We are estimating the state x;, which has occurred at time It; in the IMU clock frame. We can
first calculate a synthetic measurement which is of the motion capture marker frame at this time
instance through the following:

{\%Ry VPBi} =g <{€0R7 VPB()}? {‘B;l R7 VpB1 }7 VtI> (35)

This function g(-) is not the measurement function, but instead is how we calculate our noisy
measurement. The measurement is a function of the bounding motion capture poses and the time
offset between the motion capture system and IMU. Specifically it is defined as:

%R:EH%AMM$R$RU)?R (36)
Vps, =(1-M)"ps, + A p5, (37)
Vti - Vt Iti o Vt o Vt
5= E/ VBO) _( e Bo) (38)
( tBl - tBo) ( tBl - tBo)

where we have the bounding poses {Bo} and {B;} which were collected at time V¢g, and Vt¢p, in
the motion capture clock frame. We wish to interpolate to the state time t;, thus we calculate
the time in the motion capture clock as Vi, =1t; = Vi, Asin [7] the measurement covariance is
propagate through the following covariance propagation:

P, =H,P, H," (39)

Having calculated now the measurement {ef'R, Vpp,} and its measurement noise P;, we can
formulate the measurement function which relates this measurement to our state estimates through
our spacial calibration parameters:

(PR b} = h({IR. D} (bR, '} ) + moee (40)
PR =5R{IR + ngy (41)
VPBi = Vpli + {}RTIPB + Npos (42)

We thus have the following residual:

2vec<f3cj ® %Q@ 5’5—1)

ry(x) = , + Nyose (43)
foi + x}RTIPB - Vf)Bi
3.2 Measurement Jacobians
We can define the following linearized residual system as:
s oh oh 99 v
'I”V(X) = axh + %X — 8Ttl t[ + npose (44)
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Thus, the measurement Jacobians are as follows:

Oh _ [ BRT 03 03 O3 03} (45)
OX[i —{}RT LIpBXJ 03 03 03 13
oh  [-LRT 03 0
e~ | iR o) )
dg dg O\
g4 77 4
vty OrOVit; (47)
B; B B
By (A Re)Be] 1 (18)
Vpe, — VPB, (Vtp, — Vtg,)
where we define the following:
BiR = Exp ()\ Log(5! R@ORT)) (49)
2l = Log(piR) (50)
1 — cos —sin
Jh(6) = T— : ¢(y|\|2¢ II)W><J n ol = ”§| ¢ H)waz (51)

4 Simulation Results

We now wish to look at how sensitive the system is to motion capture pose noise. This is helpful
in practice since we wish to know under what realistic noise scenarios we will be able to accurately
recover the trajectory of the system. We generate the simulated trajectory using a modified version
of the OpenVINS simulator [$]. We choose the TUM-VI corridorl trajectory as our simulated pose
trajectory which was generated with a visual-inertial system. A 200 Hz IMU, 20 Hz camera, and
100 Hz 6 DoF motion capture system was simulated. For each simulation, the system started with
identity spacial transforms and a time offset value of zero. The simulator picks a random motion
capture to IMU to marker body orientation ¢ = 0.1 and position o = 0.2, and time offset ¢ = 0.05
(we used the same distributions for all 3 vector dimensions). We additionally select a random gR
with ¢ = 0.17 =~ 10° and simulate the system such that the B-spline trajectory is in the fixed
inertial frame (thus all groundtruths from multiple different motion capture frame transforms are
the same). As per standard practice, the inertial measurement readings were corrupted using the
random walk biases and corresponding white noises, while the motion capture poses were corrupted
using an additive white noise.

We observed that there was typically a small position offset between the groundtruth and opti-
mized trajectory caused by errors in the marker to IMU transformation. Thus as compared to not
performing alignment, we perform position and yaw alignment between the simulated groundtruth
and optimized trajectories.
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Table 1: Average absolute trajectory error (degrees / meters) over 10 Monte-Carlo runs. Each column is the
motion capture orientation noises (deg), while each row is a different position motion capture noise (m).

‘ 0.057 0.286 0.573 2.864 5.730
0.001 | 0.020 / 0.001 0.106 / 0.007 0.300 / 0.021 0.464 / 0.045 0.441 / 0.045
0.005 | 0.037 / 0.002 0.157 / 0.009 0.318 / 0.020 0.466 / 0.045 0.441 / 0.045
0.010 | 0.115 / 0.006 0.211 / 0.012 0.348 / 0.024 0.462 / 0.045 0.440 / 0.045
0.050 | 0.051 / 0.012 0.363 / 0.024 0.409 / 0.029 0.409 / 0.039 0.421 / 0.043
0.100 | 0.050 / 0.022 0.371 / 0.029 0.424 / 0.032 0.362 / 0.035 0.391 / 0.040

Shown in Table 1, we can see that as both orientation and position error increases, the orien-
tation error plateaus at around half a degree even under 6 degree and 10cm pose errors. Position
errors increase as motion capture measurements become noisier, but impressively never go above
5cm event with 10cm noise levels. This confirms that the system is able to reconstruct the trajec-
tory in high noise level cases where the noise of the motion capture system and IMU sensor are
known. Depending on the level of accuracy required, being conservative in the estimates might
prove useful to ensure proper recovery.

5 Realworld Results

Figure 4: Example generated trajectories on the EuRoC MAV dataset.

Table 2: Average absolute trajectory error (degrees / meters) compared to the provided
groundtruth of the EuRoC MAV dataset. Position and yaw alignment was performed.

V101 V102 V103 V201 V202 V203

Ori. (deg) 5.789 1.969 2.269 5.779 0.853 0.791
Std. Ori. (deg) 0.161 0.170 0.144 0.978 0.406 0.279
Pos. (m) 0.036  0.009 0.006 0.068 0.015 0.018

Std. Pos. (m) 0.013 0.004 0.003 0.022 0.007 0.009
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Some example recovered trajectories from optimizing the IMU and raw motion capture messages in
the EuRoC MAV datasets [9] bag files can be seen in Figure 4. Shown in Table 2, we compare the
absolute trajectory error after position and yaw alignment of the generated groundtruth to that
provided by the dataset. This dataset provided groundtruth has been time aligned to take into
account the motion capture to IMU clocks, and optimized the IMU sensor frame, temporal time
offset, and spacial transform between the groundtruth and inertial frame. It is interesting that the
V1.01 and V2.01 runs have large position and orientation errors suggesting further investigation.
We have noted before that we found that the V1_01 orientation estimates to be poor when compared
to the output of an visual-inertial estimator (as compared to the other datasets).

6 Frequently Asked Questions

6.1 Help, doesn’t converge to a good trajectory!

This can be caused by many things and is hard to debug. The first thing we recommend doing is
to look at the optimized trajectory in RVIZ and see if the alignment there is ok. If there is issues
with a noisy poses you will see it in RVIZ. In this case it is likely you will not be able to optimize
the trajectory. Another source might be poor noise values. Try to play with both the IMU noises
and vicon pose noises. If the dataset is degenerate, you might want to try fixing the marker to IMU
transform (see launch files) as if there is not enough motion this can bias the trajectory results.
First collect a general 3D motion trajectory to recover the calibration, afterwhich it can be fixed.

6.2 Do I need an initial guess of the marker body to IMU?

We found that on good datasets you can just set these to be an identity transformation. If you
know these values you can also try fixing and not estimating them online. Additionally if there is
enough rotation in the dataset the time offset usually robustly converges.

6.3 Calibration seems to not converge to same value

We don’t expect the calibration to converge to the same thing on each dataset as this is highly
depends on the motion of the trajectory. If you worry about it you can try fixing it and not
optimizing it, but in general even if the calibration is different the trajectory itself should still be
of high quality. We recommend that dataset with good 3D motion is collected to calibrate the
transformation between body markers and the IMU, which you can then fix for all datasets to
ensure high quality results.

6.4 Timeoffset changes dataset to dataset

In our experience the timeoffset seems to be most sensitive to communication delays which can
vary dataset to dataset. If you are streaming your vicon poses over wifi have seen that normally
2-3ms difference dataset to dataset. Thus we recommend always calibrating timeoffset since most
platforms will not undergo degenerate motions for this parameter.

6.5 Do I need a camera topic?

No, but you need some topic to specify what timestamps you want the optimized states to be at.
We recommend you specify anything lower than the IMU frequency, thus you could specify the
vicon topic, or another topic.
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6.6 Explain the timestamps the groundtruth file has in it

We have two time systems in the project: vicon and inertial. The states we estimate in the
optimization problem are in the IMU clock frame and the CSV file we save has timestamps in the
IMU clock frame. We use an arbitrary topic timestamps to define what timestamps we will export,
but all these times are still in the IMU clock frame. E.g. if we use a camera topic, the CSV will
have the poses at the IMU clock time of the timestamps in this topic (i.e. if you wish to get the
pose at the camera timestamp you will have an additional imu-to-camera time offset you need to
worry about and is not taken into account here).

6.7 What frame of reference is the groundtruth file in?

The saved trajectory is in the gravity aligned frame of reference with its origin located at the vicon
frame and yaw set to zero (e.g., the {G} frame in Figure 1). We estimate the roll pitch rotation
from the vicon frame to the gravity aligned frame, and save all groundtruth orientations rotated
into this gravity frame. Thus one should use either a position 4+ yaw or SE(3) alignment method.
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