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Abstract

In this paper, we strongly advocate square-root covariance (instead of information) filtering
for visual-inertial navigation, in particular on resource-constrained edge devices, because of its
superior efficiency and numerical stability. Although Visual-Inertial Navigation Systems (VINS)
have made tremendous progress in recent years, they still face resource stringency and numer-
ical instability on embedded systems when imposing limited word length. To overcome these
challenges, we develop an ultrafast and numerically-stable square-root filter (SRF)-based VINS
algorithm (i.e., SR-VINS). The numerical stability of the proposed SR-VINS is inherited from
the adoption of square-root covariance while the never-before-seen efficiency is largely enabled
by the novel SRF update method that is based on our new permuted-QR (P-QR), which fully
utilizes and properly maintains the upper triangular structure of the square-root covariance
matrix. Furthermore, we choose a special ordering of the state variables which is amenable
for (P-)QR operations in the SRF propagation and update and prevents unnecessary computa-
tion. The proposed SR-VINS is validated extensively through numerical studies, demonstrating
that when the state-of-the-art (SOTA) filters have numerical difficulties, our SR-VINS has su-
perior numerical stability, and remarkably, achieves efficient and robust performance on 32-bit
single-precision float at a speed nearly twice as fast as the SOTA methods. We also conduct
comprehensive real-world experiments to validate the efficiency, accuracy, and robustness of the
proposed SR-VINS.

1 Introduction

Visual-Inertial Navigation Systems (VINS) that employ a single camera and an inertial measure-
ment unit (IMU) to provide 3D motion tracking, have great potential in many applications such
as AR/VR and robotics [, 2, 3, 4]. VINS state estimation algorithms can be categorized into
covariance and information forms. In the former such as the extended Kalman filter (EKF) and its
variants, the estimator keeps tracking the dense covariance matrix to update the estimate [5, 6, 7,

, 9, 10, 11]. In contrast, the information estimators such as extended Information filters (EIF) [12]
or optimization-based methods [13, 14, 15, 16, 17, 18], maintain the information (Hessian) matrix
and exploit its sparse structure in solving for estimates. However, both covariance and information
filters face challenging numerical issues, in particular on resource-constrained edge platforms [19,

|, when limited word length (32-bit float, instead of 64-bit double) is available or it is required to
achieve a potential speedup by leveraging SIMD (Single Instruction/Multiple Data) to vectorized
matrix operations [21]. In the covariance form, the covariance matrix tends to lose its positive
definiteness and cause the filter to diverge. In the information form, as the information matrix
can easily become ill-conditioned (e.g., condition number larger than 10? [19]), naively inverting it
during optimization would lead to large numerical errors (see Chapter 3.5.1 in [22]).

There exist methods that use the square root of the information matrix instead of its full matrix

to mitigate the numerical instability and were shown to be effective to some extent in VINS [20, 23,

, 25, 26, 27,28, 29, 30, 31, 32]. For example, the method in [20] maintains an upper triangular
square root of prior information and uses QR-decomposition to incorporate new measurements
into the prior, then invert it to solve for the state update. While this estimator achieves the same
accuracy with the half of the word length, it still has the concerning numerical issue with a relatively
high condition number (> 10°) over time, especially when paired with a high-precision IMU [33,
], resulting in substantial numerical inaccuracies that challenge long-term operations.

On the contrary, VINS estimators in the covariance form tend to offer better numerical stabil-
ity. For instance, in the EKF-based VINS, the only matrix that typically requires inversion, the
innovation covariance S, usually possesses a good condition number [19]. By using the square-root
covariance matrix, we can not only inherit the merits of the covariance form but also benefit from
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square-root properties. Surprisingly, this idea of square-root filter (SRF) remains largely unex-
plored in VINS, primarily due to its inefficiency. Looking into history, the SRF has undergone
significant improvements over the decades. Back in the 1960s, the initial SRF formulation was
proposed by Potter and played a significant role in the Apollo project’s success [35, 36], which
has been extended to account for propagation (process) noise [37]. A key challenge is to improve
its efficiency. Solutions include update methods using eigenvalue [38], Cholesky [39] and QR de-
composition [10] within the SRF framework. However, compared with the conventional KF, these
update methods in the SRF were shown to be less efficient, which is mainly because the triangular
structure of the square-root covariance has been broken after the update. Agee [11] and Carlson
[12] proposed update methods that maintain triangular structure and exhibit comparable efficiency
to the KF. However, these methods are limited to sequential updates. In modern computers, batch
updates involving vector operations are preferable, allowing for more level-3 BLAS[13] operations.

To address the aforementioned issues and fully utilize the benefit of the square-root covariance,
in this work, we develop a novel (P-)QR-based SRF for VINS, termed SR-VINS. In particular,
we propose a new permuted-QR (P-QR) decomposition that fully utilizes the upper-triangular
structure during matrix factorization, which is theoretically shown to improve efficiency during
batch updates. Additionally, when integrating into the sliding-window filtering framework, the
proposed SR-VINS chooses a special ordering of the state variables which is amenable for (P-)QR
operations in the SRF propagation and update and prevents unnecessary computation. Specifically,
our main contributions can be summarized as follows:

e We propose a novel permuted-QR (P-QR) decomposition that not only fully utilizes the upper-
triangular structure during matrix factorization, but also helps maintain the upper-triangular
structure of the square-root covariance. With that, we develop an efficient (P-)QR-based SRF
update method, which is shown to be significantly faster than the existing methods if m > %n
(where m and n are measurements and states size).

e We are among the first to design the SRF-based VINS with online calibration within an effi-
cient sliding-window filter framework, which achieves never-before-seen efficiency and remark-
able numerical stability even running on 32-bit. Our implementation demonstrates notable
efficiency gain as it is almost two times faster than the state-of-the-art filters.

e We perform extensive numerical studies to highlight potential numerical challenges in VINS
and underscore the advantages of our proposed SR-VINS. Real-world experiments validate
the notable efficiency boost of the proposed method while maintaining accuracy.

2 Efficient Sqaure-Root Filtering

In comparison to a canonical EKF (or its variants) tracking the dense covariance matrix P, the SRF
propagates and updates the corresponding upper triangular square-root matrix U, i.e., U'U = P,
while its state estimates are computed in the same way as the EKF [11]. By doing so, in principle,
it possesses some key features that are particularly compelling to visual-inertial estimation at
the edge. For example, the SRF can represent a broader dynamic range and reduce numerical
errors by using a reduced condition number (i.e., the square root of the condition number of P),
thus offering better numerical stability. Moreover, the SRF can be significantly more efficient in
both computation and memory consumption because it can use lower precision without sacrificing
accuracy. Additionally, it automatically ensures the symmetry and positive semi-definite of the
corresponding covariance matrix. However, in practice, it is not easy to capitalize these benefits if
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blindly implementing the SRF, because the much-needed matrix triangulation operations required
in the filter are computationally expensive. This is one of the reasons that the SRF has not been
widely adopted in VINS, despite the aforementioned theoretical advantages. In this work, we,
for the first time, fully take advantage of the upper-triangular structure of the SRF in VINS, by
leveraging a new Permuted-QR (P-QR) algorithm.

2.1 Permuted-QR Decomposition

In contrast to the standard QR decomposition, for example, based on Givens rotation [15] or
Householder [16], the proposed P-QR yields a lower, instead of upper, triangular matrix based on
the following lemma:

Lemma 1. For a full-rank matric My, «, (m > n), there exists the following lower-triangular
P-QR decomposition:'

A_n)xn| P-QR O(m—n)xn
Minsxn = [ B } = Qi { T } )

where Q1 is orthonormal and F is lower triangular.

Proof. We employ an anti-diagonal permutation matrix, IT = adiag([1---1],), and a row permu-
tation matrix T, to transform M into M” as:

M:=IT ' MII" =I'T"M'II" =M1’ (2)
where T'T is used to permute the rows of M’ to make M” as close to upper triangular as possible

so that we can perform QR decomposition on it efficiently. The standard QR of M” yields the
following orthonormal matrix Qs and upper triangular matrix C:

w2, ] 3)

Substitution of M” into (2) yields the following identities:

M =TQ, m ' =rQ.Irm'’ m m’ (4)
—— 0
-~ [{] - ]

where we have employed a new anti-diagonal permutation matrix II' = adiag([1- - - 1],,) along with
II to permute the upper triangular C into the lower triangular F. ]

Figure 1 visualizes how the matrix structure evolves during the proposed P-QR decomposition.
Note that the resulting lower triangular structure of F will enable significant computation savings
in the SRF update.

! Although we here assume the matrix M is of full column rank, our P-QR is applicable to rank-deficient matrices
as the standard QR does.
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Figure 1: Evolution of the matrix structure when performing the proposed P-QR decomposition.

2.2 Propagation
2.2.1 Kalman Filter
The propagated (a prior) state and covariance estimate can be derived as follows:

X1k = PrXpk (6)
Piip = B1Pyp @) + Wy, (7)

2.2.2 Square Root Filter

The mean propagation of SRF remains the same as KF, here we introduce the special square root
covariance propagation as:

1
2
W

QR Utk
q.| ®)
Uy ®)

0

T 1 1
where Wy = W2 W?, and W} can be obtained by Cholesky decomposition on Wy.
It is clear from the above equation that we perform the QR decomposition of the LHS stacked
matrix to get the propagated square root covariance matrix Uy qq).

2.2.3 Proof
We first multiply LHS of Eq. (8) with its transpose:

1

T WE T T T 1

) _ 2 2
[W,g @kUglk] Uk\kfbg = U Upp®r + Wi W, (9)
=&, P8, + W, (10)

Then we multiply RHS of Eq. (8) with its transpose:

U
{U,Ll‘k 0} Q/ Q; [ k(—)i-llk] = U;+1|kUk+llk (12)

From the equations above, we have shown the equivalence of KF and SRF propagation.
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Remarks: Note that if most of the states have zero-dynamic, the QR decomposition performs
in Eq. (8) only needs to work on serval states, which can be efficient.

2.3 State Augmentation and Clone
2.3.1 Kalman Filter

Given the prior state x;, and the process model. The state and covariance augmentation for the
KF can be written as:

x = [X’f“"f] (14)
Xk|k
D.P @) + Wi @.P
P= 15
[ Py @) P (15)

We can then derive the cloning process, which is used in the MSCKF. We denote X¢ j41|x as the
cloned state of X;q);. Since they are identical, the state and the covariance can be derived as:

[ Xpp1 )k
X = | XC 1]k (16)
L Xk
[P @) + Wi, &P @) + Wy &Py,
P= &P ® + W, &P, +W, &P, (17)
Py @) Py @) P

2.3.2 Square Root Filter

X = [&]fﬂk} (18)
Xk|k
1
W; . 0 | QR Q |:Uk;+1k gmm} (19)
Uk\k@k Uk|k 0 klk,2
-A)A(k—&-l\k
X = XC’,k-i—l\k (20)
L Xkl
(Urs1je Urpre Uk
U= 0 0 Uk|k,2 (21)
0 0 0

2.3.3 Proof
We first multiple both sides of (19) with theirs transpose
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I 1 T
Wg (I’k:Uk|k W} . 0 Uk_|_+1|k 2 Q'Q [Uk+1|k Uk|k,1} (22)
0 k‘k U ®,  Uppi Uper Uk 0 Uppo
T
[(I)kPMk(I);— + Wy q)kPk|k] _ Uk+1|kUk+1\k Uk+1|kUk\k 1 (23)
Py @) P U;l—\kUk+1|k,1 U;I‘k 1 Uk, + Uk|k o Uklk,2
Then we can easily prove it through multiple (21) by its transpose on the left,
Bodl
Ueie 0 0 MO Upgape Upgpen
U'u=|U,,;, 0 0 0 0 Uppo (24)
T T
r T T
UI%+1|kUk+1\k UI%—&-llkUk'i'l\k Ul_cr+1|kUk\k,1
= UkT+1|kUk+1\k UkT+1|kUk+1\k Uk+1|kUk\k,l (25)
_Uk|k,1Uk+llk Uk\k,lUk+1|k k\k 1 Ukjr,1 + Uk|l~c 2 Uklk,2
[®1P) @, + Wi ®uP @) + Wy &Py,
= | Py @) + Wi &P @) + W, &Py, (26)
Py @) Py @) Pk
—P (27)

2.4 Update

Given the measurement equation z; 1 = Hg 11X 1+n, we now show the state mean and covariance
update for both KF and SRF.

2.4.1 Kalman Filter

The state update equations for the Kalman filter are derived as:

Xt 1lk+1 = Xer1je + Ker1Tr41 (28)
Pt = Prpip — Proap St Hient Prgae (29)
where:
Tpr1 = Zg+1 — Hpp1Xpp e (30)
Skt1 = Hi1PrpHi g + Ria (31)
Kpi1 = ProHy S (32)

Kalman gain is first calculated and then used in both state and covariance updates.

2.4.2 Square Root Filter

During the update, a canonical SRF does not exploit the special structure of the square-root matrix
update and incurs more expensive operations. In contrast, we propose a novel square-root update
equation that is significantly more efficient by leveraging the proposed P-QR decomposition.
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Table 1: FLOPs of the different measurement update assuming uncorrelated measurements and ignoring the terms
of order lower than 3 (m measurements, n states).

Methods Potter[35] Carlson[42] Proposed
Flops 6mn? %mn2 3mn? + %n?’

Lemma 2. [t is equivalent to the KF update if the SRF updates its square-root covariance and
state estimate as:
_ =T
Uy =F; Uppg (33)
N A T To—
Xklk = Xk|k—1 + Uk|kUk’\ka Rk ll‘k (34)

where Hy. is the measurement Jacobian, Ry is the noise covariance, and ry is the residual. Most
importantly, ¥y, is lower triangular (and thus F,;T is upper triangular), which is obtained by the

following P-QR:

R_%HkUTf P-QR 0
[ k . K|k 1] = Q[FJ (35)

Note that the SRF first updates the square-root covariance Uy, (33) and then use it to update the
state Xy, (34).

2.4.3 Proof

We can now prove the equivalence between KF and SRF update equations:

Pt = Prpape — Proap S He Prga (36)

_ T T T T T
= Upp1p Ukt1ik = Upg i Uk o 1 (Hk+1Uk+1\kUk+1|ka+1 + Rk+1)

—1
-
Hy1Up i Uk

T T T T
= Ukt <I = Urp1pHesn (Hk+1Uk+1|kUk+1\ka+1 + Rk+1>

-1

1
Hk+1U;+1|k> Uik (37)

= Ug+1\k I+ Uk+1|ng+1R1;i1Hk+lU;+1|k Uk+1|k (38)
F;;%kﬂ

= Ull—+1\kFl;i1F1;I1Uk+llk (39)

= U11—+1\k+1Uk+1\k+1 (40)

From Eq. (37) to Eq. (38), the matrix inversion lemma is used.

Remarks: It is important to stress that the P-QR efficiently computes the lower-triangular
matrix Fj, which enables efficient update of the square-root covariance because both F,;T and
Uy, -1 are upper triangular. To see this, notice first that the LHS of (35) has an identity matrix
at the bottom. Leveraging this structure allows for efficient QR decomposition because there is
no need to zero out the elements below the diagonals of I. When solving for Uy, even though
inverting Fg is needed, thanks to its upper triangular structure, we can solve it efficiently using
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back substitution on F;—UMk = Upp—1- With these structure benefits, we calculate the number of
arithmetic operations required in the update with the assumptions: (i) measurements are uncorre-
lated, (ii) the terms that have orders smaller than 3 are ignored and (iii) the Householder algorithm
is used to perform standard QR. Table 1 shows that our proposed SRF requires fewer operations
than the most competitive Carlson update when m > %n (m measurements, n states), which is

often the case in VINS.

2.5 State Marginalization

In what follows, we will explain the state marginalization procedure in both KF and SRF with a
simple example, where x is denoted as the state vector P represents the corresponding covariance
and U is the upper-triangular square root covariance matrix. Note that we slightly abuse the
notation to clarify the explanation.

2.5.1 Kalman Filter

X1 Py Pip Py
x=|x2|, P= (P21 P2 Pos (41)
X3 P31 P3 Pss
e Marginalize x3:
[x1 ] P11 Py
XRp = , Pr= 42
R | X2 n P21 Poao (42)
e Marginalize xs:
[x1 | (P11 Py3]
Xp = , Pp= 43
R | X3 | " P31 Pss (43)
2.5.2 Square Root Filter
X1 Un U U
x= [x2|, U=| 0 Uy Uy (44)
X3 0 0 U33
e Marginalize x3: In this case, we can simply grab the remaining square root covariance blocks
as follows :
[xs _ {Unn Uyp
XR = [XJ , Ur= [ 0 U22:| (45)

e Marginalize xs: on the other hand, if we are going to marginalize the state in the middle, the
marginalization process can be described as:

U;; Uy R U U,

x
XR = [Xl] , | 0 Uyl =Q| 0 Uy (46)
3 0 Uy 0 0
where the remaining square root covariance matrix Upg is the upper part:
U Ui
Up = [ 0 ,15] (47)
23
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2.5.3 Proof

Here we take the second case where xo is marginalized as an example to prove.
Firstly, we show the equivalence between P and U before marginalization

[U,Un U, Uy U, U3
U'U= |ULU;; ULUpp+ULUy U{,Uy3 + UL, Uy (48)
U,U1;; U/ Up2 4+ UJUs UU 3+ UJyUss + UgyUsg
Py Py Py
= |Pa1 Py Po3 (49)
| P31 P32 Ps3
-P (50)

Then, we can prove the relationship between Pr and Upg after marginalization

[ U/ 0 Uy U
UTU» — 11 11 Ui 51
AU ot Lo v o1
_ U /
U/, 0 O 13
=l oyt 0] Q'Q| 0 Uy (52)
Y13 23
0 0
- Uir U
U, o 0
) LA UT} 0 Us (53)
Uiz Ugs Uss 0 Uss
— _UirlUll U1T1U13 (54)
_UngUll U,Uj3 + UjUgs + Ul Uss
[Py Pys
P31 P&J (55)
—Pp (56)

Remarks: As can be seen in eq. (45), when the marginalized state is at the end of the whole
state, there is minimal effort to get the marginal covariance. If this is not the case as described
in eq. (46), QR decomposition is required. But we should note that in the second case, only the
second column block needs to perform QR since the first column block is already upper-triangular.
Therefore in the design of SRF, placing the state that is likely to marginalize soon at the end would
be recommended.
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3 SRF-based VINS

3.1 State Vector

At time ¢, the system state x consists of the current navigation states x;, , historical IMU pose
clones x¢, and a subset of 3D environmental (SLAM) features x;:

X = [XITk X;lib xg XHT (57)
xi = [Ba7 Gpj, G b bl] (58)
Xeatip = [ta &4 °p] ('] (59)
X0 = [X;k ka_C}T (60)
xp= 6. £]]" (61)

where Ich is the unit quaternion (éR in rotation matrix form) that represents the rotation from

the global {G} to the IMU frame {I}; “p;, “v;, and pri are the IMU position, velocity, and 7’th

feature position in {G}; by and b, are the gyroscope and accelerometer biases; x7, = [g(f “pi]t.

ty denote the time offset between camera and IMU, {qu_T, Cp[T} is the extrinsic between camera

and IMU sensors and ¢ is the camera intrinsic parameters.

Remark: We have given careful consideration to the order of the state variables in the estimator
[See Eq. (57)]:

e x; and X4 are prioritized at the top as they would not be marginalized.
e Clones x¢ are ordered from the latest to oldest for easy marginalization of the oldest one.
e X is placed at the end for three reasons:

1. SLAM features are marginalized frequently.

2. This ordering makes the upper-triangular structure [M” in (3), see Figure 1] better
preserved during P-QR when performing update.

3. It ensures U is still upper-triangular after initializing a new SLAM feature

3.2 Propagation and Clone

The IMU kinematics are used to evolve the state from time t; to tgy1:

RPNG-2024-SRF 10



where w(t) = [w; wy ws]' and a(t) are the angular velocity and acceleration in the IMU local

frame {I}; Q(w(t)) = :E:JTJ (g} where |-| is the skew-symmetric matrix. n,, and n,,, are white

Gaussian noise that drive the IMU biases. A canonical three-axis IMU provides linear acceleration
and angular velocity measurements, a,, and {w,,, expressed in the local IMU frame {I'} modeled
as:

a(t) — GR(t)“g + ba(t) + na(t) (67)
win(t) = w(t) + by(t) + ngy(t) (68)

o
3
=

[

where Cg ~ 0,0, —9.8]T is the gravitational acceleration expressed in {G}, n, and n, are zero-
mean white Gaussian noise. éR denotes the rotation matrix from global frame to local IMU frame.
The IMU nonlinear kinematics can be formulated as follows:

XIlpy1 = er (X]k7lak‘a Iwkn nI) (69)
where n; = [n) n} nj, n,,]". After linearization, the state translation matrix can be derived
as [17]:

®,; 03 03 Py 03
Dy I3 I3At Poy Pos
®;(k+1,k)= |®31 03 I3 B34 P35 (70)
03 03 03 I3 03
03 03 03 03 I3
with:
Bii= 1t R @u=—d, (M0, ) At @y = —ARy(Da] @0 = ARE (71)
By5 = —ARpE; ®3, = —ARy|E14,] B3, = ARLE3 B35 = -ARLE; (72)
and:
tet1 tr+1 s
= 2 / exp (T@ér) dr =y £ / / exp (" @éT) drds (73)
tr tx tr

[1

A e IkR I 4 Iy ~ =AY fetr o Iy, I 4 Iy ~
32 FR|7a]J, (FwéT) ordr By £ FR|7a|3, ("*@éT) drdrds (74)
tg ty tg

The noise Jacobian is derived as:
®;4 03 03 O3
P4 P25 03 O3
Gi(t)= |®34 P35 03 03 (75)
03 03 I3At 03
03 03 03 IgAt
To perform IMU propagation in the SRF, we augment the inertial state by padding the new state
T
at the top via stochastic cloning, i.e., [xﬂﬂ Xﬂ} , and propagate the corresponding square-root

covariance via the standard QR [see (8)]:

1
W2 0 |Qr [Uk—i—l Uk,1:| 76
U,/ UJ Q 0  Uype (76)
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Propagation & Clone Marginalization Update

—2HU|
U UEB
P-QR Eq.(9)
— E%I(:w) — 1 > F Eq.(10)
% U’ Ur ®

\%% U,
QR
U Ba(18) -
] Ud Us
Measuremen t X

Figure 2: Visualization of the matrix structure during the SRF operations.

ol

marg.x

where Uy and Uy are the square-root covariance corresponding to the xj, and xj, , ,, respectively.
We are now to marginalize certain states such as the oldest state from the square-root co-
U1 Ugp
0 Uyp
the marginalized states and form U’, and then perform QR of U’ to obtain the upper-triangular
square-root covariance Ug:

variance. As shown in Figure 2, we first remove the columns of [ } corresponding to

v ¥ qp [Iﬂ (77)

It is important to note that thanks to our special state ordering by placing non-marginalized
variables at the top (e.g., X7 and X.q) and those to be marginalized (e.g., features) at the bottom,
the resulting square-root covariance is close to the upper-triangular form, thus leading to significant
computation savings.

3.3 Feature Update

The camera provides bearing observations of environmental 3D points. These observations can be
used to update our state using the following measurement function (note that we use the anchored
inverse depth feature model [18, 19]):

z = h(%ps(f, %1, %1,, 64, “Pr), ¢) + M1 (78)
“p;={RER (éART[APf + Py - Gplk) +pr (79)

1 cos(0)sin (o)
"apy = = |sin(f)sin(¢) (80)

p cos(¢)
-

F=[0 ¢ 4 (81)
where h(“kpy, ¢) is the pinhole camera model with radtan distortion [50], {I4} is the anchor IMU

frame, {Ij} is the IMU frame at the time k when this observation is captured by the camera.
The linearized measurement equation can be derived as:

r = H;x; + HeginXcativ + Hfif +n=: HyX; + Hfscf +ng (82)

3.3.1 MSCKF Feature Measurement

If measurements are corresponding to the MSCKF feature f,,, we project the linearized measurement
function onto the left nullspace N of the feature Jacobian Hy, to remove the feature dependency,
as in the MSCKF [5]:

Iy, = NTI‘ = NTfo( -+ NTII =: H?f(z +n,, (83)
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3.3.2 Delayed Initialization of SLAM Features

We now initialize a new SLAM feature xy, (instead of x,,) given a set of measurements as in (82).
We first perform P-QR to compress H‘} to obtain the lower triangular matrix H’fgz

P-QR 0
H; =" [Q1 Q [H’ ] (84)

f2

Multiplying (82) by [Q1 Q2] " yields:
T 0 HZ e T
e e, w01 .
[ ;] H}z H,| | %o ; (85)
r; . 0 ~ H; ~ n;

R CAR A ®

We now can efficiently initialize the square-root covariance with the new feature being included in
the state based on the bottom linear system r/, of (86) as follows:

U UH, H,'

11 T
0 R 2Hf2

where R’ = E[njn)']. The top linear system of (86) is used for SRF update as normal measure-
ments.

3.3.3 SLAM Feature Reobservation

If measurements are corresponding to a SLAM feature fo which has been initialized, the residual
(82) is re-written as:

rg = Hi%, + Hj Xj, +n, (88)

Remarks: Note that so far we only obtain all the measurement equations but have not used
them to update the state and covariance yet. This is important because stacking all the measure-
ments and processing them all at once is more efficient in the proposed SRF system.

3.3.4 Mahalanobis distance test

Mahalanobis distance test has to be used in practice in order to reject outliers, which is computed
in the SRF: d,,, :=r" (HUTUHT + R)f1 r. As the measurements of the MSCKF features r,, and
SLAM feature initialization update r; are not related to features (i.e., H = [H, H¢] = [H, 0]), we
can compute:

o [3 5]04)- %57

0 Uzl | O 0 (89)

Clearly, given the upper-triangular structure of U and the unique structure of the measurement
Jacobian, we only need to compute UlHl, instead of multiplying the measurement Jacobian HI
with the full U. For the SLAM feature update measurement ry, the sparsity of the measurement
Jacobian which only relates to the corresponding IMU pose and feature allows us to leverage the
upper-triangular structure of U to compute d,, more efficiently. Note that the computed UlHl

can be used in the update to avoid redundant computation.
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3.3.5 SRF Measurement Update

We perform batch update using all the MSCKF feature measurements r,, (83), SLAM feature
initialization r; (86), and SLAM feature measurements rg (88). The stacked measurements are
given by:

T'm H" 0 0 n,,
r;, | = H; 5(1 + 0 ifo + 10 ifN =+ | n;
I H H‘}O 0 ng
- - e
=[H. Hy, 0][x; %x;, %x;] +n (90)

With this, we perform the SRF update as in (33) and (34). Note that the above measurement
does not depend on the new SLAM feature and the corresponding Jacobian is zero, which can be
leveraged to make the update even more efficient.

It is worth noting that this stacked measurement equation is not a function of new SLAM
features xy,, and the corresponding Jacobian is always zero. We can thus leverage this special
structure of measurement Jacobian to make the filter update more efficient.

We first define the square-root covariance for the state before updating as:

u°, u?

e _ zf Il

U [ o U? 2] (91)
N>

Following Eq. (35), F;¢ can be derived as:

[ 1 UeT 0
1 T _1
R™z [H,; 0]U®'] _ |R7z[Hy O [ A ]
1 o UfN71 UfN72 (92)
RH, U, 0
= I 0 (93)
0 I
P-QR qurl qur2 0 0 0
= qurS qur4 0 Fxf 0 (94)
0 0 I 0 I
0
-ay] (95)
where
Q rl Q r2 0
F 0 Pq pq
F = |: (C)Cf I:| s Q = qurS qur4 0 (96)
0 0 I
_1 @T
From Eq. (93) to Eq. (94), we apply P-QR on R QHIfoxf ] such that
_1 =y
R :H,;U P-QR | Qpgr1 Qpgr2 0
xf = (97)
I qurS qur4 Fa:f
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The updated square-root covariance matrix U? can be derived as as:

U® =F TU° (98)
—-T S) S}
— [Fxf 0} [Uxf UéNJ] (99)
o IJ|o0 U;,
F2US, F2]U?
_ wa af x{}@ Inil (100)
fn,2

where we note that the bottom right block U?N o, remains the same before and after the update,
and we only need to inverse F, instead of the whole F matrix.

Algorithm 1 SR-VINS

Propagation and Cloning: Propagate the IMU state while cloning the latest IMU pose [Eq. (76)] (skip
QR)
Marginalization: Marginalize oldest clone and lost tracked SLAM features [Eq. (77)] (QR)
Measurements Formulation: Using the tracked features to formulate measurements and prepare for
updates.

e MSCKEF features via nullspace projection [Eq. (83)]

e SLAM feature initialization [Eq. (84),(86),(87)]

e SLAM features re-observation [Eq. (88)]
SRF update:

e Stack meas. [Eq. (90)] and do SRF update [Eq.(35)] (P-QR).

At this point, we have presented the main steps of the proposed SR-VINS as summarized in
Algorithm 1.

3.4 Anchor Feature Anchor Change

Anchor feature representation has been commonly used in many state-of-the-art VINS algorithms |

, 26]. The anchor frame, denoted as A, can be selected as any camera frame that observes the
feature in the sliding window. When the anchor frame corresponding to a long-tracked slam feature
is to be marginalized from the sliding window, it becomes necessary to perform an anchor change
to represent the feature with respect to a new anchor frame in the state, enabling the consistent
estimation of the feature. Here we present how to perform the anchor change in the SRF.

To facilitate the anchor change process, we seek to establish the relationship between the feature
represented in the old anchor frame A, denoted as 41p 7, and the new anchor frame Ay, denoted
as 42p ¢- To simplify the explanation, we use the 3D anchor feature here as an example to perform
anchor change, if other feature representations are used (e.g. 1D inverse depth representation [11],
inverse depth representation [18], etc), extra Jacobians need to be calculated with respect to Aip ¥
and 42p ¢ and then applied with the chain rule. This relationship can be derived based on the
fundamental principle that the global position of the feature, “p f, remains unchanged regardless
of the choice of anchor frame. Thus, we can establish the following equations to capture the
relationship between the feature representations in the old and new anchor frames:

A A
Linearization of the above equations, we can get:

Gf)f = Holdiold + HfoldAlf)f = Hnewinew + anewAQf)f (102)
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where X,;g and Xy, denotes the orientation and position of the old anchor frame, {A;}, and new
anchor frame, {As}, respectively. H represents the Jacobians of the linearized system. Rearrange
Eq. (102) we get:

Azf)f — H;nlew HfoldAl f)f + H;nlew H iXoa — H;nlew H,coXnew (103)
We can then perform the SR-covariance propagation introduced in Section 2.2.2 to get the co-
variance for the new anchor feature 42p f- Note that this propagation is easier than the IMU
propagation since no noise is involved.

3.5 Online calibration

In our SRF-based VINS, we also perform online spatiotemporal calibration of the camera-IMU time
offset and extrinsic transformation, and camera intrinsic. One can simply take the derivative of
the camera measurement function with respect to the desired variables that they wish to calibrate
online (camera-IMU extrinsic and camera intrisic). In what follows, we focus on the time-offset
calibration between the camera and IMU sensor.

Consider the IMU time ¢ is corrupted by the time offset t4. In analogy to [71], if a new image
z;(t) is received from the camera, we first employ IMU measurements to propagate up to time
t 4 14, where 4 is the estimate of time offset parameter, which can be found in [51]. After that,

we augment and clone the state at time ¢ + t4, where we denoted as x(t + t4). To simplify the
explanation, we gave the following general linearized system:

X(tg +tg) = X(ty +1q) + Hytg (104)

where H; is the Jacobian w.r.t {;. Following the propagation method in SRF introduced in Sec-
tion 2.2.2, we can derive the propagation Jacobian from Eq. (104) for the time offset calibration
as:

@,

H 1 (105)

4 Numerical Study

Table 2: Simulation parameters and prior standard deviations for measurement perturbations.

Parameter Value Parameter Value

Gyro. White Noise  2.0e-4 Gyro. Rand. Walk  2.0e-5
Accel. White Noise 5.0e-4 Accel. Rand. Walk 4.0e-4
Cam Freq. (Hz) 10 IMU Freq. (Hz) 400

Num. Clones 11 Tracked Feat. 100
Max. MSCKF Feat. 40 Max. SLAM Feat. 50

We use a 30-minute, 2.4km UD-ARL trajectory (see Figure 3) and employ the OpenVINS
simulator [19] to produce realistic visual bearings and inertial measurements, as detailed in Table
2. For a fair comparison across estimators, we build upon OpenVINS which utilizes EKF. We
implemented float version of OpenVINS (EKF), the square-root inverse filter (SRIF), and the
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Table 3: RMSE values for orientation (deg.) and position (m) based on 200 runs on UD-ARL with different estimators.

Methods EKF SRF SRIF
double  0.957 / 0.146 0.957 / 0.146 0.957 / 0.146
float 0.960 / 0.146 0.959 / 0.146 1.045 / 0.174

Figure 3: Simulated 2.4km UD-ARL trajectory.
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Figure 4: Top: Orientation/position errors of different estimators performed on UD-ARL dataset. ‘d’ is for double;
‘f7 is for float. While most estimators perform similarly and are hard to distinguish from the plot, SRIF(f) shows a
clear drop in accuracy over time. Bottom: The condition number of the square-root information matrix (black line)
with that of the P-QR lower triangular matrix F (red line, see (35)).
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Table 4: Average Absolute Trajectory Error (ATE) in degrees/meters. ‘d’ and ‘f” indicate the use of double and float.
SRF (M) utilizes float and MSCKF features only for comparison with RVIO2.

Algo. V101 V102 V103 V201 V202 V203 MHO1 MH02 MHO03 MHO04 MHO05
EKF(d)  0.70 /0.06 1.67 /0.06 2.88/0.07 095/0.10 1.38/006 1.28/0.14 1.74/0.10 091 /0.17 1.14/0.12 0.95/025 1.03/0.41
EKF(f)  0.71/0.06 1.66/0.06 2.87/0.06 0.94/010 1.40/0.06 1.25/0.14 176 /0.10 091 /017 1.18/0.13 094 /025 1.04 /041
SRF(d)  0.68/0.05 1.68/0.06 2.88/0.06 0.99/011 140/0.06 1.28/0.14 1.75/0.10 093/0.18 1.18/0.12 0.95/0.24 1.04/0.39
SRF(f) 0.66 / 0.05 1.68/0.06 2.8%/0.06 0.98/011 1.39/0.06 1.27/0.14 176 /0.10 093 /0.17 1.14 /012 0.93/0.23 1.05/0.40

SRF(M) 0.63 /0.08 1.75/0.06 1.76 /0.08 0.74 /0.10 1.36 /0.08 1.19/0.16 1.56 /0.15 0.95/0.22 1.02/0.17 1.12/0.25 0.93 /0.39
RVIO2 0.88 /0.09 227 /0.10 202/0.10 219/0.13 1.90/0.11 1.50/0.15 2.60/0.17 1.00/0.15 1.08/0.19 1.10/0.24 0.95/0.32
VINS-Mono 0.82/0.07 274 /0.10 5.15/0.15 213 /0.09 257/0.13 3.43/0.29 0.78/0.20 0.86/0.18 1.82/0.23 251/041 0.94/0.29

proposed SRF-based VINS (SR-VINS). In Figure 4, the top two plots illustrate the orientation and
position errors across different estimators with both double and float. Meanwhile, the bottom plot
depicts the condition number of the square root information matrix and the condition number of
the F matrix for SRF over time. Table 3 reports the average Root Mean Square Error (RMSE) for
different estimators over 200 Monte-Carlo runs.

Given the covariance matrix P, the square-root information matrix R is given by: RTR = P~1.
From the figure, we observe as the condition number of R grows larger than 2¢°, both orientation
and position errors of SRIF(f) start showing a degraded performance compared to other filter design
methods. This can also be seen in Table 3, the float SRIF is inaccurate with large RMSE values.
This is likely due to the numerical issue when performing inversion on ill-conditioned R to solve
for state update under limited machine precision (see Chapter 3.5.1 in [22]).

In contrast, the covariance-form estimators, both EKF and the proposed SRF, demonstrated
consistent performance regardless of using double or float. This is evident from the comparable
RMSE values in Table 3, as well as the consistent error trends in Figure 4. When performing
the SRF update, the inversion of F is supposed to be the most numerically challenging operation.
We thus plot its condition number shown in Figure 4 (bottom). Its condition number is shown
to be stable and close to 1, demonstrating the improved numerical stability of the proposed SRF.
Intuitively speaking, F~ T is the transition matrix between Uyjp—1 and Uy, Therefore, as long as
the measurements used in the update are not extremely accurate compared with the propagated
estimation, we would expect F~ " to be close to an identity matrix and be well-conditioned, which
is almost always the case in the VINS in practice.

5 Real-World Experiments

We further evaluate the proposed SR-VINS on the EuRoC MAV dataset [52]. Only the left camera
is used during the evaluation. The proposed system is built on top of OpenVINS[19]. We use the
same default setup as OpenVINS [19], which extracts 200 sparse point features, keeps 11 clones,
uses at most 50 SLAM features and 40 MSCKF features, performing camera-IMU extrinsic, time
offset, and camera intrinsic calibration online. The proposed system is tested with both double and
float versions, denoted as SRF(d) and SRF(f), respectively.?

We compare the proposed SR-VINS with the baseline Open-VINS (EKF(d)), which is originally
in double, a float version of Open-VINS (EKF(f)) is also developed and evaluated. With default
prior, float Open-VINS will experience negative diagonals in the covariance matrix and diverge
in some sequences, thus its prior is tuned to make sure it runs on all the sequences. To make
a fair comparison, all the versions of SRF and EKF use the same prior. We also compare with
the open-sourced RVIO2 [27], which is a square-root inverse filter VIO based on robocentric state

2All computational results were performed in a single thread on an Intel(R) Core(TM) i7-11800H @ 2.30GHz.
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Table 5: Average estimator run time (ms) comparison (excluding feature tracking) on EuRocMAV dataset. SRF(M)
means adopting the same clone size and using only MSCKF features similar to the default setup of RVIO2 (15 clones,
track 200 features, all the features are processed as MSCKF features once they lose track or reach maximum clone
size).

Algorithm EKF SRF SRF(M) RVIO2 VINS-Mono

Double 4.2 2.8 1.7 - 22.4

Float 3.0 22 1.1 1.8 -
formulation, and VINS-Mono [14], which is an optimization-based sliding window VIO system. It is
worth mentioning that EqVIO [8, 11] can also achieve impressive computational efficiency, however,

its computation efficiency is gained by a much smaller state size, which is unable to fairly compare
because its design principle is different from MSKCF-based VINS, thus, we do not include. The
averaged Absolute Trajectory Error (ATE) values are reported in Table 4. Since RVIO2 only uses
MSCKF features by default (i.e., no long-track SLAM features are maintained in the state vector,
thus having a much smaller state size), we also report the float SRF performance with similar config
(keeps 15 clones, tracks 200 features, all the features are processed as MSCKF features), denoted
as SRF(M) in Table 4, for a fair comparison.

From Table 4, we can see that the performance of SRF(d), SRF(f), EKF(d), and EKF(f) are
very similar as expected. The performance of double and float, EKF, and SRF are not exactly
the same in the real world due to two reasons. First, y? test is adopted to reject outliers and
robustify the estimator and might introduce randomness. For example, in certain cases, SRF(d)
might reject measurements that pass x? test in SRF(f) because of slight numerical differences, this
will cause SRF in different versions to use different measurements and have different performance.
Second, OpenVINS (EKF) performs a “sequential” update, which first processes MSCKF features
and then SLAM features for the consideration of efficiency, while SRF performs the update all at
once. This also introduces differences in the state linearization points. Compared with RVIO2
and VINS-mono, SRF also achieves superior performance in almost all the sequences. Surprisingly,
even SRF(M) achieves similar or even better performance than the other systems.

The efficiency of the estimators is also evaluated and reported in Table 5. Clearly, SRF(f) is
much faster than its baseline EKF(d), reducing the runtime almost by half. Regardless of being
in double or float format, SRF consistently prevails EKF. Remarkably, the double precision SRF
even outperforms the float EKF. VINS-Mono runs the slowest as it performs iterative optimization.
RVIO2 is also developed in float and shows excellent efficiency, but with a similar setup, SRF(M) in
double prevails. Finally, SRF(M) achieves the best efficiency with 1.1 ms in estimator runs, which
means it can run over 900Hz, especially suitable for running on a computation-constrained platform.
The efficiency gain of SRF mainly comes from the proposed QR-based SRF update method, fully
explored problem structure (state order, upper-triangular covariance, Jacobian structure, reusable
computation).

6 Conclusions and Future Work

In this paper, we have developed the first square-root filter (SRF)-based VINS (i.e., SR-VINS)
which significantly improves both the numerical stability and efficiency. We strongly advocate that
the SRF is ideal for VINS due to its ability to represent a broader dynamic range, guarantee the
property of the covariance matrix, reduce the memory requirement for covariance, and improve
numerical stability. However, it is not trivial to capitalize on these advantages because of the chal-
lenge of its update inefficiencies, especially in dealing with large measurement sizes. To overcome
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this issue and leverage the numerical advantage and the structure of the square-root covariance
matrix, we have developed a novel permuted QR (P-QR)-based SRF update method. With this,
we fully exploit the structure of the VINS problem to best utilize the upper triangular square-root
covariance to gain never-before-seen speed boost. From our comprehensive numerical studies and
real-world experiments, we have shown that the proposed SR-VINS can run robustly in float, gain-
ing significant speedup (around 2 times faster than the SOTA filters), while exhibiting no accuracy
loss, which makes it especially suitable for edging computing platforms. In the future, we are in-
terested in further improving efficiency in visual tracking by leveraging the covariance matrix to
reduce search space.
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