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Abstract

In this report, we propose a novel robocentric formulation of visual-inertial navigation systems (VINS)
within a multi-state constraint Kalman filter (MSCKF) framework and develop an efficient, lightweight,
robocentric visual-inertial odometry (R-VIO) algorithm for consistent localization in challenging environ-
ments using only monocular vision. The key idea of the proposed approach is to deliberately reformulate
the 3D VINS with respect to a moving local frame (i.e., robocentric), rather than a fixed global frame
of reference as in the standard world-centric VINS, and instead utilize high-accuracy relative motion
estimates for global pose update. As an immediate advantage of using this robocentric formulation, the
proposed R-VIO can start from an arbitrary pose, without the need to align its orientation with the global
gravity vector. More importantly, we analytically show that the proposed robocentric EKF-based VINS
does not undergo the observability mismatch issue as in the standard world-centric framework which
was identified as the main cause of estimation inconsistency. The proposed R-VIO is extensively tested
through both Monte Carlo simulations and the real-world experiments with different sensor platforms in
different environments, and shown to achieve a competitive performance with the state-of-the-art VINS
algorithms in terms of consistency and accuracy.

1 Introduction

Enabling high-precision 3D navigation on mobile devices and robots with minimal sensing of low-cost sen-
sors holds potentially huge implications in the real applications ranging from mobile augmented reality to
autonomous driving. To this end, inertial navigation offers a classical 3D localization solution which utilizes
an inertial measurement unit (IMU) measuring the 3 degree-of-freedom (DOF) angular velocity and linear
acceleration of the sensor platform on which it is rigidly attached. Typically, IMU works at a high frequency
(e.g., 100Hz∼1000Hz) that enable it to sense highly dynamic motion, however, due to the corrupting sensor
noise and bias, purely integrating IMU measurements can easily result in unusable motion estimates. This
necessitates to fuse the aiding information from at least a single camera to reduce the accumulated inertial
navigation drifts, which comes into the visual-inertial navigation systems (VINS).

In the past decade, we have witnessed significant progress on VINS, including both visual-inertial SLAM
(VI-SLAM) and visual-inertial odometry (VIO), and many different algorithms have been developed (e.g.,
[1, 2, 3, 4, 5, 6, 7, 8] and references therein). However, almost all these algorithms are based on the standard
world-centric formulation – that is, to estimate the absolute motion with respect to a fixed global frame
of reference, such as the earth-centered earth-fixed (ECEF) or the north-east-down (NED) frame. In order
to achieve accurate localization, such world-centric VINS often require a particular initialization procedure
to estimate the starting pose in the global frame of reference, which, however, is hard to guarantee the
accuracy in some cases (e.g., quick start, or poor vision). While an extended Kalman filter (EKF)-based
world-centric VINS algorithm has the advantage of lower computational cost [1, 4] in comparing to the
batch optimization-based ones (which incur high computation due to performing iterated linearization [5,
6]), it may become inconsistent, primarily due to the fact that the EKF linearized systems have different
observability properties from the corresponding underlying nonlinear systems [9, 10, 4]. The remedies for
mitigating this issue include enforcing the correct observabilty [4, 11, 12] or employing an invariant error
representation [13]. Therefore, one may ask: Do we have to formulate VINS in the standard world-centric
form? The answer is no. Intuitively, inspired by how humans navigate – we may not remember the starting
pose after traveling a long distance while knowing well the relative motion within a recent, short time interval
– we might relax the fixed global frame of VINS, instead, choose a moving local frame to better estimate
relative motion which can be used later for global pose update.

Note that, this sensor-centered idea for localization can be traced back to 2D laser-based robocentric
mapping [14], where the global frame is treated as a feature being observed from the moving robot frame
and the relative motion measurements from an odometer are fused for pose update, while the composition
step makes it possible to shift the local frame of reference during the motion. Following the similar idea, in
[15] a camera-centered formulation shows the potential to fuse the visual information with the measurements
from proprioceptive sensors (e.g., angular and linear velocity measurements). Both methods had been applied
to the EKF-based SLAM while performing mapping in the local frames, thus limiting the global uncertainty
and improving the estimation consistency. It should also be noted that a robust VINS algorithm using a
different robocentric formulation and sensor-fusion scheme was recently introduced [16]. In particular, its
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state vector includes both IMU states and the features which are reformulated with respect to the local
IMU frame, while the camera and IMU measurements are fused in a direct fashion. Additionally, in contrast
to [14, 15], it employs the iterated EKF to perform update, without the composition step to shift the local
frame of reference.

In this report, following the idea [14, 15], we reformulate the VINS in 3D with respect to a local IMU frame,
while in contrast to [14, 15, 16] which keep features in the state vector and have to concern the increasing
computational cost as more features are observed and included, we focus on an EKF-based visual-inertial
odometry (EKF-VIO) framework, i.e., multi-state constraint Kalman filter (MSCKF) [1], whose stochastic
cloning enables the VINS to process hundreds of features while only keep a small number of robot poses from
which the features have been observed, in the state vector, thus significantly reducing the computational cost.
However, as studied in [4], the world-centric MSCKF is inconsistent. To enable consistent MSCKF-based
3D localization, a novel lightweight, robocentric VIO algorithm (R-VIO) is proposed in this report with the
following keypoints:

• The global frame has been treated as a feature which involves the gravity effect, while the local frame
of reference is shifted at every image time through a composition step.

• The relative motion estimates used for global updates are obtained by tightly fusing the camera and
IMU measurements in a local frame of reference, for which instead of the features, a sliding relative
pose window is included in the state vector to aid the estimation.

• A tailored inverse-depth measurement model is developed, which allows for fusing bearing information
provided by the distant features, especially at motionless state.

• A constant unobservable subspace is analytically shown with the proposed robocentric formulation,
which is independent of the linearization points while possessing correct dimensions and desired unob-
servable directions.

We perform extensive tests on both Monte Carlo simulations and the real-world experiments running real
data of different sensor platforms from the micro aerial vehicle (MAV) flying indoor to the hand-held de-
vice navigating outdoor. All real-time results validate the superior performance of the proposed R-VIO
algorithm.

2 Robocentric VIO

2.1 State Vector

In the proposed R-VIO, the robot frame {R} is chosen as the immediate frame of reference for state estima-
tion. For robot equipped with an IMU, the corresponding frame {I} is usually considered to be aligned with
the robot frame. As a result, the global frame {G} (={R0}, the first robot frame) turns into a ”moving”
object with respect to {R}, and as compared to the world-centric case (e.g. [1]), we have a sequential frames
of reference as the robot is moving.

At time-step τ ∈ [tk, tk+1] the robocentric state with respect to {Rk} (set at time-step k) consists of the
global state and the IMU state, where the global state maintains the information of the start pose, while the
IMU state characterizes the motion from {Rk} to the current IMU pose, which is defined by the vector: 1

Rkxτ =
[
Rkx>G

Rkx>Iτ
]>

(1)

=
[
k
Gq̄
> Rkp>G

Rkg>
∣∣ τ
k q̄
> Rkp>Iτ v>Iτ b>gτ b>aτ

]>
(2)

1Throughout this report, k, k+1, . . . indicate the image time-steps, while τ, τ +1, . . . are the IMU time-steps between every
two consecutive images. {I} and {C} denote the IMU frame and camera frame, respectively, {R} is the robocentric frame of
reference which is selected with the corresponding IMU frame at every image time-step. The subscript `|i refers to the estimate
of a quantity at time-step `, after all measurements up to time-step i have been processed. x̂ is used to denote the estimate of
a random variable x, while x̃ = x− x̂ is the additive error in this estimate. In and 0n are the n× n identity and zero matrices,
respectively. Finally, the left superscript denotes the frame of reference with respect to which the vector is expressed.
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where k
Gq̄ is the unit quaternion [17] describing the rotation from {Rk} to {G}, RkpG is the position of {G}

in {Rk}, τk q̄ and RkpIτ are the relative rotation and translation of robot from {Rk} to {Iτ}, and vIτ is the
robot velocity in the frame {Iτ}. In particular, the local gravity vector is included which implicitly encodes
the orientation of {Rk}. Following Eq. (2), the error-state vector is defined as:

Rk x̃τ =
[
Rk x̃>G

Rk x̃>Iτ
]>

(3)

=
[
δθ>G

Rk p̃>G
Rk g̃>

∣∣ δθ>τ Rk p̃>Iτ ṽ>Iτ b̃>gτ b̃>aτ
]>

(4)

where, in particular, if the quaternion estimate is ˆ̄q, then the error quaternion δq̄ is defined by:

q̄ = δq̄ ⊗ ˆ̄q (5)

δq̄ '
[

1
2δθ

> 1
]>
, C(δq̄) = I3×3 − bδθ×c (6)

where ⊗ denotes the quternion multiplication, δθ is 3 degree-of-freedom (DOF) error angle associated to the
error quaternion, and C(·) represents a 3× 3 rotation matrix with b·×c the skew-symmetric operator.

Assuming that at time-step k when {Ik} is set to be the frame of reference (i.e., {Rk}), a window of the
relative poses between the last N robocentric frames of reference is included in the state vector:

x̂k =
[
Rk x̂>k ŵ>k

]>
(7)

=
[
Rk x̂>G

Rk x̂>Rk

∣∣∣ 2
1
ˆ̄q> R1 p̂>R2

. . . i
i−1

ˆ̄q> Ri−1 p̂>Ri . . . N
N−1

ˆ̄q> RN−1 p̂>RN

]>
(8)

where i
i−1

ˆ̄q and Ri−1 p̂Ri are cloned from the IMU state estimate Ri−1 x̂Ri , i ∈ {2, . . . , N} (cf. Section 2.3.4).
The error-state vector is defined accordingly:

x̃k =
[
Rk x̃>k w̃>k

]>
(9)

=
[
Rk x̃>G

Rk x̃>Rk

∣∣∣ δθ>2 R1 p̃>R2
. . . δθ>i

Ri−1 p̃>Ri . . . δθ>N
RN−1 p̃>RN

]>
(10)

Specifically, if i ∈ {k −N + 1, k −N + 2, . . . , k}, then this window represents a short memory of the system
motion. With such interpretation, everything happens at time-step k could be correlated with the previous
time-steps in the window, which in next is shown in the design of the measurement model (cf. Section 2.3).
In our implementation, we manage this in a sliding-window fashion, i.e., delete the oldest one when a new
relative pose is cloned, to save the computational cost.

2.2 Propagation

2.2.1 Continuous Time Error-State Model

The typical measurements of IMU consist of the gyroscope and accelerometer measurements, ωm and am,
which are respectively given as:

ωm = ω + bg + ng (11)

am = Ia + Ig + ba + na (12)

where ω and Ia are the angular velocity and linear acceleration in the IMU frame, ng and na are the zero-
mean white Gaussian sensor noise, bg and ba are the gyroscope and accelerometer biases which are modeled
as random walk processes, driven by the zero-mean white Gaussian noise nwg and nwa, respectively, and Ig
denotes the local gravity vector, whose global counterpart is constant (e.g., Gg = [0, 0, 9.8]>, if {G} is an
earth-centered frame).

The continuous time IMU model with respect to the frame of reference {Rk} is shown as follows:

τ
k

˙̄q =
1

2
Ω(ω)τk q̄ (13)

Rk ṗIτ = C(τk q̄)
>vIτ (14)
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v̇Iτ = τa− bω×cvIτ (15)

ḃg = nwg (16)

ḃa = nwa (17)

and for ω = [ωx, ωy, ωz]
>, we have:

Ω (ω) =

[
−bω×c ω
−ω> 1

]
, bω×c =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (18)

Especially, the derivation for local velocity (cf. Eq. (15)) is:

vIτ = C(τk q̄)
RkvIτ (19)

⇒v̇Iτ = C(τk q̄)
Rk v̇Iτ + Ċ(τk q̄)

RkvIτ = C(τk q̄)
RkaIτ − bω×cC(τk q̄)

RkvIτ = τa− bω×cvIτ (20)

The continuous time IMU state propagation with respect to {Rk} is accordingly expressed as:

τ
k

˙̄̂q =
1

2
Ω(ω̂)τk ˆ̄q (21)

Rk ˙̂pIτ = τ
kC
>
ˆ̄q v̂Iτ (22)

˙̂vIτ = â− τ
kC ˆ̄q

Rk ĝ − bω̂×cv̂Iτ (23)

˙̂
bg = 03×1 (24)

˙̂
ba = 03×1 (25)

where ω̂ = ωm− b̂g and â = am− b̂a by denoting ω = ωm−bg−ng and a = am−ba−na, and for brevity
we have denoted τ

kC ˆ̄q = C(τk ˆ̄q).
In EKF, the dynamics of IMU error-state is needed for which we start from the error quaternion. By the

definition of Eq. (5):

τ
k q̄ = δq̄ ⊗ τ

k
ˆ̄q

∣∣ d

dt
(26)

τ
k

˙̄q = δ ˙̄q ⊗ τ
k

ˆ̄q + δq̄ ⊗ τ
k

˙̄̂q (27)

Substituting Eq. (13) and Eq. (21) leads to:

1

2

[
ω
0

]
⊗ τ
k q̄ = δ ˙̄q ⊗ τ

k
ˆ̄q + δq̄ ⊗

(
1

2

[
ω̂
0

]
⊗ τ
k

ˆ̄q

) ∣∣Ω (ω) q̄ =

[
ω
0

]
⊗ q̄ (28)

By rearranging the terms in above equation, we have:

δ ˙̄q ⊗ τ
k

ˆ̄q =
1

2

([
ω
0

]
⊗ τ
k q̄ − δq̄ ⊗

[
ω̂
0

]
⊗ τ
k

ˆ̄q

)
|⊗τk ˆ̄q−1 (29)

δ ˙̄q =
1

2

([
ω
0

]
⊗ δq̄ − δq̄ ⊗

[
ω̂
0

])
|ω = ω̂ − b̃g − ng (30)

δ ˙̄q =
1

2

([
ω̂
0

]
⊗ δq̄ − δq̄ ⊗

[
ω̂
0

])
− 1

2

[
b̃g + ng

0

]
⊗ δq̄ (31)

=
1

2

([
−bω̂×c ω̂

−ω̂> 0

]
δq̄ −

[
bω̂×c ω̂

−ω̂> 0

]
δq̄

)
− 1

2

[
−b
(
b̃g + ng

)
×c b̃g + ng

−
(
b̃g + ng

)>
0

]
δq̄ (32)

=
1

2

[
−2bω̂×c+ b

(
b̃g + ng

)
×c −

(
b̃g + ng

)(
b̃g + ng

)>
0

]
δq̄ (33)
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'

[
− 1

2bω̂×cδθI −
1
2

(
b̃g + ng

)
+ 1

4b
(
b̃g + ng

)
×cδθI

1
4

(
b̃g + ng

)>
δθI

]
(34)

After neglecting the second order error terms in above equation, we get:

δ ˙̄q '
[

1
2δθ̇I

0

]
=

[
− 1

2bω̂×cδθI −
1
2

(
b̃g + ng

)
0

]
(35)

and the target linear equation is the upper part:

δθ̇I = −bω̂×cδθI − b̃g − ng (36)

Next for the error position, we have:

˙̃pI = Rk ṗIτ − Rk ˙̂pIτ (37)

= τ
kC
>
q̄ vIτ − τ

kC
>
ˆ̄q v̂Iτ (38)

= τ
kC
>
ˆ̄q

(
I + bδθI×c

)(
v̂Iτ + ṽIτ

)
− τ
kC
>
ˆ̄q v̂Iτ (39)

= τ
kC
>
ˆ̄q bδθI×cv̂Iτ + τ

kC
>
ˆ̄q ṽIτ + τ

kC
>
ˆ̄q bδθI×cṽIτ (40)

After neglecting the second order error terms, the resulting linear equation is:

˙̃pI = τ
kC
>
ˆ̄q bδθI×cv̂Iτ + τ

kC
>
ˆ̄q ṽIτ (41)

= −τkC>ˆ̄q bv̂Iτ×cδθI + τ
kC
>
ˆ̄q ṽIτ (42)

Similarly for the error velocity, we have:

˙̃vI = v̇Iτ − ˙̂vIτ (43)

= a− τ
kCq̄

Rkg − bω×cvIτ − â + τ
kC ˆ̄q

Rk ĝ + bω̂×cv̂Iτ (44)

= −
(
b̃a + na

)
−
(
I− bδθI×c

)
τ
kC ˆ̄q

(
Rk ĝ + Rk g̃

)
+ τ
kC ˆ̄q

Rk ĝ

− b
(
ω̂ − b̃g − ng

)
×c
(
v̂Iτ + ṽIτ

)
+ bω̂×cv̂Iτ (45)

= −
(
b̃a + na

)
− τ
kC ˆ̄q

Rk g̃ + bδθI×cτkC ˆ̄q
Rk ĝ + bδθI×cτkC ˆ̄q

Rk g̃

− bω̂×cṽIτ + b
(
b̃g + ng

)
×cv̂Iτ + b

(
b̃g + ng

)
×cṽIτ (46)

Again, after neglecting the second order error terms from above equation, we get:

˙̃vI = −
(
b̃a + na

)
− τ
kC ˆ̄q

Rk g̃ + bδθI×cτkC ˆ̄q
Rk ĝ − bω̂×cṽIτ + b

(
b̃g + ng

)
×cv̂Iτ (47)

= −τkC ˆ̄q
Rk g̃ − bτ ĝ×cδθI − bω̂×cṽIτ − bv̂Iτ×c

(
b̃g + ng

)
−
(
b̃a + na

)
(48)

where for brevity we have denoted τ ĝ = τ
kC ˆ̄q

Rk ĝ. The remaining IMU error-states can be obtained as:

˙̃
bg = ḃg − ˙̂

bg = nwg (49)

˙̃
ba = ḃa − ˙̂

ba = nwa (50)

For the error propagation of RkxG, we consider it as a zero dynamic process, then:

δθ̇G = 03×1 (51)

˙̃pG = Rk ṗG − Rk ˙̂pG = 03×1 (52)

˙̃g = Rk ġ − Rk ˙̂g = 03×1 (53)
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After combining above results, we obtain the continuous time, linear model of the robocentric error-state as:

δθ̇G
˙̃pG
˙̃g

δθ̇I
˙̃pI
˙̃vI
˙̃
bg
˙̃
ba


=



03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 −bω̂×c 03 03 −I3 03

03 03 03 −τkC>ˆ̄q bv̂Iτ×c 03
τ
kC
>
ˆ̄q

03 03

03 03 −τkC ˆ̄q −bτ ĝ×c 03 −bω̂×c −bv̂Iτ×c −I3

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03





δθG
p̃G
g̃
δθI
p̃I
ṽI
b̃g
b̃a



+



03 03 03 03

03 03 03 03

03 03 03 03

−I3 03 03 03

03 03 03 03

−bv̂Iτ×c 03 −I3 03

03 I3 03 03

03 03 03 I3




ng
nwg
na
nwa

 (54)

⇒ ˙̃x = Fx̃ + Gn (55)

2.2.2 Discrete Time State Propagation

For an actual EKF implementation, a discrete time prpagation model is needed. From time-step k to τ , τk ˆ̄q
can be obtained using the zeroth order quaternion integrator [18]:

τ
k

ˆ̄q =

∫ tτ

tk

s
k

˙̄̂q ds (56)

=

∫ tτ

tk

1

2
Ω(ω̂)sk ˆ̄q ds (57)

=

∫ tτ

tk

1

2
Ω
(
ωm,s − b̂g

)
s
k

ˆ̄q ds (58)

and Rk p̂Iτ and Rk v̂Iτ can be computed respectively using IMU preintegration:

Rk p̂Iτ = v̂Ik∆t+

∫ tτ

tk

∫ s

tk

µ
kC>ˆ̄q

µâ dµds (59)

= v̂Ik∆t+

∫ tτ

tk

∫ s

tk

µ
kC>ˆ̄q

(
am,µ − b̂a − µĝ

)
dµds (60)

= v̂Ik∆t− 1

2
Rk ĝ∆t2 +

∫ tτ

tk

∫ s

tk

µ
kC>ˆ̄q

(
am,µ − b̂a

)
dµds︸ ︷︷ ︸

∆pk,τ

(61)

Rk v̂Iτ = v̂Ik +

∫ tτ

tk

s
kC
>
ˆ̄q
sâ ds (62)

= v̂Ik +

∫ tτ

tk

s
kC
>
ˆ̄q

(
am,s − b̂a − sĝ

)
ds (63)

= v̂Ik − Rk ĝ∆t+

∫ tτ

tk

s
kC
>
ˆ̄q

(
am,s − b̂a

)
ds︸ ︷︷ ︸

∆vk,τ

(64)
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where b̂g = b̂gk , b̂a = b̂ak , and ∆t = tτ − tk. We can find that the preintegrated terms, ∆pk,τ and ∆vk,τ ,
can be computed recursively with the IMU measurements [19]. Therefore, the estimate for the local velocity,
v̂Iτ , can be obtained using the preceding results as:

v̂Iτ = τ
kC ˆ̄q

Rk v̂Iτ (65)

The bias estimates are assumed to be constant within the time interval [tk, tτ ], which are

b̂gτ = b̂gk (66)

b̂aτ = b̂ak (67)

Thus, the discrete time state propagation from time-step τ to τ + 1 can be described as:

Rk x̂Gτ+1
= Rk x̂Gτ (68)

and for the IMU state

τ+1
k

ˆ̄q = τ+1
τ

ˆ̄q ⊗ τ
k

ˆ̄q (69)
Rk p̂Iτ+1 = Rk p̂Iτ + ∆pτ,τ+1 (70)

v̂Iτ+1
= τ+1
k C ˆ̄q

(
Rk v̂Iτ + ∆vτ,τ+1

)
(71)

b̂gτ+1
= b̂gτ (72)

b̂aτ+1
= b̂aτ (73)

In addition, we consider the estimate of the clone states, ŵ, is static within [tk, tk+1].

2.2.3 Discrete Time Covariance Propagation

In EKF, the covariance propagation from time-step τ to τ + 1 with respect to {Rk} can be expressed as:

Pτ+1|k = Φτ+1,τPτ |kΦ
>
τ+1,τ + Qτ (74)

where Pτ |k and Pτ+1|k are the estimated and predicted covariance matrices, respectively, Φτ+1,τ is the state
transition matrix from τ to τ+1, and Qτ is the noise covariance matrix. Assuming that ω̂ and â are constant
for time interval [tτ , tτ+1] with δt = tτ+1− tτ , F is constant and the state transition matrix can be found as:

Φ(τ + 1, τ) = exp(Fδt) = I24 + Fδt+
1

2!
F2δt2 + · · · (75)

Considering that IMU has a very high frequency (e.g., δt is 10−3 ∼ 10−2s for 100 ∼ 1000Hz), we can obtain
the discrete time error-state transition matrix by just using the first order approximation of Eq. (75):

Φτ+1,τ = I24 + Fδt (76)

F =



03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 −bω̂×c 03 03 −I3 03

03 03 03 −τkC>ˆ̄q bv̂Iτ×c 03
τ
kC
>
ˆ̄q

03 03

03 03 −τkC ˆ̄q −bτ ĝ×c 03 −bω̂×c −bv̂Iτ×c −I3

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03


(77)

In order to obtain the noise covarian matrix Qτ , we first show the discrete-time solution of Eq. (55):

x̃τ+1 = Φ(τ + 1, τ)x̃τ +

∫ tτ+1

tτ

Φ(τ + 1, s)G(s)n ds (78)
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G(s) =



03 03 03 03

03 03 03 03

03 03 03 03

−I3 03 03 03

03 03 03 03

−bv̂Is×c 03 −I3 03

03 I3 03 03

03 03 03 I3


, n =


ng
nwg
na
nwa

 (79)

If all matrices are constant for time interval [tτ , tτ+1], the noise covariance for Eq. (78) can be computed as:

Qτ = E[Φ(τ + 1, τ)G(τ)n
(
Φ(τ + 1, τ)G(τ)n

)>
]δt

= Φτ+1,τGE[nn>]G>Φ>τ+1,τδt

= Φτ+1,τGΣG>Φ>τ+1,τδt (80)

Σ =


σ2
gI3 03 03 03

03 σ2
wgI3 03 03

03 03 σ2
aI3 03

03 03 03 σ2
waI3

 (81)

where Σ is the continuous time noise covariance matrix. Substituting Eq. (76) into Eq. (80) and neglecting
the second order terms of δt, we have the discrete time noise covariance matrix:

Qτ = GΣG>δt (82)

We introduce the following partition for the augmented covariance matrix at time-step k:

Pk =

[
Pxxk Pxwk

P>xwk
Pwwk

]
(83)

where Pxxk is the covariance matrix of the evolving robocentric state, Pwwk
is the covariance matrix of the

states in the window, and Pxwk
is the correlation between the errors in the robocentric state and the states

in the window. With this notation, at time-step τ + 1 ∈ [tk, tk+1] the propagated covariance is given by:

Pτ+1|k =

[
Pxxτ+1|k Φτ+1,kPxwk

P>xwk
Φ>τ+1,k Pwwk

]
(84)

where Pxxτ+1|k can be recursively computed using Eq. (74), and the evolving error-state transition matrix:

Φτ+1,k = Φτ+1,τ · · ·Φk+δt,k =
τ∏
`=k

Φ`+δt,` (85)

with Φk,k = I24 at time-step k.

2.3 Update

2.3.1 Bearing-only Model

We present this measurement model by considering the case of a single landmark Lj which has been observed
from a set of nj robocentric frames of reference Rj . For i ∈ Rj , the observation of landmark Lj is described
by the following bearing-only model in the xyz coordinates:

zj,i =
1

zij

[
xij
yij

]
+ nj,i,

CipLj =

xijyij
zij

 = C
I Cq̄

RipLj + CpI (86)

where nj,i ∼ N (0, σ2
imI2) represents the image noise, and CipLj is the position of landmark expressed in the

camera frame {Ci}. Assume that Rj = {1, 2 . . . , n} and {R1} is the first robocentric frame from which the
landmark is observed, we begin to derive the expression for RipLj , i ∈ {Rj\1} following the steps:

RPNG-2018-RVIO 8



1. If i = 2, then

R2pLj = 2
1Cq̄

(
R1pLj − R1pR2

)
(87)

= 2
1Cq̄

R1pLj − 2
1Cq̄

R1pR2
(88)

2. If i = 3, then

R3pLj = 3
1Cq̄

(
R1pLj − R1pR3

)
(89)

= 3
1Cq̄

R1pLj − 3
2Cq̄

R2pR3
− 3

1Cq̄
R1pR2

(90)

3. If i = 4, then

R4pLj = 4
1Cq̄

(
R1pLj − R1pR4

)
(91)

= 4
1Cq̄

R1pLj − 4
3Cq̄

R3pR4 − 4
2Cq̄

R2pR3 − 4
1Cq̄

R1pR2 (92)

4. . . . . . .

5. From above results, we can conclude that

RipLj = i
1Cq̄

(
R1pLj − R1pRi

)
(93)

= i
1Cq̄

R1pLj − i
i−1Cq̄

Ri−1pRi − i
i−2Cq̄

Ri−2pRi−1
− . . .− i

`−1Cq̄
R`−1pR` − . . .− i

1Cq̄
R1pR2

(94)

Note that in Eq. (94) all relative poses between {R1} and {Ri}, i ∈ {Rj\1} have been used to express the
i-th observation of Lj . Then, the corresponding Jacobians with respect to the error-state are derived as:

1. If i = 2, then

∂R2 p̃Lj
∂δθ2

= b21C ˆ̄q

(
R1 p̂Lj − R1 p̂R2

)
×c,

∂R2 p̃Lj
∂R1 p̃R2

= −2
1C ˆ̄q (95)

∂R2 p̃Lj
∂R1 p̃Lj

= 2
1C ˆ̄q (96)

2. If i = 3, then

∂R3 p̃Lj
∂δθ3

= b31C ˆ̄q

(
R1 p̂Lj − R1 p̂R3

)
×c,

∂R3 p̃Lj
∂R2 p̃R3

= −3
2C ˆ̄q (97)

∂R3 p̃Lj
∂δθ2

= 3
2C ˆ̄qb21C ˆ̄q

(
R1 p̂Lj − R1 p̂R2

)
×c,

∂R3 p̃Lj
∂R1 p̃R2

= −3
1C ˆ̄q (98)

∂R3 p̃Lj
∂R1 p̃Lj

= 3
1C ˆ̄q (99)

3. If i = 4, then

∂R4 p̃Lj
∂δθ4

= b41C ˆ̄q

(
R1 p̂Lj − R1 p̂R4

)
×c,

∂R4 p̃Lj
∂R3 p̃R4

= −4
3C ˆ̄q (100)

∂R4 p̃Lj
∂δθ3

= 4
3C ˆ̄qb31C ˆ̄q

(
R1 p̂Lj − R1 p̂R3

)
×c,

∂R4 p̃Lj
∂R2 p̃R3

= −4
2C ˆ̄q (101)

∂R4 p̃Lj
∂δθ2

= 4
2C ˆ̄qb21C ˆ̄q

(
R1 p̂Lj − R1 p̂R2

)
×c,

∂R4 p̃Lj
∂R1 p̃R2

= −4
1C ˆ̄q (102)

∂R4 p̃Lj
∂R1 p̃Lj

= 4
1C ˆ̄q (103)
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4. . . . . . .

5. In conclusion, we have the general form that, ∀i ∈ {Rj\1}

∂Ri p̃Lj
∂δθ`

= i
`C ˆ̄qb`1C ˆ̄q

(
R1 p̂Lj − R1 p̂R`

)
×c = i

1C ˆ̄qb
(
R1 p̂Lj − R1 p̂R`

)
×c`1C>ˆ̄q , (104)

∂Ri p̃Lj
∂R`−1 p̃R`

= −i`−1C ˆ̄q, ∀` ∈ {2, 3, . . . , i} (105)

∂Ri p̃Lj
∂R1 p̃Lj

= i
1C ˆ̄q (106)

From above, we can find that the landmark observation from one robocentric frame has been correlated to
a chain of relative poses through its tracking history, which is contrast to the world-centric case (e.g., [1])
where the landmark observation was only correlated to the pose from which it was obtained.

Linearizing about the estimates of the robot state and landmark position, the residual of Eq. (86) can
be approximated as:

rj,i = zj,i − ẑj,i ' Hxj,i x̃ + HLj,i
R1 p̃Lj + nj,i (107)

Hxj,i = Hpj,i
C
I Cq̄

i
1C ˆ̄q

[
03×24 03×6 . . . Hwj,i

. . . 03×6

]
, HLj,i = Hpj,i

C
I C ˆ̄q

i
1C ˆ̄q ,

Hpj,i =
1

ẑij

1 0 − x̂
i
j

ẑij

0 1 − ŷ
i
j

ẑij

 ,
Hwj,i =

[
b
(
R1 p̂Lj − R1 p̂R2

)
×c21C>ˆ̄q −I3 . . . b

(
R1 p̂Lj − R1 p̂Ri

)
×ci1C>ˆ̄q −i−1

1 C>ˆ̄q

]
(108)

where Hxj,i (Hxj,1 = 0) and HLj,i (HLj,1 = Hpj,1
C
I C ˆ̄q) are the Jacobians with respect to the errors of

the state and landmark position, respectively. While R1 p̂Lj is the position of landmark Lj in {R1} whose
value is unknown in computation, for which we first solve a nonlinear least-squares minimization using the
measurements zj,i, i ∈ Rj and the relative pose estimates ŵ (cf. Appendix B). We stack all rj,i, i ∈ Rj to
obtain the following equation for landmark Lj :

rj ' Hxj x̃ + HLj
R1 p̃Lj + nj (109)

As R1 p̂Lj is computed using the state estimate x̂ (precisely, ŵ), R1 p̃Lj is correlated with x̃. However, R1 p̂Lj
is not in the state vector, in order to find a valid residual for EKF update, we project rj to the left nullspace
of HLj . Let OLj denotes the matrix consisting of the basis of the left nullspace of HLj , we have:

r̄j = O>Ljrj ' O>LjHxj x̃ + O>Ljnj = H̄xj x̃ + n̄j (110)

After rejecting the observations of the landmarks at infinity (zij � xij , z
i
j � yij , i ∈ Rj) and the observations

near the principal point of image (xij → 0, yij → 0, i ∈ Rj), we have the full column rank 2nj×3 matrix HLj ,
of which the nullspace is of dimension 2nj − 3. In Eq. (110) without explicitly finding OLj , the projection
of rj and Hxj on the nullspace of HLj is efficiently computed using Givens rotation [20] with complexity
O(n2

j ). Also, n̄j = O>Ljnj is the noise vector with the covariance R̄ = O>LjE[njn
>
j ]OLj = σ2

imI2nj−3.

2.3.2 Inverse Depth Bearing-only Model

We still consider the bearing-only model and the case of a single landmark Lj which are used in the preceding
section. However, instead of using the xyz coordinates, we introduce the following tailored inverse depth [21]
parametrization for the landmark position:

CipLj = i
1C̄q̄

C1pLj + ip̄1 := fi(φ, ψ, ρ) (111)

C1pLj =
1

ρ
e(φ, ψ), e =

cosφ sinψ
sinφ

cosφ cosψ

 (112)
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where we use e (i.e., the unit vector of C1pLj ) and 1/ρ (i.e., the depth of of Lj in {C1}) to express C1pLj
with φ and ψ the elevation and azimuth expressed in {C1}. Especially, the relative poses between {C1} and
{Ci}, i ∈ {Rj\1} are expressed using the calibration result, {CI Cq̄,

CpI}, and the relative poses between the
robocentric frames of reference, w, as

i
1C̄q̄ = C

I Cq̄
i
1Cq̄

I
CCq̄ (113)

ip̄1 = C
I Cq̄

i
1Cq̄

IpC + C
I Cq̄

RipR1
+ CpI (114)

Considering the observation of landmark at infinity (i.e., ρ→ 0), we can normalize Eq. (111) with ρ to avoid
numerical issues. Note that such operation dose not affect the bearing expression because the scale is always
eliminated in the fraction form:

hi(w, φ, ψ, ρ) =

hi,1(w, φ, ψ, ρ)
hi,2(w, φ, ψ, ρ)
hi,3(w, φ, ψ, ρ)

 =: i1C̄q̄e(φ, ψ) + ρip̄1 (115)

This equation retains the geometry of Eq. (111), meanwhile compasses two degenerate cases: (i) observing
the landmarks at infinity (i.e., ρ→ 0), and (ii) having low parallax between {C1} and {Ci} (i.e., ip̄1 → 0). For
both cases, Eq. (115) can be approximated by hi ' i

1C̄q̄e(φ, ψ), and hence the corresponding measurements
can still provide the information about the camera rotation. Thus, we introduce the following inverse depth
measurement model for robocentric VIO:

zj,i =
1

hi,3(w, φ, ψ, ρ)

[
hi,1(w, φ, ψ, ρ)
hi,2(w, φ, ψ, ρ)

]
+ nj,i (116)

Assume that Rj = {1, 2 . . . , n}, and {R1} is the robocentric frame from which Lj is firstly observed, then:

CipLj = i
1C̄q̄

C1pLj + ip̄1

= C
I Cq̄

i
1Cq̄

I
CCq̄

C1pLj + C
I Cq̄

i
1Cq̄

IpC + C
I Cq̄

RipR1
+ CpI

= C
I Cq̄

i
1Cq̄

(
I
CCq̄

C1pLj + IpC − R1pRi
)

+ CpI (117)

⇒ hi(φ, ψ, ρ) = C
I Cq̄

i
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC − ρR1pRi

)
+ ρCpI (118)

1. If i = 2, then

h2 = C
I Cq̄

2
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC − ρR1pR2

)
+ ρCpI (119)

= C
I Cq̄

2
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC

)
− ρCI Cq̄

2
1Cq̄

R1pR2
+ ρCpI (120)

2. If i = 3, then

h3 = C
I Cq̄

3
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC − ρR1pR3

)
+ ρCpI (121)

= C
I Cq̄

3
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC

)
− ρCI Cq̄

(
3
2Cq̄

R2pR3 + 3
1Cq̄

R1pR2

)
+ ρCpI (122)

3. If i = 4, then

h4 = C
I Cq̄

4
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC − ρR1pR4

)
+ ρCpI (123)

= C
I Cq̄

4
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC

)
− ρCI Cq̄

(
4
3Cq̄

R3pR4 + 4
2Cq̄

R2pR3 + 4
1Cq̄

R1pR2

)
+ ρCpI (124)

4. . . . . . .

5. Finally, we can conclude that

hi = C
I Cq̄

i
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC − ρR1pRi

)
+ ρCpI (125)

= C
I Cq̄

i
1Cq̄

(
I
CCq̄e(φ, ψ) + ρIpC

)
− ρCI Cq̄

(
i
i−1Cq̄

Ri−1pRi + i
i−2Cq̄

Ri−2pRi−1
+ . . .+ i

`−1Cq̄
R`−1pR` + . . .+ i

1Cq̄
R1pR2

)
+ ρCpI (126)
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Similarly, we can obtain the Jacobians of hi, i ∈ {Rj\1} with respect to the error-state and [φ, ψ, ρ]>:

1. If i = 2, then

∂h2

∂δθ2
= C
I Cq̄b21C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R2

)
×c, ∂h2

∂R1 p̃R2

= −ρ̂CI Cq̄
2
1C ˆ̄q (127)

2. If i = 3, then

∂h3

∂δθ3
= C
I Cq̄b31C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R3

)
×c, ∂h3

∂R2 p̃R3

= −ρ̂CI Cq̄
3
2C ˆ̄q (128)

∂h3

∂δθ2
= C
I Cq̄

3
2C ˆ̄qb21C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R2

)
×c, ∂h3

∂R1 p̃R2

= −ρ̂CI Cq̄
3
1C ˆ̄q (129)

3. If i = 4, then

∂h4

∂δθ4
= C
I Cq̄b41C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R4

)
×c, ∂h4

∂R3 p̃R4

= −ρ̂CI Cq̄
4
3C ˆ̄q (130)

∂h4

∂δθ3
= C
I Cq̄

4
3C ˆ̄qb31C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R3

)
×c, ∂h4

∂R2 p̃R3

= −ρ̂CI Cq̄
4
2C ˆ̄q (131)

∂h4

∂δθ2
= C
I Cq̄

4
2C ˆ̄qb21C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R2

)
×c, ∂h4

∂R1 p̃R2

= −ρ̂CI Cq̄
4
1C ˆ̄q (132)

4. . . . . . .

5. In conclusion, we have the general form as follows. Specifically, the Jacobians with respect to [φ, ψ, ρ]>

are obtained from Eq. (115):

∂hi
∂δθ`

= C
I Cq̄

i
`C ˆ̄qb`1C ˆ̄q

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R`

)
×c (133)

= C
I Cq̄

i
1C ˆ̄qb

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R`

)
×c`1C>ˆ̄q , (134)

∂hi
∂R`−1 p̃R`

= −ρ̂CI Cq̄
i
`−1C ˆ̄q, ∀` ∈ {2, 3, . . . , i} (135)

∂hi
∂[φ, ψ, ρ]>

=
[

∂hi
∂[φ,ψ]>

∂hi
∂ρ

]
=

i
1C̄ ˆ̄q

− sin φ̂ sin ψ̂ cos φ̂ cos ψ̂

cos φ̂ 0

− sin φ̂ cos ψ̂ − cos φ̂ sin ψ̂

 i ˆ̄p1

 (136)

Let us denote λ = [φ, ψ, ρ]>, then the residual of Eq. (116) by linearizing about the estimates of the robot
state and λ can be approximated as:

rj,i = zj,i − ẑj,i ' Hxj,i x̃ + Hλj,iλ̃+ nj,i (137)

Hxj,i = Hpj,i
C
I Cq̄

i
1C ˆ̄q

[
03×24 03×6 . . . Hwj,i

. . . 03×6

]
, Hλj,i = Hpj,iHinvj,i ,

Hpj,i =
1

ĥi,3

1 0 − ĥi,1
ĥi,3

0 1 − ĥi,2
ĥi,3

 ,
Hinvj,i =

i
1C̄ ˆ̄q

− sin φ̂ sin ψ̂ cos φ̂ cos ψ̂

cos φ̂ 0

− sin φ̂ cos ψ̂ − cos φ̂ sin ψ̂

 i ˆ̄p1

 ,
Hwj,i =

[
b
(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂R2

)
×c21C>ˆ̄q −ρ̂I3 . . . b

(
I
CCq̄ê + ρ̂IpC − ρ̂R1 p̂Ri

)
×ci1C>ˆ̄q −ρ̂i−1

1 C>ˆ̄q

]
(138)
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Here let us take a break to discuss the rank deficiency in Hλj,i , which determines the way to get a nominal
residual as using the Givens rotations (cf. Eq. (110)). We consider the rank deficiency happened in either

Hpj,i or Hinvj,i . For the former, we find two possible conditions for ĥi: (i) ĥi,1 = ĥi,2 = ĥi,3, which means

that the image size should be at least 2f × 2f (f is the focal length), or (ii) ĥi,1 → 0 and ĥi,2 → 0, which
means that the measurement of Lj is near the principal point of image; however, for the latter we can also

find two conditions: (iii) cos φ̂→ 0, which means that we have either infinitely small focal length or infinitely

large image size for the camera so that |φ̂| → π/2 can happen, or (iv) i ˆ̄p1 → 0, which means a small parallax
between {C1} and {Ci}. Among those conditions, (i) is about the selection for the lens (e.g., a wide-angle
lens) which is restricted by the image size of the camera, and (iii) is too ideal to be realized in the real world.
While (ii) and (iv) are common in the vision-aided navigation and can be conveniently detected from the
pixel values of measurements and the relative poses, respectively. We can discard the measurements which
meet (ii) when computing the Jacobians. While (iv) is the case that we can utilize, however, makes the last
column of Hλj,i approaches zero, for which we perform Givens rotation on the first two columns to guarantee
a valid nullspace projection numerically. Also, in Eq. (137) an estimate of λ is needed, for which a nonlinear
least-squares minimization is solved at first (cf. Appendix C). To the end, we stack all r̄j,i, i ∈ Rj to obtain
the residual r̄j for EKF update (cf. Eq. (110)).

2.3.3 EKF Update

Assuming at time-step k+1, we have the observations of M landmarks to process, we can stack r̄j , j = 1 . . .M
to have:

r̄ = H̄xx̃ + n̄ (139)

of which the resulting row dimension is d =
∑M
j=1

(
2nj − 3

)
. However, in practice, d can be a large number

even if M is small (e.g., d = 170, when 10 landmarks are observed from 10 robot poses). In order to reduce
the computational complexity in EKF update, we perform QR decomposition on H̄x [1] before stepping into
the standard procedure. Inheriting Eq. (108), H̄x is rank deficient due to the zero columns corresponding to
the robocentric state, however, the rest of columns corresponding to the clone states are linearly independent
(i.e., assuming independent observations). Therefore, we can perform QR decomposition as:

H̄x =
[
0d×24 H̄w

]
(140)

=

[
0d×24

[
Q1 Q2

] [ T̄w

0(d−6(N−1))×6(N−1)

]]
(141)

=
[
Q1 Q2

] [ 06(N−1)×24 T̄w

0(d−6(N−1))×24 0(d−6(N−1))×6(N−1)

]
(142)

where Q1 and Q2 are unitary matrices of dimension d× 6(N − 1) and d× (d− 6(N − 1)), respectively, and
T̄w is a 6(N − 1)× 6(N − 1) upper triangular matrix. With this definition, Eq. (139) yields:

r̄ =
[
Q1 Q2

] [0 T̄w

0 0

]
x̃ + n̄ (143)

⇒
[
Q>1
Q>2

]
r̄ =

[
0 T̄w

0 0

]
x̃ +

[
Q>1
Q>2

]
n̄ (144)

For which after discarding the lower rows which are only about the measurement noise, we employ the upper
6(N − 1) rows, instead of Eq. (139), as the residual for the following EKF update:

r̆ = Q>1 r̄ =
[
0 T̄w

]
x̃ + Q>1 n̄ = H̆xx̃ + n̆ (145)

where n̆ = Q>1 n̄ is the noise vector with the covariance R̆ = Q>1 E[n̄n̄>]Q1 = σ2
imI6(N−1). In such a way,

the dimension of measurement model is reduced to 6(N − 1). Especially, when d � 6(N − 1) these can be
done by Givens rotations with complexity O(N2d). Next, the EKF update is conducted as:

K = PH̆>x
(
H̆xPH̆>x + R̆

)−1
(146)

x̂k+1|k+1 = x̂k+1|k + Kr̆ (147)

Pk+1|k+1 =
(
I24+6(N−1) −KH̆x

)
Pk+1|k

(
I24+6(N−1) −KH̆x

)>
+ KR̆K> (148)
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2.3.4 State Augmentation

In contrast to [1] which clones the pose estimates at the time of receiving a new image, we perform a delayed
clone after the EKF update. Assuming that at time-step k+ 1 the EKF update is done, we append the copy
of the relative pose estimate, {k+1

k
ˆ̄qk+1|k+1,

Rk p̂Rk+1|k+1
}, to the end of the state vector x̂k+1|k+1. Moreover,

for covariance matrix we introduce the following Jacobian to facilitate matrix augmentation:

Pk+1|k+1 ←
[
I24+6(N−1)

J

]
Pk+1|k+1

[
I24+6(N−1)

J

]>
(149)

J =

[
03×9 I3 03 03×9 03×6(N−1)

03×9 03 I3 03×9 03×6(N−1)

]
(150)

2.4 Composition

After the state augmentation we have the state vector in the form of:

x̂k+1|k+1 =
[
Rk x̂>k+1|k+1 ŵ>k+1|k+1

]>
(151)

=
[
Rk x̂>Gk+1|k+1

Rk x̂>Ik+1|k+1

∣∣∣ 2
1
ˆ̄q> R1 p̂>R2

. . . N+1
N

ˆ̄q> RN p̂>RN+1

]>
(152)

As we shift local frame of reference at every image time, the corresponding IMU frame, {Ik+1}, is selected as
the frame of reference (i.e., {Rk+1}). The state estimates in the new frame of reference is obtained through:

x̂k+1 =

[
Rk+1 x̂k+1

ŵk+1

]
=

[
Rk x̂k+1|k+1 � Rk x̂Ik+1|k+1

ŵk+1|k+1

]
(153)





k+1
G

ˆ̄q
Rk+1 p̂G
Rk+1 ĝ
k+1
k+1

ˆ̄q
Rk+1 p̂Rk+1

v̂Rk+1

b̂gk+1

b̂ak+1


ŵk+1


=





k+1
k

ˆ̄qk+1|k+1 ⊗ k
G

ˆ̄qk+1|k+1
k+1
k C ˆ̄qk+1|k+1

(
Rk p̂Gk+1|k+1

− Rk p̂Ik+1|k+1

)
k+1
k C ˆ̄qk+1|k+1

Rk ĝk+1|k+1

q̄0

03×1

v̂Ik+1|k+1

b̂gk+1|k+1

b̂ak+1|k+1


ŵk+1|k+1


(154)

where q̄0 = [0, 0, 0, 1]>. Accordingly, the covariance matrix is transformed through:

Pk+1 = Uk+1Pk+1|k+1U
>
k+1 (155)

Uk+1 =
∂x̃k+1

∂x̃k+1|k+1
=

[
Vk+1 024×6N

06N×24 I6N

]
, (156)

Vk+1 =
∂Rk+1 x̃k+1

∂Rk x̃k+1|k+1
=



k+1
k C ˆ̄q 03 03 I3 03 03 03 03

03
k+1
k C ˆ̄q 03 bRk+1 p̂G×c −k+1

k C ˆ̄q 03 03 03

03 03
k+1
k C ˆ̄q bRk+1 ĝ×c 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03

03 03 03 03 03 I3 03 03

03 03 03 03 03 03 I3 03

03 03 03 03 03 03 03 I3


k+1|k+1

(157)

Note that, the relative pose in IMU state is reset to the origin of the new frame of reference, {Rk}, however,
the velocity and biases are evolving in the sensor frame (cf. Eq. (15), (16), and (17)), thus are not affected
by the change of frame of reference. In particular, through (157) the covariance of the relative pose is also
reset to zero, i.e., no uncertainties for robocentric frame of reference itself. We outline the proposed approach
in Algorithm 1.
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Algorithm 1 Robocentric Visual-Inertial Odometry

Input: camera images, and IMU measurements
Output: 6DOF real-time robot poses
R-VIO: Initialize the first frame of reference {R0} (={G}) when the first IMU measurement(s) comes in.
Then, when a new camera image comes in, do

• Feature tracking: extract corner features from the image, then perform KLT tracking and 2-point
RANSAC outlier rejection. Record the tracking history for all inliers.

• Propagation: propagate state and covariance matrix using preintegration with all IMU measure-
ments starting from the last image time-step.

• Update:
(i) EKF update: compute the inverse-depth measurement model matrices for the features whose
track are complete (i.e., lost track, or reach the maximum tracking length). Use the features passed
the Mahalanobis test for an EKF update.
(ii) State augmentation: augment state vector and covariance matrix with the updated relative pose
estimates (state and covariance).

• Composition: shift local frame of reference to current IMU frame, update global state and covari-
ance using the relative pose estimates. After that, reset relative pose (state and covariance).

2.5 Observability Analysis

System observability reveals whether the information provided by the measurements is sufficient to estimate
the state without ambiguity. Since the observability matrix describes the information available in the mea-
surements, by studying its nullspace we gain insight about the directions in the state space from which the
system acquires information. To this end, we perform the observability analysis of the proposed robocentric
VIO within the EKF-SLAM framework that has the same observability properties as the EKF-VIO provided
the same linearization points used [4]. For brevity of presentation, we employ the case that only a single
landmark is included in the state vector, while the conclusion can be easily generalized to the case of multiple
landmarks. In this case, the state vector at time-step k includes a landmark L:

xk =
[
Rkx>G

Rkx>Ik
Rkp>L

]>
(158)

=
[
k
Gq̄
> Rkp>G

Rkg>
∣∣ k
kq̄
> Rkp>Ik v>Ik b>gk b>ak

∣∣ Rkp>L
]>

(159)

and the observability matrix M is computed as [22]:

M =



Hk

...
H`Ψ`,k

...
Hk+mΨk+m,k

 (160)

where Ψ`,k is the state transition matrix from time-step k to `, and H` is the measurement Jacobian for
the landmark observation at time-step `. Each row is evaluated at state, xi, for i = k, . . . , `, . . . , k + m.
The nullspace of M describes the directions of the state space for which no information is provided by the
measurements, i.e., the unobservable state subspace. Since the proposed robocentric EKF includes three
steps: propagation, update, and composition, and the composition step changes the frame of reference, we
analyze the observability for a complete cycle of (i) propagation and update, and (ii) composition. We
analytically show that the proposed robocentric VIO system has a constant unobservable subspace, and dose
not have inconsistency issue which is caused by observability mismatch [9, 11], thus improving consistency.
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2.5.1 Analytic State Transition Matrix

The analytic form state transition matrix is used for the analysis, for which we integrate the following
differential equation over time interval [tk, t`]:

Ψ̇(`, k) = F̆Ψ(`, k) (161)

F̆ =



03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 −bω̂×c 03 03 −I3 03 03

03 03 03 −`kC>ˆ̄q bv̂I`×c 03
`
kC
>
ˆ̄q

03 03 03

03 03 −`kC ˆ̄q −b`ĝ×c 03 −bω̂×c −bv̂I`×c −I3 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03


(162)

where F̆ is the augmented state transition matrix assuming zero dynamics for the landmark position in {Rk}.
By checking Eq. (161) with initial condition Ψ(k, k) = I27, we can get the following structure of Ψ:

Ψ(`, k) =



I3 03 03 03 03 03 03 03 03

03 I3 03 03 03 03 03 03 03

03 03 I3 03 03 03 03 03 03

03 03 03 Ψ44(`, k) 03 03 Ψ47(`, k) 03 03

03 03 Ψ53(`, k) Ψ54(`, k) I3 Ψ56(`, k) Ψ57(`, k) Ψ58(`, k) 03

03 03 Ψ63(`, k) Ψ64(`, k) 03 Ψ66(`, k) Ψ67(`, k) Ψ68(`, k) 03

03 03 03 03 03 03 I3 03 03

03 03 03 03 03 03 03 I3 03

03 03 03 03 03 03 03 03 I3


(163)

We follow an analogous approach to derive the expressions for the block entries of Φ(`, k) (cf. Appendix A),
and the results are listed as follows:

Ψ44(`, k) = `
kC ˆ̄q (164)

Ψ47(`, k) = −`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds = −

∫ t`

tk

`
sC ˆ̄q ds (165)

Ψ53(`, k) = −1

2
I3∆t2k,` (166)

Ψ54(`, k) = −b
(
Rk p̂I` +

1

2
Rk ĝ∆t2k,`

)
×c (167)

Ψ56(`, k) = I3∆tk,` (168)

Ψ57(`, k) =

∫ t`

tk

bskC>ˆ̄q v̂Is×c
∫ s

tk

µ
kC>ˆ̄q dµds+ bRk ĝ×c

∫ t`

tk

∫ s

tk

∫ µ

tk

λ
kC
>
ˆ̄q dλdµds

−
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q bv̂Iµ×c dµds (169)

Ψ58(`, k) = −
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds (170)

Ψ63(`, k) = −`kC ˆ̄q∆tk,` (171)

Ψ64(`, k) = −`kC ˆ̄qbRk ĝ×c∆tk,` (172)

Ψ66(`, k) = Ψ44(`, k) (173)

Ψ67(`, k) = `
kC ˆ̄qbRk ĝ×c

∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds−

∫ t`

tk

`
sC ˆ̄qbv̂Is×c ds (174)
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Ψ68(`, k) = −`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds = −

∫ t`

tk

`
sC ˆ̄q ds (175)

2.5.2 Measurement Jacobian

At time-step ` ∈ [tk, tk+m) the estimate of landmark position in {I`} can be expressed as

I` p̂L = `
kC ˆ̄q

(
Rk p̂L − Rk p̂I`

)
(176)

According to Eq. (86), the bearing-only measurement model can be expressed as:

z` =
1

z

[
x
y

]
+ n`,

C`pL =

xy
z

 = C
I Cq̄

`
kCq̄

(
RkpL − RkpI`

)
+ CpI (177)

where {CI q̄,CpI} is the result of camera-IMU calibration. The corresponding measurement Jacobian is:

H` = Hproj
C
I Cq̄

`
kC ˆ̄q

[
03 03 03

∣∣ Hθ` −I3 03×9

∣∣ I3

]
,

Hproj =
1

ẑ

[
1 0 − x̂ẑ
0 1 − ŷẑ

]
,

Hθ` = b
(
Rk p̂L − Rk p̂I`

)
×c`kC>ˆ̄q (178)

2.5.3 Propagation and Update

Based on the results we have, we can write out the `-th row, M`, of M as follows:

M` = H`Ψ`,k (179)

H` = Hproj
C
I Cq̄

`
kC ˆ̄q

[
03 03 03

∣∣ Hθ` −I3 03×9

∣∣ I3

]
(180)

Hθ` = b
(
Rk p̂L − Rk p̂I`

)
×c`kC>ˆ̄q (181)

⇒M` = ΠΓ = Π
[
03 03 Γ1

∣∣ Γ2 −I3 Γ3 Γ4 Γ5

∣∣ I3

]
(182)

where

Π = Hproj
C
I Cq̄

`
kC ˆ̄q (183)

Γ1 = −Ψ53 =
1

2
I3∆t2k,` (184)

Γ2 = b
(
Rk p̂L − Rk p̂I`

)
×c`kC>ˆ̄q Ψ44 −Ψ54 = bRk p̂L×c+

1

2
bRk ĝ×c∆t2k,` (185)

Γ3 = −Ψ56 = −I3∆tk,` (186)

Γ4 = b
(
Rk p̂L − Rk p̂I`

)
×c`kC>ˆ̄q Ψ47 −Ψ57 = −b

(
Rk p̂L − Rk p̂I`

)
×c
∫ t`

tk

s
kC
>
ˆ̄q ds−Ψ57 (187)

Γ5 = −Ψ58 (188)

We note that for generic motion, i.e., ω 6= 03×1 and a 6= 03×1, the values of Ψ57 and Ψ58 are time-varying,
then Γ4 and Γ5 are linearly independent. Moreover, the value of ∆tk,` is varying for different time interval,
then the stacked Γ1, Γ2, and Γ3 are linearly independent. Based on that, we perform the following Gaussian
elimination on M` to facilitate the search for the nullspace:

M` = Π
[
03 03 Γ1

∣∣ Γ2 −I3 Γ3 Γ4 Γ5

∣∣ I3

]
(189)

⇒M` ∼ Π
[
03 03 Γ1

∣∣ Γ2 −I3 Γ3 Γ4 Γ5

∣∣ 03

]
(190)
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from which we can find that M` is rank deficient by 9, and accordingly the nullspace is of rank 9. Specifically,
∀` ≥ k, we can find that the nullspace of M consists of the following nine directions:

null(M) = span
col.



I3 03 03

03 I3 03

03 03 03

03 03 03

03 03 I3

03 03 03

03 03 03

03 03 03

03 03 I3


(191)

Remark 1. The first 6DOF correspond to the orientation (3) and position (3) of the global frame.

Remark 2. The last 3DOF belong to the same translation (3) simultaneously applied to the landmark(s)
and sensor.

2.5.4 Composition

Assuming that the estimates of Rkx` and RkpL are obtained at time-step `, we have the following linear
dynamic model from time-step k to ` including the state composition:

x̃` = V̌`Ψ`,kx̃k = Ψ̌`,kx̃k (192)

V̌` =



`
kC ˆ̄q 03 03 I3 03 03 03 03 03

03
`
kC ˆ̄q 03 bR` p̂G×c −`kC ˆ̄q 03 03 03 03

03 03
`
kC ˆ̄q bR` ĝ×c 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 I3 03 03 03

03 03 03 03 03 03 I3 03 03

03 03 03 03 03 03 03 I3 03

03 03 03 bR` p̂L×c −`kC ˆ̄q 03 03 03
`
kC ˆ̄q


(193)

Ψ̌`,k =



Ψ̌11 03 03 Ψ̌14 03 03 Ψ̌17 03 03

03 Ψ̌22 Ψ̌23 Ψ̌24 Ψ̌25 Ψ̌26 Ψ̌27 Ψ̌28 03

03 03 Ψ̌33 Ψ̌34 03 03 Ψ̌37 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 Ψ̌63 Ψ̌64 03 Ψ̌66 Ψ̌67 Ψ̌68 03

03 03 03 03 03 03 I3 03 03

03 03 03 03 03 03 03 I3 03

03 03 Ψ̌93 Ψ̌94 Ψ̌95 Ψ̌96 Ψ̌97 Ψ̌98 Ψ̌99


(194)

Ψ̌11 = `
kC ˆ̄q (195)

Ψ̌14 = Ψ44 (196)

Ψ̌17 = Ψ47 (197)

Ψ̌22 = `
kC ˆ̄q (198)

Ψ̌23 = −`kC ˆ̄qΨ53 (199)

Ψ̌24 = bR` p̂G×cΨ44 − `
kC ˆ̄qΨ54 (200)

Ψ̌25 = −`kC ˆ̄q (201)
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Ψ̌26 = −`kC ˆ̄qΨ56 (202)

Ψ̌27 = bR` p̂G×cΨ47 − `
kC ˆ̄qΨ57 (203)

Ψ̌28 = −`kC ˆ̄qΨ58 (204)

Ψ̌33 = `
kC ˆ̄q (205)

Ψ̌34 = bR` ĝ×cΨ44 (206)

Ψ̌37 = bR` ĝ×cΨ47 (207)

Ψ̌63 = Ψ63 (208)

Ψ̌64 = Ψ64 (209)

Ψ̌66 = Ψ66 (210)

Ψ̌67 = Ψ67 (211)

Ψ̌68 = Ψ68 (212)

Ψ̌93 = −`kC ˆ̄qΨ53 (213)

Ψ̌94 = bR` p̂L×cΨ44 − `
kC ˆ̄qΨ54 (214)

Ψ̌95 = −`kC ˆ̄q (215)

Ψ̌96 = −`kC ˆ̄qΨ56 (216)

Ψ̌97 = bR` p̂L×cΨ47 − `
kC ˆ̄qΨ57 (217)

Ψ̌98 = −`kC ˆ̄qΨ58 (218)

Ψ̌99 = `
kC ˆ̄q (219)

Accordingly at time-step ` the measurement model of Eq. (177) becomes linear:

z` = R`pL + n`,
R`pL = `

kCq̄

(
RkpL − RkpI`

)
(220)

for which the measurement Jacobian with respect to x̃` is in the form of:

Ȟ` =
[
03 03 03

∣∣ 03 03 03 03 03

∣∣ I3

]
(221)

Therefore, for time interval [tk, t`], after composition we have the corresponding row M`, of M as follows:

M` = Ȟ`Ψ̌`,k (222)

=
[
03 03 Ψ̌93 Ψ̌94 Ψ̌95 Ψ̌96 Ψ̌97 Ψ̌98 Ψ̌99

]
(223)

=
[
03 03 Ψ̌93 Ψ̌94 −`kC ˆ̄q Ψ̌96 Ψ̌97 Ψ̌98

`
kC ˆ̄q

]
(224)

for which in the generic motion case, i.e., ω 6= 03×1, and a 6= 03×1, Ψ̌93, Ψ̌94, Ψ̌96, Ψ̌97, and Ψ̌98 are linearly
independent, and the same nullspace as in the propagation and update can be obtained:

null(M) = span
col.



I3 03 03

03 I3 03

03 03 03

03 03 03

03 03 I3

03 03 03

03 03 03

03 03 03

03 03 I3


(225)

Remark 3. Changing frame of reference does not change the unobservable subspace.

Remark 4. The proposed robocentric system has a constant unobservable subspace, i.e., independent of
the linearization points, which not only guarantees the correct unobservable dimensions, but also the desired
unobservable directions, thus improving consistency.
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2.6 Initialization

It is important to point out that using the proposed robocentric formulation, the filter initialization becomes
much simpler, as the states, by design, are simply relative to the sensor’s local frame of reference and typically
start from zero without the need to align the initial pose with the fixed global frame. In particular, in our
implementation, (i) the initial global pose and IMU relative pose are both set to {q̄0,03×1}, (ii) the initial
local gravity is the average of first available accelerometer measurement(s) before moving, and (iii) the initial
acceleration bias is obtained by removing gravity effects while the initial gyroscope bias is the average of the
corresponding stationary measurements. Similarly, the corresponding uncertainties for the poses are set to
zero, while for the local gravity and biases are set to: Σg = ∆Tσ2

aI3, Σbg = ∆Tσ2
wgI3, and Σba = ∆Tσ2

waI3,
where ∆T is the time length of initialization.

3 Simulation Results

We conducted a series of Monte Carlo simulations under realistic conditions to validate the proposed algo-
rithm. Two metrics are employed to evaluate the performance: (i) the root mean squared error (RMSE), and
(ii) the normalized estimation error squared (NEES). The RMSE provides a concise metric of the accuracy of
a given filter, while the NEES is a standard criterion for evaluating the consistency. We compared with two
world-centric counterparts: the standard MSCKF [1], and the state-of-the-art state-transition observability
constrained (STOC)-MSCKF [12] by enforcing correct observability to improve consistency. To ensure a fair
comparison, we implemented the compared filters using the same parameters, such as the sliding-window
size, and processed the same data (i.e., 50 trails for the scenario of Figure 1 under real MEMS sensor noise
and bias level [12]). The comparison results are in Figure 2 (the calculation details refers to [9]) and Table 1
provides average RMSE and NEES values for all of the algorithms, which clearly show that the proposed R-
VIO significantly outperforms the standard MSCKF as well as the STOC-MSCKF, in terms of both RMSE
(accuracy) and NEES (consistency), attributed to the novel reformulation of the system. Note that in Fig-
ure 2c the orientation NEES of proposed method has a jump at the beginning which is primarily due to
the small covariance we used for initialization (cf. Section 2.6), however, it can quickly recover and perform
consistently only after a short period of time.

Table 1: Average RMSE and NEES results corresponding to Figure 2.

Algorithm Orientation RMSE (◦) Position RMSE (m) Orientation NEES Position NEES

Std-MSCKF 3.4700 0.4774 7.0487 5.8103
STOC-MSCKF 2.5232 0.4305 4.0964 3.7936
Proposed 0.6811 0.0715 2.4146 1.9061

4 Experimental Results

We further validate the proposed R-VIO experimentally in both indoor and outdoor environments, using
both the benchmark public datasets and the datasets collected by our own sensor platform. As described
in Algorithm 1, we implemented a C++ multithread framework. In front end, the visual tracking thread
extracts features from the image using the Shi-Tomasi corner detector [23], then tracks them pairwise from
the previous image using the KLT algorithm [24]. To remove the outliers from tracking result, we realized an
IMU-aided two-point RANSAC algorithm [25]. Especially, for the feature lost track we use all its measure-
ments within the sliding window for EKF update, while for the one reaching the maximum tracking length
(e.g., the window size) we use its subset (e.g., 1/2) of measurements and maintain the rest for next update.
Once the visual tracking is done, the back end processes the measurements using the proposed robocentric
EKF. In particular, we present extensive comparison results against a state-of-the-art implementation, Okvis
(i.e., open keyframe-based visual-inertial SLAM) 2, which does nonlinear optimization in the back end lit-

2https://github.com/ethz-asl/okvis
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Figure 1: The scenario (i.e., trajectory and landmarks) in simulation. The camera/IMU pair moves along a
circular path of radius 5m (black) at an average speed 1m/s. The camera with 45◦ field of view observes point
features randomly distributed on a circumscribing cylinder of radius 6m (pink). The standard deviation of
image noise was set to 1.5 pixels, while IMU measurements were modelled with MEMS sensor quality.
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Figure 2: The statistical results of 50 Monte Carlo simulations.

erately incurring higher computational cost, however, taking the advantage of iterated linearization to limit
linearization errors [5]. All the tests run real time on a Core i7-4710MQ @ 2.5GHz × 8, 16GB RAM laptop.
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4.1 Highly Dynamic Capability

To show the robustness of the proposed R-VIO under highly dynamic motion, we consider the EuRoC micro
aerial vehicle (MAV) dataset where the VI-sensor (ADIS16448 IMU @ 200Hz, MT9V034 cameras @ 20Hz)
mounted on a FireFly hex-rotor helicopter was used for data collection [26]. During the tests, only the
left camera (cam0) images are used as vision input. The Okvis was set with default parameters, while the
R-VIO was set up to maintain 20 relative poses (i.e., about 1 second relative motion record), and uniformly
extracted 200 corner features per image. Note that the computational complexity of R-VIO is linear to the
number of features for EKF update (cf. Section 2.3), thus significantly reduces the computational cost. The
estimated trajectories are shown in Figure 3 and we provide the corresponding pose error results in Figure 4.
In general, the proposed R-VIO performs comparably to the Okvis, even better in some sequences.

4.2 Long-Term Sustainability

Aiming at long-term navigation, we further evaluated the accuracy and consistency of the proposed R-VIO
with a Long distance dataset, which contains a 14 minutes, 1.2km circular path recorded by the VI-Sensor
and has been employed in [5]. We compared the results with [5] which included the results of Okvis and
an MSCKF implementation of [27]. Figure 5 shows the estimated trajectories after 6DOF pose alignment,
where the z-drifts are also presented to illustrate the altitude performance.

4.3 Versatility

We have also validated the proposed R-VIO both indoor and outdoor, using our own sensor platform that
consists of: a MicroStrain 3DM-GX3-35 IMU (@ 500Hz) and a PointGrey Chameleon3 camera (@ 30Hz),
and is mounted onto the laptop. Both daytime and nighttime datasets were collected for the indoor test,
where we traveled about 150m loop at an average speed of 0.539m/s, covering two floors in a building (with
white wall, variant illumination, and strong glare in the hallway), while the outdoor dataset recorded about
360m loop at an average speed of 1.216m/s (with uneven terrain, and opportunistic moving objects). In
both tests, due to the lack of the ground truth, to visualize the performance we overlay the results onto the
floor plan and the Google Map, respectively (see Figure 6b,6d). The final position errors are about 0.349%
(daytime) and 0.615% (nighttime) over the travelled distance in the indoor tests, and about 1.173% in the
outdoor test.

5 Conclusion

In this report, we have reformulated the 3D VINS with respect to a moving local frame and developed
a lightweight, high-precision, robocentric visual-inertial odometry (R-VIO) algorithm. With this novel re-
formulation, the resulting VINS does not suffer from the observability mismatch issue encountered in the
world-centric systems, thus improving consistency and accuracy. Extensive Monte Carlo simulations and the
real-world experiments with different sensor platforms navigating in different environments and using only
monocular vision validate our theoretical analysis and show that the proposed R-VIO is versatile and robust
to different types of motions and environments. In future, we will focus on improving the proposed ap-
proach further, for example, by integrating online calibration and loop closure to deal with sensor parameter
variations and bound localization errors.
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Figure 3: Trajectory estimates vs. ground truth in EuRoC dataset.
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Figure 4: Estimation accuracy (RMSE) in EuRoC dataset.
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Figure 6: The results in our Hand-held experiments
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Appendix A: Analytic State Transition Matrix

In this part, we analytically derive the block entries of Ψ(`, k) employed by Eq. (164)-(175) in Section 2.5.1:

Ψ̇(`, k) = F̆Ψ(`, k) (226)

F̆ =



03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 −bω̂×c 03 03 −I3 03 03

03 03 03 −`kC>ˆ̄q bv̂I`×c 03
`
kC
>
ˆ̄q

03 03 03

03 03 −`kC ˆ̄q −b`ĝ×c 03 −bω̂×c −bv̂I`×c −I3 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03

03 03 03 03 03 03 03 03 03


(227)

Ψ(`, k) =



I3 03 03 03 03 03 03 03 03

03 I3 03 03 03 03 03 03 03

03 03 I3 03 03 03 03 03 03

03 03 03 Ψ44(`, k) 03 03 Ψ47(`, k) 03 03

03 03 Ψ53(`, k) Ψ54(`, k) I3 Ψ56(`, k) Ψ57(`, k) Ψ58(`, k) 03

03 03 Ψ63(`, k) Ψ64(`, k) 03 Ψ66(`, k) Ψ67(`, k) Ψ68(`, k) 03

03 03 03 03 03 03 I3 03 03

03 03 03 03 03 03 03 I3 03

03 03 03 03 03 03 03 03 I3


(228)

Ψ44:

Ψ̇44(`, k) = −bω̂×cΨ44(`, k) (229)

⇒ Ψ44(`, k) = Ψ44(k, k) exp

(∫ t`

tk

−bω̂×c ds
)

= exp

(∫ t`

tk

−bω̂×c ds
)

= `
kC ˆ̄q (230)

Ψ47:

Ψ̇47(`, k) = −bω̂×cΨ47(`, k)− I3 (231)

⇒ Ψ̇47(`, k) + bω̂×cΨ47(`, k) = −I3 (232)

⇒ exp

(∫ t`

tk

bω̂×c ds
)

Ψ̇47(`, k) + exp

(∫ t`

tk

bω̂×c ds
)
bω̂×cΨ47(`, k) = − exp

(∫ t`

tk

bω̂×c ds
)

(233)

⇒ d

dt

(
exp

(∫ t`

tk

bω̂×c ds
)

Ψ47(`, k)

)
= − exp

(∫ t`

tk

bω̂×c ds
)

(234)

⇒ d

dt

(
`
kC
>
ˆ̄q Ψ47(`, k)

)
= −`kC>ˆ̄q (235)

⇒ `
kC
>
ˆ̄q Ψ47(`, k) + Ψ47(k, k) = −

∫ t`

tk

s
kC
>
ˆ̄q ds (236)

⇒ Ψ47(`, k) = −`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds = −

∫ t`

tk

`
sC ˆ̄q ds (237)

Ψ63:

Ψ̇63(`, k) = −`kC ˆ̄q − bω̂×cΨ63(`, k) (238)

⇒ Ψ̇63(`, k) + bω̂×cΨ63(`, k) = −`kC ˆ̄q |cf. Eq. (233)− (235) (239)

⇒ d

dt

(
`
kC
>
ˆ̄q Ψ63(`, k)

)
= −`kC>ˆ̄q

`
kC ˆ̄q = I3 (240)
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⇒ `
kC
>
ˆ̄q Ψ63(`, k) + Ψ63(k, k) = −

∫ t`

tk

I3 ds (241)

⇒ Ψ63(`, k) = −`kC ˆ̄q∆tk,` (242)

Ψ64:

Ψ̇64(`, k) = −b`ĝ×cΨ44(`, k)− bω̂×cΨ64(`, k) (243)

⇒ Ψ̇64(`, k) + bω̂×cΨ64(`, k) = −b`ĝ×c`kC ˆ̄q |cf. Eq. (233)− (235) (244)

⇒ d

dt

(
`
kC
>
ˆ̄q Ψ64(`, k)

)
= −`kC>ˆ̄q b

`ĝ×c`kC ˆ̄q = −b`kC>ˆ̄q
`ĝ×c = −bRk ĝ×c (245)

⇒ `
kC
>
ˆ̄q Ψ64(`, k) + Ψ64(k, k) = −

∫ t`

tk

bRk ĝ×c ds (246)

⇒ Ψ64(`, k) = −`kC ˆ̄qbRk ĝ×c∆tk,` (247)

Ψ66:

Ψ̇66(`, k) = −bω̂×cΨ66(`, k) |cf. Ψ44 (248)

⇒ Ψ66(`, k) = `
kC ˆ̄q (249)

Ψ67:

Ψ̇67(`, k) = −b`ĝ×cΨ47(`, k)− bω̂×cΨ67(`, k)− bv̂I`×c (250)

⇒ Ψ̇67(`, k) + bω̂×cΨ67(`, k) = b`ĝ×c`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds− bv̂I`×c |cf. Eq. (233)− (235) (251)

⇒ d

dt

(
`
kC
>
ˆ̄q Ψ67(`, k)

)
= `
kC
>
ˆ̄q b
`ĝ×c`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds− `

kC
>
ˆ̄q bv̂I`×c (252)

⇒ `
kC
>
ˆ̄q Ψ67(`, k) + Ψ67(k, k) =

∫ t`

tk

bskC>ˆ̄q
sĝ×c

∫ s

tk

µ
kC>ˆ̄q dµds−

∫ t`

tk

s
kC
>
ˆ̄q bv̂Is×c ds (253)

⇒ Ψ67(`, k) = `
kC ˆ̄q

∫ t`

tk

bRk ĝ×c
∫ s

tk

µ
kC>ˆ̄q dµds− `

kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q bv̂Is×c ds (254)

⇒ Ψ67(`, k) = `
kC ˆ̄qbRk ĝ×c

∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds−

∫ t`

tk

`
sC ˆ̄qbv̂Is×c ds (255)

Ψ68:

Ψ̇68(`, k) = −bω̂×cΨ68(`, k)− I3 |cf. Ψ47 (256)

⇒ Ψ68(`, k) = −`kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds = −

∫ t`

tk

`
sC ˆ̄q ds (257)

Ψ53:

Ψ̇53(`, k) = `
kC
>
ˆ̄q Ψ63(`, k) (258)

⇒ Ψ̇53(`, k) = −`kC>ˆ̄q
`
kC ˆ̄q∆tk,` = −I3∆tk,` (259)

⇒ Ψ53(`, k) + Ψ53(k, k) = −
∫ t`

tk

I3∆tk,s ds (260)

⇒ Ψ53(`, k) = −1

2
I3∆t2k,` (261)

Ψ54:

Ψ̇54(`, k) = −`kC>ˆ̄q bv̂I`×cΨ44(`, k) + `
kC
>
ˆ̄q Ψ64(`, k) (262)
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⇒ Ψ̇54(`, k) = −`kC>ˆ̄q bv̂I`×c
`
kC ˆ̄q − `

kC
>
ˆ̄q
`
kC ˆ̄qbRk ĝ×c∆tk,` (263)

⇒ Ψ̇54(`, k) = −b`kC>ˆ̄q v̂I`×c − bRk ĝ×c∆tk,` (264)

⇒ Ψ54(`, k) + Ψ54(k, k) = −
∫ t`

tk

bskC>ˆ̄q v̂Is×c ds−
∫ t`

tk

bRk ĝ×c∆tk,s ds (265)

⇒ Ψ54(`, k) = −
∫ t`

tk

bRk v̂Is×c ds−
1

2
bRk ĝ×c∆t2k,` (266)

⇒ Ψ54(`, k) = −b
(
Rk p̂I` +

1

2
Rk ĝ∆t2k,`

)
×c (267)

Ψ56:

Ψ̇56(`, k) = `
kC
>
ˆ̄q Ψ66(`, k) (268)

⇒ Ψ̇56(`, k) = `
kC
>
ˆ̄q
`
kC ˆ̄q = I3 (269)

⇒ Ψ56(`, k) + Ψ56(k, k) =

∫ t`

tk

I3 ds (270)

⇒ Ψ56(`, k) = I3∆tk,` (271)

Ψ57:

Ψ̇57(`, k) = −`kC>ˆ̄q bv̂I`×cΨ47(`, k) + `
kC
>
ˆ̄q Ψ67(`, k) (272)

⇒ Ψ̇57(`, k) = `
kC
>
ˆ̄q bv̂I`×c

`
kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds+ `

kC
>
ˆ̄q
`
kC ˆ̄qbRk ĝ×c

∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds

− `
kC
>
ˆ̄q
`
kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q bv̂Is×c ds (273)

⇒ Ψ̇57(`, k) = b`kC>ˆ̄q v̂I`×c
∫ t`

tk

s
kC
>
ˆ̄q ds+ bRk ĝ×c

∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds−

∫ t`

tk

s
kC
>
ˆ̄q bv̂Is×c ds (274)

⇒ Ψ57(`, k) + Φ57(k, k) =

∫ t`

tk

bskC>ˆ̄q v̂Is×c
∫ s

tk

µ
kC>ˆ̄q dµds+ bRk ĝ×c

∫ t`

tk

∫ s

tk

∫ µ

tk

λ
kC
>
ˆ̄q dλdµds

−
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q bv̂Iµ×c dµds (275)

⇒ Ψ57(`, k) =

∫ t`

tk

bskC>ˆ̄q v̂Is×c
∫ s

tk

µ
kC>ˆ̄q dµds+ bRk ĝ×c

∫ t`

tk

∫ s

tk

∫ µ

tk

λ
kC
>
ˆ̄q dλdµds

−
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q bv̂Iµ×c dµds (276)

Ψ58:

Ψ̇58(`, k) = `
kC
>
ˆ̄q Ψ68(`, k) (277)

⇒ Ψ̇58(`, k) = −`kC>ˆ̄q
`
kC ˆ̄q

∫ t`

tk

s
kC
>
ˆ̄q ds = −

∫ t`

tk

s
kC
>
ˆ̄q ds (278)

⇒ Ψ58(`, k) + Ψ58(k, k) = −
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds (279)

⇒ Ψ58(`, k) = −
∫ t`

tk

∫ s

tk

µ
kC>ˆ̄q dµds (280)

Appendix B: Bundle Adjustment with Euclidean Coordinates

In this section, we show the nonlinear least-squares method for computing the position of landmark Lj which
has been observed from a set of time-ordered robocentric frames of reference, Rj . Assume that {Rk} is the
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first robocentric frame from which the landmark is observed, the landmark position for i ∈ {Rj}:
RkpLj = k

iCq̄
RipLj + RkpRi (281)

RipLj = I
CCq̄

CipLj + IpC (282)

for which we have the estimate of the relative pose, {kiCq̄,
RkpRi}, and the bearing measurement for CipLj :

ηij =


xij
zij
yij
zij

1

 =

uifvi
f

1

 , CipLj =

xijyij
zij

 (283)

where (ui, vi) is the pixel measurement of Lj centered at the principal point of image, f is the focal length.
If we denote the depth of landmark as λij , then Eq. (281) can be rewritten as:

RkpLj = k
iCq̄

(
I
CCq̄

CipLj + IpC

)
+ RkpRi (284)

= k
iCq̄

(
I
CCq̄λ

i
jη

i
j + IpC

)
+ RkpRi (285)

= λij
k
iCq̄

I
CCq̄η

i
j + k

iCq̄
IpC + RkpRi (286)

= λij η̄
i
j + p̄i (287)

where for brevity we have denoted η̄ij = k
iCq̄

I
CCq̄η

i
j and p̄i = k

iCq̄
IpC+RkpRi . We can find the perpendicular

counterpart of η̄ij as ⊥η̄ij , and premultiply it to the above equation, we have:

⊥η̄i>j
Rkpfj = ⊥η̄i>j p̄i (288)

from which we can form two linearly independent constraints for RkpLj (e.g., for η̄ij = [ηx, ηy, ηz]
>, we have

⊥η̄ij,1 = [ηy,−ηx, 0]> and ⊥η̄ij,2 = [ηz, 0,−ηx]>):[⊥η̄i>j,1
⊥η̄i>j,2

]
Rkpfj =

[⊥η̄i>j,1p̄i
⊥η̄i>j,2p̄i

]
(289)

⇒ Ai
RkpLj = yi (290)

If we stack all the resulting equations for i ∈ Rj , then the following linear least-squares problem is formulated:

A2N×3
RkpLj = y2N×1 (291)

where the size of Rj : N ≥ 2 (including k) for solving the problem, which means the positions of landmarks
observed from at least two robocentric frames of reference can be solved: Rk p̂Lj = (A>A)−1A>y.

Once obtaining an initial estimate for RkpLj , we can form a nonlinear least-squares problem using the
measurements of Lj to refine the value of Rk p̂Lj . If we denote RkpLj = [x, y, z]>, then for i ∈ {Rj\k}:

CipLj = C
I Cq̄

RipLj + CpI (292)

= C
I Cq̄

(
i
kCq̄

(
RkpLj − RkpRi

))
+ CpI (293)

:=

hi,1(x, y, z)
hi,2(x, y, z)
hi,3(x, y, z)

 (294)

However, for seeking the numerical stability of computation, we adopt an equivalent representation of RkpLj :
[x, y, z]> = z[xz ,

y
z , 1]> (assuming depth z is the most variant direction), then:

CipLj = C
I Cq̄

i
kCq̄

xy
z

− RkpRi

+ CpI (295)
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= C
I Cq̄

i
kCq̄

z
xzy
z
1

− RkpRi

+ CpI (296)

= zCI Cq̄
i
kCq̄

xzy
z
1

− 1

z
RkpRi

+ CpI (297)

= zCI Cq̄
i
kCq̄

αβ
1

− ρRkpRi
+ CpI (298)

where α = x
z , β = y

z , and ρ = 1
z . If we only consider the geometry in the above equation, then it is able to

be reformulated with arbitrary scale while still fits for the bearing expression (as the scale will be cancelled
in the fraction form), such as multiplying ρ to both sides, which results in the following expression:

ρCipLj = C
I Cq̄

i
kCq̄

αβ
1

− ρRkpRi
+ ρCpI (299)

⇒ Ci p̄Lj =

hi,1(α, β, ρ)
hi,2(α, β, ρ)
hi,3(α, β, ρ)

 (300)

By substituting Eq. (300) into Eq. (86), we express the measurement model as the function of α, β, and ρ:

zi =
1

hi,3(α, β, ρ)

[
hi,1(α, β, ρ)
hi,2(α, β, ρ)

]
+ ni (301)

= hi(α, β, ρ) + ni (302)

where ni ∼ N (0,Λi) is a zero-mean white Gaussian noise corresponding to the scale of the normalized pixel
coordinates (i.e., divided by the focal length f). Given the measurements zi = (uif ,

vi
f ), i ∈ {Rj\k}, we can

form the following nonlinear least-squares problem for solving X = [α, β, ρ]>:

X ∗ = arg min
X

∑
i∈{Rj\k}

∥∥hi(X )− zi
∥∥

Λi
= arg min

X

∑
i∈{Rj\k}

∥∥εi(X )
∥∥

Λi
(303)

where ‖·‖Λ denotes the Λ-weighted energy norm, and we define εi as the residual associated to zi. This
problem can be solved iteratively via Gauss-Newton approximation about the initial estimate of X̂ :

δX ∗ = arg min
δX

∑
i∈{Rj\k}

∥∥εi(X̂ + δX )
∥∥

Λi
' arg min

δX

∑
i∈{Rj\k}

∥∥εi(X̂ ) + HiδX
∥∥

Λi
(304)

For which the Jacobian of residual Hi = ∂εi(X̂+δX )
∂δX evaluated at X̂ can be obtained following the chain rule:

Hi =
∂εi

∂Ci p̄Lj

∂Ci p̄Lj
∂X

∂X
∂δX

=
∂εi

∂Ci p̄Lj

∂Ci p̄Lj
∂X

(305)

∂εi
∂Ci p̄Lj

=
1

ĥi,3

1 0 − ĥi,1
ĥi,3

0 1 − ĥi,2
ĥi,3

 , (306)

∂Ci p̄Lj
∂X

=
[
∂Ci p̄Lj
∂[α,β]>

∂Ci p̄Lj
∂ρ

]
=

C
I Cq̄

i
kC ˆ̄q

1 0
0 1
0 0

 C
I Cq̄

Ri p̂Rk + CpI

 (307)

Once the result of Eq. (304) get converged, we find the optimal parameters: X ∗ = X̂ + δX ∗, thus Rkp∗Lj .
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Appendix C: Bundle Adjustment with Inverse Depth Parameters

Assuming that we have the same landmark Lj as in Appendix B, the expression for RkpLj using our tailored
inverse depth parametrization (cf. Section 2.3.2) is shown as:

RkpLj = I
CCq̄

CkpLj + IpC (308)

CkpLj =
1

ρ
e(φ, ψ), e =

cosφ sinψ
sinφ

cosφ cosψ

 (309)

where e is the unit directional vector of the ray from {Ck} with φ and ψ the elevation and azimuth expressed
in {Ck}, respectively, and ρ denotes the inverse depth of landmark along e. For i ∈ {Rj\k}, we have:

RipLj = i
kCq̄

RkpLj + RipRk (310)

= i
kCq̄

(
I
CCq̄

CkpLj + IpC

)
+ RipRk (311)

= i
kCq̄

(
I
CCq̄

1

ρ
e + IpC

)
+ RipRk (312)

=
1

ρ
i
kCq̄

I
CCq̄e + i

kCq̄
IpC + RipRk (313)

Then, the position of landmark in the corresponding camera frame can be expressed as:

CipLj = C
I Cq̄

RipLj + CpI (314)

= C
I Cq̄

(1

ρ
i
kCq̄

I
CCq̄e + i

kCq̄
IpC + RipRk

)
+ CpI (315)

=
1

ρ
C
I Cq̄

i
kCq̄

I
CCq̄e + C

I Cq̄
i
kCq̄

IpC + C
I Cq̄

RipRk + CpI (316)

=
1

ρ
i
kC̄q̄e + ip̄k (317)

where i
kC̄q̄ = C

I Cq̄
i
kCq̄

I
CCq̄, and ip̄k = C

I Cq̄
i
kCq̄

IpC + C
I Cq̄

RipRk + CpI represent the relative pose between
the camera frame {Ck} and {Ci}. If we only consider the geometry in the above equation, then it is able to
be reformulated with arbitrary scale, such as being normalized by ρ, which results in the following expression:

ρCipLj = i
kC̄q̄e + ρip̄k (318)

⇒ ip̄Lj =

hi,1(φ, ψ, ρ)
hi,2(φ, ψ, ρ)
hi,3(φ, ψ, ρ)

 (319)

where hi,1, hi,2, and hi,3 are the scalar functions of the entries of ip̄Lj . By substituting Eq. (319) into Eq.
(86), the measurement model can be expressed as the function of φ, ψ, and ρ:

zi =
1

hi,3(φ, ψ, ρ)

[
hi,1(φ, ψ, ρ)
hi,2(φ, ψ, ρ)

]
+ ni (320)

= hi(φ, ψ, ρ) + ni (321)

where ni ∼ N (0,Λi) is a zero-mean white Gaussian noise corresponding to the scale of the normalized pixel
coordinates (i.e., divided by the focal length f). Given the measurements zi = (uif ,

vi
f ), i ∈ {Rj\k}, we can

form the following nonlinear least-squares problem for solving λ = [φ, ψ, ρ]>:

λ∗ = arg min
λ

∑
i∈{Rj\k}

∥∥hi(λ)− zi
∥∥

Λi
= arg min

λ

∑
i∈{Rj\k}

∥∥εi(λ)
∥∥

Λi
(322)
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where ‖·‖Λ denotes the Λ-weighted energy norm, and we define εi as the residual associated to zi. This

problem can be solved iteratively via Gauss-Newton approximation about the initial estimate of λ̂:

δλ∗ = arg min
δλ

∑
i∈{Rj\k}

∥∥εi(λ̂+ δλ)
∥∥

Λi
' arg min

δλ

∑
i∈{Rj\k}

∥∥εi(λ̂) + Hiδλ
∥∥

Λi
(323)

For the initial estimate λ̂, we can get [φ̂, ψ̂]> using the pixel measurement (uk, vk) and the focal length f as:

[
φ̂

ψ̂

]
=

[
arctan

(
vk,
√
u2
k + f2

)
arctan (uk, f)

]
=

arctan
(
vk
f ,
√

(ukf )2 + 1
)

arctan
(
uk
f , 1

)  (324)

however, the initial value for ρ̂ is empirically chosen (e.g., 0.1 [21]), for which we choose 0 to put landmark at

infinity first, and let it converge by performing iteration. The Jacobian of residual Hi = ∂εi(λ̂+δλ)
∂δλ evaluated

at λ̂ can be obtained following the chain rule:

Hi =
∂εi
∂ip̄Lj

∂ip̄Lj
∂λ

∂λ

∂δλ
=

∂εi
∂ip̄Lj

∂ip̄Lj
∂λ

(325)

∂εi
∂ip̄Lj

=
1

ĥi,3

1 0 − ĥi,1
ĥi,3

0 1 − ĥi,2
ĥi,3

 , (326)

∂ip̄Lj
∂λ

=
[
∂ip̄Lj
∂[φ,ψ]>

∂ip̄Lj
∂ρ

]
=

i
kC̄ ˆ̄q

− sin φ̂ sin ψ̂ cos φ̂ cos ψ̂

cos φ̂ 0

− sin φ̂ cos ψ̂ − cos φ̂ sin ψ̂

 i ˆ̄pk

 (327)

Once the result of Eq. (323) get converged, we find the optimal parameters: λ∗ = λ̂+ δλ∗, thus Rkp∗Lj .
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