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Abstract

In this paper, we perform observability analysis for inertial navigation systems (INS) aided by
generic exteroceptive measurements (i.e., range and/or bearing) with different type of geometric
features including points, lines and planes. In particular, while the observability of vision-aided
INS (VINS, which uses cameras as bearing sensor) with point features has been extensively
studied in the literature, we analytically show that the same observability property remains if
using generic range and/or bearing measurements, and if global measurements are also available,
as expected, some unobservable directions dismiss. Moreover, we study in-depth the effects of
four degenerate motions on the system observability. Building upon the observability analysis of
the aided INS with point features, we perform observability analysis for the same system but with
line and plane features, respectively, and show that there exist 5 (and 6) unobservable directions
for a single line (and plane) feature. Moreover, we, for the first time, analytically derive the
unobservable directions for the cases of multiple lines/planes. We validate our observability
analysis through Monte Carlo simulations.

1 Introduction and Related Work

Over the past decades, an inertial navigation system (INS) using an inertial measurement unit
(IMU) is among the most popular approaches to estimate the 6 degrees-of-freedom (DOF) position
and orientation (pose) in 3D, especially in GPS-denied environments such as underwater, indoor,
in the urban canyon, and in space. However, simple integration of IMU measurements that are
corrupted by noise and bias, often results in estimates unreliable in a long term, although a high-
accuracy IMU exists but remains prohibitively expensive for widespread deployment. A camera
that is small, light-weight, and energy-efficient, provides rich information about the perceived
environment and serves as an idea aiding source for INS, i.e., vision-aided INS (VINS) [1, 2, 3, 4, 5,
6, 7, 8]. Nevertheless, many other exteroceptive sensors such as LiDAR [9], RGBD camera[10] and
2D imaging sonar [11], can also be used to aid INS by providing range and/or bearing measurements
to features. To date, various algorithms are available for aided INS problems, among which the
EKF-based approaches remain arguably the most popular, for example, observability constrained
(OC)-EKF [12, 1], and multi-state constrained Kalman filter (MSCKF) [13, 3].

As system observability plays an important role in developing consistent state estimation [14],
the observability of VINS has been extensively studied. In particular, the authors of [15, 16]
examined the system’s indistinguishable trajectories. By employing the concept of continuous
symmetries, [17, 18] showed explicitly that the IMU biases, 3D velocity, and absolute roll and
pitch angles in VINS are observable. In [1, 19], observability analysis for the linearized VINS was
performed by analytically finding the right null space of the observability matrix. The corresponding
nonlinear observability analysis [20] was also carried, respectively, for monocular vision-aided INS [2]
and RGBD-aided INS [21], where the unobservable directions were found analytically. Previous
work shows that there are 4 unobservable directions (3 correspond to global translation and 1
to global yaw) for VINS. However, few has studied the observability for INS aided with generic
range and/or bearing measurements using different geometric features. Note that aided INS might
be fed into global measurements, such as altitude measurements by barometers and orientation
measurements by compasses. It is important to understand the effects of such measurements on
the system observability. Moreover, it is of practical significance to examine the degenerate motions
that may ruin the system observability properties by causing more unobservable directions (e.g.,
see [22]).

While most current VINS algorithms focus on using point features [3, 1, 2], line and plane
features are to prevail [23, 10, 24, 25], because of their advantages: (i) There are plenty of straight
lines and planes in common urban or indoor environments (e.g., doors, walls, stairs); (ii) They

RPNG-2017-OBSERVABILITY 1



can be easily detected and tracked continuously over a relatively long time period; (iii) They are
more robust in texture-less environments compared to points. In particular, Kottas et al. [25]
represented the line with a quaternion and a scalar, and studied the line observability based on
this representation with linearized observability matrix. Guo et al. [10] and Panahandeh et al.[24]
analyzed the observability of VINS with plane features, while assuming plane orientation is a priori
known. In contrast, in this work, we make no assumption for lines or planes and advocate to
use the minimum parameterization of orthonormal representation [26] to model line features. By
performing observability analysis, we show there are 5 (and 6) unobservable directions for INS
with a single line (and plane) feature; and moreover, we derive for the first time the unobservable
subspace of the aided INS with multiple lines or planes.

Specifically, the main theoretical contributions of this paper are in the following:

• We generalize the VINS observability analysis to INS aided with any type of exteroceptive
sensors such as 3D LiDAR, 2D imaging sonar, and stereo cameras, and analytically show that
the same observability properties remain (i.e., four unobservable directions).

• We study in-depth the effects of global measurements on the system observability, showing
that they, as expected, will improve the system observability.

• By employing the spherical coordinates for the point feature, we identify 4 degenerate motions
that cause the aided INS more unobservable directioins.

• We perform observability analysis for the aided INS with line and plane features, respectively,
and show that there exist 5 (and 6) unobservable directions for a single line (and plane) fea-
ture. Moreover, we analytically derive the unobservable directions for multiple lines (planes),
without any assumption about features.

2 Aided INS with Point Features

In this section, we briefly describe the system and measurement models of the general aided INS,
which will form the basis for the ensuing analysis. In particular, the state vector of the aided INS
contains the current IMU state xIMU and the feature GPf (note that for simplicity of presentation,
we consider the case of a single feature):

x=
[
x>IMU

GPT
f

]
=
[
I
Gq̄
> b>g

GV>I b>a
GP>I

GP>f
]>

(1)

where I
Gq̄ is a unit quaternion represents the rotation of IMU from the global frame to the IMU

frame. GVI and GPI represents the velocity and position of the IMU in the global frame, while bg
and ba represent the gyroscope and accelerometer biases, respectively.

2.1 IMU Propagation Model

The time evolution of the system is given by [27]:

I
G

˙̄q(t) =
1

2
Ω
(
Iω(t)

)
I
Gq̄(t),

GṖI(t) = GVI(t),
GV̇I(t) = Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t), GṖf (t) = 03×1 (2)

where Iω and Ia are the angular velocity and linear acceleration, respectively. nwg and nwa are the

gyroscope and accelerometer biases, and Ω(ω) ,

[
−bω×c ω
−ω> 0

]
, bω×c ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

.The gyroscope
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and the accelerometer measurements are:

ωm(t)= Iω(t) + bg(t) + ng(t) (3)

am(t)= R
(
I
Gq̄(t)

) (
Ga(t)− Gg

)
+ ba(t) + na(t) (4)

where R (q̄) represents the rotation corresponding to the quaternion q̄, Gg =
[
0 0 g

]>
is the

gravity, ng(t) and na(t) are zeros-mean Gaussian white noises corrupting angular velocity and
linear acceleration measurement.

Linearizing the system model (2) at the current state estimates yields the continuous-time
error-state equation [27]:

˙̃x(t) =

[
Fc(t) 015×3

03×15 03

]
x̃(t) +

[
G(t)
03×12

]
n(t) = F(t)x̃(t) + G(t)n(t) (5)

where Fc(t) is the continuous-time error-state transition matrix, and Gc(t) is the continuous-time
noise Jacobian matrix. The system noise n(t) =

[
n>g n>wg n>a n>wa

]>
are modeled as a zero-mean

white Gaussian process with autocorrelation E
[
n(t)n>(τ)

]
= Qcδ(t− τ). To propagate covariance, we

need to compute the discrete-time state transition matrix Φ(k+1,k) from time tk to tk+1, which is

obtained by solving the differential equation Φ̇(k+1,k) = F(tk)Φ(k+1,k) with Φ(1,1) = I15 [1]. With
that, the discrete-time noise covariance matrix and the propagated covariance can be computed as:

Qk =

∫ tk+1

tk

Φ(k,τ)Gc(τ)QcG
>
c (τ)Φ>(k,τ)dτ (6)

Pk+1|k = Φ(k+1,k)Pk|kΦ
>
(k+1,k) + Qk (7)

2.2 Generic Measurement Model

A 3D point feature detected from range and/or bearing measurements, can be represented by:

GPf =
[
Gxf

Gyf
Gzf
]>

= rfbf (8)

where rf and bf are the range and bearing of the point. For simplicity, we assume the sensor frame
coincides with the IMU frame. The point in the local sensor frame is given by:

IPf =
[
Ixf

Iyf
Izf
]>

= I
GR

(
GPf − GPI

)
(9)

While a variety of sensors are available and provide different measurements, all these measure-
ments in the aided INS are in the form of range and/or bearing, which can be modeled as follows
(see Appendix C):

z =

[
z(r)

z(b)

][√
IPf

>IPf + n(r)

hb

(
IPf ,n

(b)
) ]

(10)

With linearization at the current feature estimate IP̂f , we have:

z̃ =

[
z̃(r)

z̃(b)

]
'
[

Hr
IP̃f + n(r)

Hb
IP̃f + Hnn

(b)

]
(11)

where Hr and Hb denote the range and bearing measurement Jacobians, and Hn is the noise
Jacobian (see Appendix C).

RPNG-2017-OBSERVABILITY 3



3 Observability Analysis of Aided INS with Point Features

In this section, we perform observability analysis for the linearized system of aided INS with point
features based on generic measurements in a similar way as in [12, 1]. In particular, the observability
matrix M(x) is given by:

M(x) =


HI1Φ(1,1)

HI2Φ(2,1)
...

HIkΦ(k,1)

 (12)

The unobservable directions of this aided INS span the right null space of M(x). Specifically, for
each block row of M(x), we have:

HIk =
[
Hr,k

Hb,k

] [
bIkG R̂

(
GP̂f − GP̂Ik

)
×c 03 03 03 −IkG R̂ Ik

G R̂
]

= Hproj,k
Ik
G R̂

[
b
(
GP̂f − GP̂Ik

)
×cIkG R̂> 03 03 03 −I3 I3

]
(13)

where we have defined Hproj,k =
[
H>r,k H>b,k

]>
. Thus,

HIkΦ(k,1) = Hproj,k
Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
(14)

where:

Γ1 = bGP̂f − GP̂I1 − GV̂I1δtk −
1

2
Gg(δtk)

2×cGI1R̂

Γ2 = b
(
GP̂f − GP̂Ik

)
×cIkG R̂>Φ12 −Φ52, Γ3 = I3δtk, Γ4 = −Φ54

By inspection, it is not difficult to see that the null space for the matrix M(x) is given by:

NT =

[
NT
p

NT
r

]
= (15)

[
03 03 03 03 I3 I3(

I1
G R̂Gg

)>
01×3 −

(
bGV̂I1×cGg

)>
01×3 −

(
bGP̂I1×cGg

)>
−
(
bGP̂f×cGg

)>]>

where Np corresponds to the sensor’s global translation and Nr relates to the global rotation around
the gravity direction. For generic range and bearing sensors, the Jacobians can all be represented by
Hproj,k. From the above analysis, we see that the system has at least four unobservable directions.

Additionally, in analogy to [12, 2, 21], we have further performed the nonlinear observabil-
ity analysis based on lie derivatives [20] for the continuous-time nonlinear INS aided by generic
measurements, which is summarized as follows:

Lemma 3.1. The continuous-time nonlinear INS aided by generic range and/or bearing measure-
ments with point features, has 4 unobservable directions.

Proof. See Appendix D.

3.1 Global Measurements

In practice the aide INS may also have access to (partial) global measurements provided by, for
example, GPS, motion capture systems, barometers and compasses. Intuitively, such measurements
would alter the system observability properties, even if only partial (not full 6DOF) information
is available. In what follows, we systematically inspect the impacts of such measurements on
observability.

RPNG-2017-OBSERVABILITY 4



3.1.1 Global Position Measurement

We consider the case where besides the range and bearing sensors, global position measurements
are also available from, for example, GPS and barometer. Specifically, if sensor’s translation along
x direction is known, the additional measurement is given by z(x) = e1

GPI . The measurement
Jacobians and the block row of observability matrix at time step k can be computed as:

HIk =

Hr,k

Hb,k

Hx,k

 =

[
Hproj,k

Ik
G R̂

[
b
(
GP̂f − GP̂Ik

)
×cIkG R̂> 03 03 03 −I3 I3

][
01×3 01×3 01×3 01×3 e>1 01×3

] ]

⇒ HIkΦ(k,1) =

[
Hproj,k

Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

][
01×3 01×3 01×3 01×3 e>1 01×3

] ] (16)

where Hx,k is the measurement Jabocians for global x measurement. We can show that the system’s
unobservable directions now become:

Nx =
[
02×3 02×3 02×3 02×3

[
02×1 I2

] [
02×1 I2

]]> (17)

Compared to N, both sensor’s global translation in x direction and the rotation around the gravity
direction become observable. Analogously, if global y-axis measurement is available, translation
along y and rotation around gravity direction will become observable.

Following the similar steps, if the sensor’s translation in z direction is directly measured, e.g.,
by a barometer, we have an additional measurement z(z) = e3

GPI . In this case, the block row of
the observability matrix at time step k becomes:

HIkΦ(k,1) =

[
Hproj,k

Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

][
01×3 01×3 01×3 01×3 e>3 01×3

] ] (18)

Since e3 is parallel to Gg, then e>3 bGPI1×cGg = 0. Therefore, the system’s unobservable directions
become Nz:

N>z =

[
02×3 02×3 02×3 02×3

[
I2 01×2

] [
I2 01×2

](
I1
G R̂Gg

)>
01×3

(
−bGV̂I1×cGg

)>
01×3

(
−bGP̂I1×cGg

)> (
−bGP̂f×cGg

)>]

Clearly, only translation in z becomes observable, while, different from the cases with global x and
y measurements, the rotation around gravity direction is still unobservable.

3.1.2 Global Orientation Measurement

If the aided INS is equipped with a magnetic compass, then we also have global orientation mea-
surements given by z(N) = INn = I

GRGNn. In this case, the Jacobians and the block row of the
observability matrix at time step k can be computed as:

HIk =

Hr,k

Hb,k

HN,k

 =

[
Hproj,k

Ik
G R̂

[
b
(
GP̂f − GP̂Ik

)
×cIkG R̂> 03 03 03 −I3 I3

]
Ik
G R̂

[
bGNn×cIkG R̂> 03 03 03 03 03

] ]

⇒ HIkΦ(k,1) =

[
Hproj,k

Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
Ik
G R̂

[
bGNn×cGI1R̂ Γ5 03 03 03 03

]] (19)

where HN,k is the Jacobians for orientation measurement, and Γ5 = bGNn×cIkG R̂>Φ12. If GNn is not

parallel to Gg, bGN×cGg 6= 0. the rotation around the gravity direction becomes observable, and the
unobservable directions become:

Nn =
[
03 03 03 03 I3 I3

]>
(20)

In summary, as expected, global measurements will make the system more observable. If a
global full position measurements by GPS or a prior map are available, the system will become
fully observable, while global orientation measurements can make the rotation around gravitational
direction observable, as long as this orientation is not parallel to the direction of gravity.

RPNG-2017-OBSERVABILITY 5



3.2 Degenerate Motion

In what follows, we further investigate degenerate motion for INS aided with generic range and
bearing sensors, which is important for healthy estimators. In particular, as compared to [22] where
pure translation or constant acceleration have been reported to be generated in VINS, we identify
2 more degenerate cases: pure rotation and translation towards a feature. To ease the analysis, we
use range and bearing parameterization (i.e., spherical coordinates) of the point feature, instead of
the conventional 3D Euclidean coordinates.

Pf =

xfyf
zf

 = rfbf = rf

cos θ cosφ
sin θ cosφ

sinφ

 (21)

where rf in the range, θ and φ represents the horizontal and elevation angle of point feature. With
that, the state becomes:

x =
[
I
Gq̄
>

b>g
GV
>
I b>a

GP
>
I

[
Grf

Gθ Gφ
]]>

(22)

In this case, we can write the block row of the obsevability matrix as:

HIk = Hproj,k
Ik
G R̂

[
b
(
GP̂f − GP̂Ik

)
×cIkG R̂> 03 03 03 −I3

[
∂GP̃f

∂Gr̃f
∂GP̃f

∂Gθ̃f

∂GP̃f

∂Gφ̃f

]]
⇒ HIkΦ(k,1) = Hb,k

Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 b̂f r̂f b̂

⊥
1 r̂f b̂

⊥
2

]
(23)

where

∂GP̃f

∂Gr̃f
=
[
cos θ̂ cos φ̂ sin θ̂ cos φ̂ sin φ̂

]>
, b̂>f

∂GP̃f

∂Gθ̃f
=
[
− sin θ̂ cos φ̂ cos θ̂ cos φ̂ 0

]>
r̂f , rf b̂

⊥
1

∂GP̃f

∂Gφ̃f
=
[
− cos θ̂ sin φ̂ − sin θ̂ sin φ̂ cos φ̂

]>
r̂f , r̂f b̂

⊥
2

By inspection, the unobservable directions are given by:

Nrb=
[
N>rb,p N>rb,r

]>
(24)

=

 03 03 03 03 I3 b̂f
1
r̂f

b̂⊥1
1
r̂f

b̂⊥2(
I1
G R̂Gg

)>
01×3 −

(
bGV̂I1×cGg

)>
01×3 −

(
bGP̂I1×cGg

)>
0 g 0

>

where g =
∥∥Gg

∥∥, Nrb,p and Nrb,r denote the unobservable directions related to the global translation
and global rotation around the gravity direction, which as expected agrees with the preceding
analysis.

3.2.1 Pure Translation

If the sensor undergoes pure translation, the system gain additional unobservable directions:

NR =

[
I1
G R̂

>
03 −bGV̂>I1×c

(
I1
G R̂bGg×c

)>
−bGP̂>I1×c Θ>

]>
(25)

where Θ =

 0 0 0
Gr̂f cos θ̂ tan φ̂ sin θ̂ tan φ̂ −1

−Gr̂f sin θ̂ cos θ̂ 0

. Similar to [22], this unobservable direction can be easily

verified as follows:

HIkΦ(k, 1)NR = Hproj,k
Ik
G R̂

(
Γ4

I1
G R̂− 1

2
δt2kI3

)
bGg×c = 0 (26)

RPNG-2017-OBSERVABILITY 6



From Θ we see that this unobservable direction only relates to the bearing of the feature, since
the first row of Θ are all zeros. This indicates that the global rotation of the sensor all becomes
unobservable, rather than only global yaw unobservable for general motion. It is important to note
that no assumption is made about sensors used in this analysis.

3.2.2 Pure Rotation

If sensor has only rotational motion, then GPIk = 03×1 and we have IkPf = Ik
GRGPf . For mono-

camera, the system will gain one more unobservable direction corresponding to the feature’s range:

N1 =
[
01×3 01×3 01×3 01×3 01×3 1 0 0

]>
(27)

Since a mono-camera provides only bearing measurements, Hproj,k = Hb,k. In this case, we have:

HIkΦ(k,1)N1 = Hb,k
I b̂f =

[
I b̂⊥1

I b̂⊥2
]> I b̂f=

[
I b̂⊥1

I b̂⊥2
]> I

GR̂Gb̂f = 0

Therefore, we have one more unobservable direction related to the scale of the feature.

3.2.3 Moving Toward a Feature

If the mono-camera is moving towards a feature, then the system will also gain one more unobserv-
able direction related to this feature scale:

N1 =
[
01×3 01×3 01×3 01×3 01×3 1 0 0

]>
(28)

This degenerate motion indicates that the sensor is moving along the direction of the feature’s
bearing direction, that is: GPIk = αGbf , with α denotes the scale of the sensor’s motion. Then,
we can arrive at:

IkPf =Ik rf
Ikbf = Ik

GR
(
GPf − GPIk

)
= Ik

GR
(
Grf − α

)
Gbf (29)

Similar to the pure rotation, we can show the additional unobservable direction N1 based on the
following:

Hb,kΦ(k,1)N1 =
I r̂f

Gr̂f − α
[
I b̂⊥1

I b̂⊥2
]> I

GR̂Gb̂f = 02×1

3.2.4 Constant Acceleration

If the mono-camera moves with constant local acceleration, i.e., Ia is constant, then the system
will have one more unobservable direction given by:

Na =
[
01×3 01×3

GV̂I1 −I â GP̂I1
Gr̂f 0 0

]
(30)

To see this, we have:

HIkΦ(k,1)Na = Hb,k
Ik
G R̂

(
−GV̂I1δtk − Γ4

I â− GP̂I1 + Grf
Gb̂f

)
(31)

Based on [22], we know:
Γ4

Ia = GP̂Ik −
GP̂I1 − GV̂I1δtk (32)

Therefore, we arrive at:

HIkΦ(k,1)Na = −Hb,k
Ik
G R̂

(
GP̂f − GP̂Ik

)
= Hb,k

Ik b̂f = 02×1 (33)

Clearly, this null space is only related to the scale; thus, if we use sensors such as stereo and RGBD
cameras that can recover the scale, this unobservable direction will disappear.
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4 Observability Analysis of Aided INS with Line Features

As navigating in structured environments, line features can be used in the aided INS to provide
more compact information. Thus, in this section, we perform observability analysis for the aided
INS with line features to provide insights for building consistent estimators.

4.1 Line Representation

Inspired by [26], we propose to use the Plucker representation for the line feature in the state vector
while orthonormal representation (which is minimal) for the error state. The Plucker representation
can be initialized by the two end points PL1 and PL2 of a line segment L, as:

L =

[
bPL1

×cPL2

PL2
−PL1

]
=

[
nL
vL

]
(34)

where nL and vL are the normal vector and direction vector for the line L. We need a minimal
parameterization for line update. Based on (34), we have:

L =
[
nL|vL

]
=
[

nL

‖nL‖
vL

‖vL‖
nL×vL

‖nL×vL‖

]‖nL‖ 0
0 ‖vL‖
0 0

 (35)

where we can define:

RL= exp(−bθL×c) =
[

nL
‖nL‖

vL
‖vL‖

nL×vL
‖nL×vL‖

]
(36)

WL(φL) =
1√

w2
1 + w2

2

[
w1 −w2

w2 w1

]
= η

[
‖nL‖ −‖vL‖
‖vL‖ ‖nL‖

]
(37)

Since RL ∈ SO(3) and WL ∈ SO(2), we can define the error state for these parameters as δθL and
δφL (from RL and WL), respectively. With that, the state can be written as:

x=
[
I
Gq̄
>

b>g
GV
>
I b>a

GP
>
I

GL
>
f

]>
where GLf = [Gn>L

Gv>L ]
> and GL̃f =

[
δθ>L δφ>L

]>.

4.2 Observability Analysis: Single Line

Without loss of generality, consider stereo images are available for detecting and tracking line
features. Measurements for the line are given by the distance of the two end points xs and xe to
the line [28]:

z =
[

x>s l′√
l21+l22

x>e l′√
l21+l22

]>
(38)

where we have used:

I
GT=

[
I
GR IPG

01×3 1

]
, IL= I

GHGL =

[
I
GR −IGRbGPI×c
03

I
GR

]
GL

l′=
[
K 03

]
IL =

 f1 0 0
0 f2 0

−f2c1 f1c2 f1f2

 InL =

l1l2
l3


With the line measurements, we compute line measurement Jacobians and the block row of the

observability matrix at time step k as follows:

∂z̃

∂x̃
=
∂z̃

∂ l̃′
KI
GR̂

[(
bGn̂L×c − bbGP̂I×cGv̂L×c

)
I
GR̂
>

03×9 bGv̂L×c Γl4 Γl5

]
HIkΦ(k, 1) =

∂z̃

∂ l̃′
KIk
G R̂

[
Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c Γl4 Γl5

]
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where Γi, i ∈ {i . . . 5} are derived as:

Γl1 = (bGn̂L×c − bbGP̂Ik×c
Gv̂L×c+ bGv̂L×cbGP̂I1×c+ bGv̂L×cbGV̂I1×cδtk−

1

2
bGv̂L×cbGĝ×cδt2k − bGv̂L×cbGP̂Ik×c)

G
I1R̂

Γl2 =
(
bGn̂L×c − bbGP̂Ik×c

Gv̂L×c
)
Ik
G R̂

>
Φ12 + bGv̂L×cΦ52

Γl3 = bGv̂L×cΦ54

Γl4 = bGn̂L×c − bGP̂Ik×cb
Gv̂L×c

Γl5 = −
(
w2

w1

Gn̂L +
w1

w2
bGP̂Ik×c

Gv̂L

)
We also define e1 = x>s l′, e2 = x>e l′, ln =

√
(l21 + l22), xs = [u1, v1, 1]> and xe = [u2, v2, 1]>. With

these, we have:

∂z̃

∂ l̃′
=

1

ln

[
u1 − l1e1

l2n
v1 − l2e1

l2n
1

u2 − l1e2
l2n

v2 − l2e2
l2n

1

]
(39)

It can be shown that the linearized aided INS system with a line feature will have at least 5
unobservable directions:

Nl=
[
Nl1 Nl2 Nl3 Nl4 Nl5

]
(40)

=



I1
G R̂Gg 03×1 03×1 03×1 03×1

03×1 03×1 03×1 03×1 03×1

−bGV̂I1×cGg 03×1 03×1 03×1
Gv̂e

03×1 03×1 03×1 03×1 03×1

−bGP̂I1×cGg Gn̂e
Gv̂e bGn̂e×cGv̂e 03×1

−Gg w2

w1

Gv̂>e 03×1 03×1 03×1

0 0 0 η2w2
2 0


where Gn̂e and Gv̂e is the unit direction for Gn̂L and Gv̂L, respectively. For Nl1, we have:

HIkΦk,1Nl1 =
∂z̃

∂ l̃′
KIk
G R̂

(
bGg×cbGP̂Ik×c

Gv̂L + bGv̂LcbGg×cGP̂Ik + bGP̂Ik×cb
Gv̂L×cGĝ

)
= 0

(41)
And for Nl4, we have:

HIkΦk,1Nl4 = − w1w
2
2

w2
1 + w2

2

∂z̃

∂ l̃′
K Ik

G R̂b
(
w1

w2
bGn̂e×cGve + GPIk

)
×cGv̂e︸ ︷︷ ︸

Ikn′L

(42)

According to geometrical analysis, Ikn′L is parallel to IknL. Since l = KIknL is null space of
∂z̃
∂ l̃′

, therefore, KIkn′L is also the null space of ∂z̃
∂ l̃′

. Then, we can have HIkΦk,1Nl4 = 0. Note that
Nl1 relates to the rotation around the gravitational direction, Nl2:4 relates to the sensor’s global
translation, while Nl5 relates to the sensor motion along the line direction.

4.3 Observability Analysis: Multiple Lines

Assuming there are m > 1 un-parallel lines in the state vector, we define the orientation G
Li

R of a

line i and the rotation Li
LjR between line i and line j (i, j ∈ {1, . . .m}) as:

G
LiR̂ =

[
Gn̂ei

Gv̂ei bGn̂ei×cGv̂ei

]
(43)

Li
LjR̂ = G

LiR̂
>G
LjR̂ (44)

We have for the first time proved that the system has 4 unobservable directions:
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Lemma 4.1. For the aided INS with m > 1 line features in the state vector, the system will have
at least 4 unobservable directions given by:

NL=
[
NL1 NL2:4

]
(45)

=



I1
G R̂Gg 03

03×1 03

−bGV̂I1×cGg 03

01×3 03

−bGP̂I1×cGg G
LiR̂

−Gg w12
w11

Gv̂e1e
>
1
L1
Li R̂

0 η2
1w

2
12e
>
3
L1
Li R̂

...
...

−Gg
wi−1,2

wi−1,1

Gv̂ei−1e
>
1
Li−1
Li R̂

0 η2
i−1w

2
i−1,2e

>
3
Li−1
Li R̂

−Gg
wi,2

wi,1

Gv̂eie
>
1

0 η2
iw

2
i,2e
>
3

−Gg
wi+1,2

wi+1,1

Gv̂ei+1e
>
1
Li
Li+1R̂

>

0 η2
i+1w

2
i+1,2e

>
3
Li
Li+1R̂

>

...
...

−Gg
wm,2

wm,1

Gv̂eme>1
Li
LmR̂>

0 η2
mw

2
m,2e

>
3
Li
LmR̂>


where i ∈ {1 . . .m}

Proof. See Appendix A.

5 Observability Analysis of Aided INS with Plane Features

In analogy to the case of line features, in this section we extend the observability analysis to the
aided INS with plane features. In particular, for any point Pf in a plane Π, we have n>ΠPf +d = 0,
where nΠ is the norm direction of this plane and d is a scalar containing the range information
from the origin to plane Π. Hence, plane Π can be represented as:

Π =
[
n>Π d

]>
(46)

We still need a minimal error state representation for plane update. Notice that a horizontal angle
θ and elevation angle φ can be used to describe the normal direction nΠ as:

nΠ =

n1

n2

n3

 =

cos θ cosφ
sin θ cosφ

sinφ

 (47)

Thus, the error state for the plane can be denoted as Π̃ =
[
θ̃ φ̃ d̃

]>
. Accordingly, the state vector

of the system with one plane feature becomes:

x=
[
I
Gq̄
>

b>g
GV
>
I b>a

GP
>
I

GΠ
>
]>

(48)

Plane features can be extracted from point cloud (of RGBD and stereo cameras and 3D LiDAR),
the corresponding plane measurements are given by:

z =

[
InΠ
Id

]
=

[
I
GRGnΠ

Gn>Π
GPI + Gd

]
(49)
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The measurement Jacobian can be computed as follows:

HΠ =

 −
n2

n2
1+n2

2

n1

n2
1+n2

2
0 0

− n1n3√
n2
1+n2

2

− n2n3√
n2
1+n2

2

√
n2

1 + n2
2 0

0 0 0 1

 (50)

Note that the sign of the 2rd row of HΠ needs to be determined by the sign of cosφ. Hence, we
get the measurement Jacobians as:

∂z̃

∂x̃
= Hπ

[
bIGR̂Gn̂×c 03 03 03 03

I
GR̂Gn̂⊥1

I
GR̂Gn̂⊥2 03×1

01×3 01×3 01×3 01×3
Gn̂> GP̂>I

Gn̂⊥1
GP̂>I

Gn̂⊥2 1

]

⇒ HIkΦ(k,1) = HΠ

[
ΓΠ1 ΓΠ2

[
03

Gn̂>δtk

]
ΓΠ3

[
03
Gn̂>

]
ΓΠ4

]
where:

ΓΠ1 =

[
Ik
G R̂bGn̂×c

Gn>b
(
GP̂I1 + GV̂I1δtk − 1

2
Ggδt2k − GP̂Ik

)
×c

]
G
I1R̂

ΓΠ2 =

[
Ik
G R̂bGn̂×cIkG R̂

>
Φ12

Gn̂>Φ52

]
, ΓΠ3 =

[
03

Gn̂>Φ54

]

ΓΠ4 =
[
I
GR̂Gn̂⊥1

I
GR̂Gn̂⊥2 03×1

GP̂>I
Gn̂⊥1

GP̂>I
Gn̂⊥2 1

]

It is not difficult to see that the aided INS with a plane feature will have 6 unobservable
directions:

Nπ =
[
Nπ1 Nπ2:4 Nπ5:6

]
(51)

=



I1
G R̂Gg 03×1 03×1 03×1 03×1 03×1

03×1 03×1 03×1 03×1 03×1 03×1

−bGV̂I1×cGg 03×1 03×1 03×1
Gn̂⊥1

Gn̂⊥2
03×1 03×1 03×1 03×1 03×1 03×1

−bGP̂I1×cGg Gn̂⊥1
Gn̂⊥2

Gn̂Π 03×1 03×1

−g 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0


Note that Nπ1 relates to the rotation around the gravitational direction, Nπ2:4 relates to the
sensor’s global translation while Nπ5:6 relates to the sensor motion perpendicular to the plane’s
norm direction.

5.1 Multiple Planes

Assuming that there are m > 1 plane features in the state vector, we define the orientation of the
plane i and the rotation between plane i and plane j (i, j ∈ {1, . . .m}) as:

G
ΠiR̂ =

[
Gn̂⊥Πi1

Gn̂⊥Πi2
Gn̂Πi

]
(52)

Πi
ΠjR̂ = G

ΠiR̂
>G

ΠjR̂ (53)

Lemma 5.1. For aided INS system with m plane features in the state vector,

• If m = 2 and the planes are not parallel, the system will have 5 unobservable directions as
NΠ1:5.
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• If m ≥ 3 and these planes’ intersections are not parallel, the system will have 4 unobservable
directions as NΠ1:4.

NΠ=
[
NΠ1 NΠ2:4 NΠ5

]
(54)

=



I1
G R̂Gg 03 03×1

03×1 03 03×1

−bGV̂I1×cGg 03 bGn̂Πi×cGn̂Πj

03×1 03 03×1

−bGP̂I1×cGg G
ΠiR̂ 03×1

−g 01×3 0
0 01×3 0

0 −e>3
Π1
Πi R̂ 0

...
...

...
−g 01×3 0
0 01×3 0

0 −e>3
Πi−1
Πi R̂ 0

−g 01×3 0
0 01×3 0
0 −e>3 0
−g 01×3 0
0 01×3 0

0 −e>3
Πi
Πi+1R̂

> 0
...

...
...

−g 01×3 0
0 01×3 0

0 −e>3
Πi
ΠmR̂> 0


where i, j ∈ {1 . . .m}.

Proof. See Appendix B.

Note that NΠ1 relates to the rotation around the gravitational direction, NΠ2:4 relates to the
sensor’s global translation. NΠ5 is for the case with 2 planes, and it refers to the sensor motion
along the intersection line of the two planes.

6 Simulation Results

To validate our observability analysis, we perform 100 Monte Carlo simulations of visual inertial
odometry (VIO) using point [13], line and plane features, respectively. The simulated trajectory
and different geometric features are shown in Fig. 1, where we assume a stereo camera with IMU is
moving on spacial sine trajectories to get the feature measurements. In the results presented below,
we implemented the MSCKF [13] as the VIO estimator to validate our observability analysis, since
the MSCKF has been widely used for VINS with point features and its observability analysis [1,
2]. In particular, we have compared two difference versions of MSCKF – the ideal MSCKF which
uses true states as the linearization points and was shown to have correct observability properties
and thus being consistent, and the standard MSCKF which uses current state estimates as the
linearization points and was found to be overconfident (inconsistent) [1, 2]. We compute the root
mean squared error (RMSE) and the normalized estimation error squared (NEES) to quantify
estimation accuracy and consistency [29]. The results are shown in Fig. 2. It is clear from these
figures that standard MSCKF performs worse than the ideal MSCKF which is consistent (though
the comparison of orientation estimates is not as apparent as position estimates). This implies the
importance of understanding system observability properties for the design of consistent INS state
estimators.
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Figure 1: Simulated sensor trajectories and different features.

Appendix A: Unobservable Directions for Multiple Lines

Since that we have m line features in the state vector, the Observability Gramian at time step k
can be constructed as:

HIkΦ(k,1) =


HL1
Ik

Φ(k,1)

HL2
Ik

Φ(k,1)

HL3
Ik

Φ(k,1)
...

HLm
Ik

Φ(k,1)

 =


ML1

k

ML2
k

ML3
k
...

MLm
k

 (55)

It is straightforward to verify NL1, which relates to the rotation around the gravitational direction.
Since we have multiple un-parallel lines, the unobservable direction along the line direction deceases.
Therefore, the main task to prove that NL2:4 are the null space of HIkΦ(k,1). NL2:4 are related
to the sensor position and from the analysis for a single line feature, we can easily find vectors
αj ,βj ,γj which are the null space for MLj

k for feature j, and αi,βi,γi which are the null space

for MLi
k for feature i. Therefore, we have:

MLi
k

[
αi βi γi

]
= 03×1 (56)

MLj
k

[
αj βj γj

]
= 03×1 (57)

If we can show that {αj , βj , γj} can be linearly represented by the {αi, βi, γi} as:[
αj βj γj

]
=
[
αi βi γi

]
Λ (58)

If Λ is invertible, both αi, βi, γi and αj , βj , γj share the same bases, and they are the null space for

both MLj
k and MLi

k , that is: [
MLi

k

MLj
k

] [
αi βi γi αj βj γj

]
= 06×1 (59)

Based on the definition of NL2:4, we can have:

N
(j)
L2:4 =

[
αj βj γj

]
=
[
αi βi γi

]
Li
LjR = N

(i)
L2:4

Li
LjR (60)

Since Li
LjR is a rotation matrix, it is invertible. Hence, according to the analysis, we have that both

N
(i)
L2:4 and N

(j)
L2:4 are the null space for both MLj

k and MLi
k . Since we have no assumption for the

choice of i and j, N
(i)
L2:4 can also serve as the null space for HIkΦ(k,1).
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Figure 2: Monte Carlo results of the standard and ideal MSCKF.
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Appendix B: Unobservable Directions for Multiple Planes

Since we have m plane features in the state vector, we can construct the Observability Gramian at
time step k as:

HIkΦ(k,1) =


HΠ1
Ik

Φ(k,1)

HΠ2
Ik

Φ(k,1)

HΠ3
Ik

Φ(k,1)
...

HΠm
Ik

Φ(k,1)

 =


MΠ1

k

MΠ2
k

MΠ3
k
...

MΠm
k

 (61)

It is straightforward to verify NΠ1 which is related to the rotation around the gravitational
direction. Ifm = 2, the state vector has two plane features, and their intersection line bGnΠ1×cGnΠ2

perpendicular to both planes normal directions. Therefore, the sensor motion along this intersection
line will be unobservable. Similar to the proof of line, the main task is to prove NΠ2:4 are the null
space of HIkΦ(k,1). We can easily find vectors αj ,βj ,γj which are the null space for MΠj

k for

feature j, and αi,βi,γi which are the null space for MΠi
k for feature i. Therefore, we have:

MΠi
k

[
αi βi γi

]
= 03×1 (62)

MΠj
k

[
αj βj γj

]
= 03×1 (63)

If we can show that {αj , βj , γj} can be linearly represented by the {αi, βi, γi} as:[
αj βj γj

]
=
[
αi βi γi

]
Λ (64)

And if Λ is invertible, both αi, βi, γi and αj , βj , γj share the same bases, and they are the null space

for both MΠj
k and MΠi

k , that is:[
MΠi

k

MΠj
k

] [
αi βi γi αj βj γj

]
= 06×1 (65)

Based on the definition of NΠ2:4, we can have:

N
(j)
Π2:4 =

[
αj βj γj

]
=
[
αi βi γi

]
Πi
ΠjR = N

(i)
Π2:4

Πi
ΠjR (66)

Since Πi
ΠjR is a rotation matrix, it is invertible. Hence, according to the analysis, we have that both

N
(i)
Π2:4 and N

(j)
Π2:4 are the null space for both MΠj

k and MLi
k . Since we have no assumption for the

choice of i and j, N
(i)
Π2:4 can also serve as the null space for HIkΦ(k,1).

Appendix C: Sensor Measurements for Point Features

In this section, we will analyze the measurement model for lase sensors, camera sensors and 2D
imaging sensors.

C.1: 1D Range Finder

1D range Finder can only get the range measurement fo the point feature, and the measurement
model can be described as:

z(r) =
√
xP>f

xPf + n(r) =
√

(xxf )2 + (xyf )2 + (xzf )2 + n(r) (67)

where xrf =
√
xp>f

xpf represents the range for the point feature in the frame {X}. And we can

linearizing the measurement model at xP̂f as:

z̃(r) ' Hr
xP̃f + n(r) =

xP̂f
xr̂f

xP̃f + n(r) (68)
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C.2: Mono-camera

Mono-camera can only get the bearing measurements of the point feature, and the measurement
model can be represented as:

z(b) =

 e>1
xPf

e>3
xPf

e>2
xPf

e>3
xPf

+ n(b) =

[
xxf
xzfxyf
xzf

]
+ n(b) (69)

where ei ∈ R3×1 for i = 1, 2, 3 and e1 = [1 0 0]>, e2 = [0 1 0]> and e3 = [0 0 1]>. Inspired
by [30], we use a more universal measurement model for point feature with Mono-camera as:

z(b) = hb

(
xPf ,n

(b)
)

=

[
xb>⊥1
xb>⊥2

]
xPf + xzf

[
xb>⊥1
xb>⊥2

] [
I2

01×2

]
n(b) (70)

where b⊥i, i ∈ {1, 2} are two perpendicular vectors to the bearing xbf , and they can be constructed
from [30]. The advantage of this model is that it is suitable for both fish eye and normal projective
camera model. And the linearized model with xP̂f is:

z̃(b) ' Hb
xP̃f + Hnn

(b) =

[
xb>⊥1
xb>⊥2

]
xP̃f + xẑf

[
xb̂>⊥1
xb̂>⊥2

] [
I2

01×2

]
n(b) (71)

C.3: 2D Imaging Sonar

2D imaging sonar’s measurement contains the range and horizontal bearing measurement of a point
[11], and the model can be represented as:

z =

[
z(r)

z(b)

]
+

[
n(r)

n(b)

]
=

[ √
xP>f

xPf

xθf

]
+

[
n(r)

n(b)

]
=

[ √
(xxf )2 + (xyf )2 + (xzf )2

xθf

]
+

[
n(r)

n(b)

]
(72)

and similar to the case of the Mono-camera, we rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

= xrf
[
cos
(
xθf + n(b)

)
cosφ sin

(
xθf + n(b)

)
cosφ sinφ

]
xb⊥ (73)

where xb⊥ =
[
− sin θ cos θ 0

]>
. Therefore, the linearized sonar measurement model with xP̂f

as:

z̃ =

[
z̃(r)

z̃(b)

] [
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn

(b)

]
(74)

Hb = xb>⊥ (75)

Hn = xb>⊥
xP̂f

(
−sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
(76)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2f +xŷ2f
.
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C.4: 2D LiDAR

2D lidar measurement is quite similar to sonar measurement, except for an extra constraint that
xzf = e>3

xpf = 0 (or we can see as φ = 0). In order to distinguish with Eq. (72), we add this
constrain to the model, and hence:

z =

[
z(r)

z(b)

]
=


√
xP>f

xPf

xθf
e>3

xPf

+

[
n(r)

n
(b)
2×1

]
=

 √(xxf )2 + (xyf )2 + (xzf )2

xθf
xzf

+

[
n(r)

n
(b)
2×1

]
(77)

where n(b) =
[
n

(b)
1 n

(b)
2

]>
. Similarly, we can rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

=

xb>⊥1
xrf

[
cos
(
xθf + n

(b)
1

)
cosφ sin

(
xθf + n

(b)
1

)
cosφ sinφ

]>
xb>⊥2

xPf + n
(b)
2

 (78)

where b⊥1 =
[
− sin (xθf ) cos (xθf ) 0

]>
, b⊥2 =

[
0 0 1

]>
. Therefore, the linearized system with

xP̂f can be described as:

z̃ =

[
z̃(r)

z̃(b)

]
=

[
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn

(b)

]
(79)

where:

Hb =

[
b>⊥1

b>⊥2

]
(80)

Hn =

[
xb>⊥1

xP̂f

(
−sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
xb>⊥2

]
(81)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2f +xŷ2f
.

C.5: 3D LiDAR

3D LiDAR can directly get the range and bearing information of the feature, therefore the mea-
surement model can be denoted as:

z =

[
z(r)

z(b)

]
=


√
xp>f

xpf

xθf
xφf

+

[
n(r)

n(b)

]
=

 √(xxf )2 + (xyf )2 + (xzf )2

xθf
xφf

+

[
n(r)

n(b)

]
(82)

where n(b) =
[
n

(b)
1 n

(b)
2

]>
. Similarly, we can rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

=

 xb>⊥1
xrf

[
cos
(
xθf + n

(b)
1

)
cosφ sin

(
xθf + n

(b)
1

)
cosφ sinφ

]>
xb>⊥2

xrf

[
cos (xθf ) cos

(
xφf + n

(b)
2

)
sin (xθf ) cos

(
xφf + n

(b)
2

)
sin
(
xφf + n

(b)
2

)]>


(83)
where b⊥i, i ∈ {1, 2} are two perpendicular vectors to the bearing xbf , and they can be constructed
from [30]. Therefore, the linearized system with xP̂f can be described as:

z̃ =

[
z̃(r)

z̃(b)

]
=

[
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn

(b)

]
(84)
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where:

Hb =

[
b>⊥1

b>⊥2

]
(85)

Hn =

 xb>⊥1
xP̂f

(
− sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
xb>⊥2

xP̂f

(
− cos

(
xθ̂f

)
sin
(
xφ̂f

)
− sin

(
xθ̂f

)
sin
(
xφ̂f

)
+ cos

(
xφ̂f

)) (86)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2f +xŷ2f
.

C.6: RGBD Camera

RGBD camera can also get the range and bearing information of the feature, therefore:

z =

[
z(r)

z(b)

]
=


√
xP>f

xPpf

e>1
xPf

e>3
xPf

e>2
xPf

e>3
xPf

+

[
n(r)

n(b)

]
=


√

(xxf )2 + (xyf )2 + (xzf )2
xxf
xzfxyf
xzf

+

[
n(r)

n(b)

]
(87)

Therefore, we can rewrite the measurement model as:

z =

[
z(r)

z(b)

]
=

[√
xP>f

xPf + n(r)

hb
(
xPf ,n

(b)
) ]

=


√
xP>f

xPf + n(r)[
xb>⊥1
xb>⊥2

]
xPf + xzf

[
xb>⊥1
xb>⊥2

] [
I2

01×2

]
n(b)

 (88)

And we can linearize the system with xP̂f as:

z̃ =

[
z̃(r)

z̃(b)

]
'
[

Hr
xP̃f + n(r)

Hb
xP̃f + Hnn

(b)

]
=


xP̂f
xr̂f

xP̃f + n(r)[
xb>⊥1
xb>⊥2

]
xP̃f + xẑf

[
xb̂>⊥1
xb̂>⊥2

] [
I2

01×2

]
n(b)

 (89)

C.7: Stereo Camera

Stereo-camera are two mono-cameras with known extrinsic transformations. Without lost of gen-
eralities, we assume input images have already been rectified, thus the measurement model can be
described as:

z =


e>1

xPf

e>3
xPf

e>1
xPf−bs
e>3

xPf

e>2
xPf

e>3
xPf

+

n
(b)
1

n
(b)
1

n
(b)
2

 =


xxf
xzfxxf−bs
xzfxyf
xzf

+

n
(b)
1

n
(b)
1

n
(b)
2

 (90)

where b is the baseline for the stereo-camera, which is a known scalar. Similar to the case of
Mono-camera, we can rewrite the Stereo camera measurement as:

z =

[
z

(b)
L

z
(b)
R

]
=

[
hbL

(
xPf ,n

(b)
)

hbR
(
xPf ,n

(b)
)] =


[
xb>⊥1L
xb>⊥2L

]
xPf + xzf

[
xb>⊥1L
xb>⊥2L

] [
I2

01×2

]
n(b)[

xb>⊥1R
xb>⊥2R

]
xP′f + xzf

[
xb>⊥1R
xb>⊥2R

] [
I2

01×2

]
n(b)

 (91)
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where z
(b)
L and z

(b)
R represents the bearing measurement from the left-and right camera, respectively,

xP′f =
[
xxf − bs xyf

xzf
]>

. With xP̂f , we can linearize the system as:

z̃ =

[
z̃

(b)
L

z̃
(b)
R

]
=

[
HbL

xP̃f + Hnn
(b)

HbR
xP̃f + Hnn

(b)

]
=


[
xb̂>⊥1L
xb̂>⊥2L

]
xP̃f + xẑf

[
xb̂>⊥1L
xb̂>⊥2L

][
I2

01×2

]
n(b)[

xb̂>⊥1R
xb̂>⊥2R

]
xP̃f + xẑf

[
xb̂>⊥1R
xb̂>⊥2R

] [
I2

01×2

]
n(b)

 (92)

To sum up, the measurement model and its linearized model for ”X” aided INS can be gener-
alized as (10) and (11).

Table 1: Measurement Model for Different Sensors

Sensor Range Full Bearing Partial Bearing

1D range finder X
mono-camera X

sonar X X
2D lidar X X
3D lidar X X

RGBD-camera X X
stereo-camera X X

All the sensor measurements to point feature can be seen as the combination of range measure-
ments and bearing measurements (as shown in Table 1). (Be noted from the table that camera
sensors can get the full bearing measurements, which in some sense is equivalent that we get the
information of θ and φ. The sonar can only get partial bearing information (θ), so we label it as
partial bearing measurement in the table.) Therefore, in order to fully analyze the observability
property of ”X” aided INS, we will analyze the range only measurement model and bearing only
measurement model in the next section respectively.

Appendix D: Unobservable Directions for Point Features

D.1: Nonlinear Observability Analysis

we first provide an overview of the nonlinear observability rank condition test [20] and summarize
the method in [12][21][31][2] for finding the unobservable modes of nonlinear system.

D.1.1: Observability Analysis with Lie Derivative

Consider a nonlinear system: {
ẋ = f0(x) +

∑`
i=1 fi(x)ui

z = h(x)
(93)

where x ∈ Rm is the state vector, u = [u1 · · · u`] ∈ R` is the system input, z ∈ Rk is the system
output, and fi for i ∈ {0, . . . , `} is the process function.

The zeroth order Lie derivative of a measurement function h is the function itself, i.e., L0h =
h(x). For any n-th order Lie derivative, Lnh, the n+ 1-th order Lie derivative Ln+1

fi
h with respect

to a process function fi can be computed as:

Ln+1
fi

h = ∇Lnh · fi (94)
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where ∇ denotes the gradient operator with respect to x and ” · ” represents the vector inner
product. Similarly, mixed higher order Lie derivatives can be defined as:

Lnfifj...fkh = Lfi(L
n−1
fj...fk

h) = ∇Ln−1
fj...fk

h · fi (95)

where i, j, k ∈ {0, . . . , `}.
The observability of a nonlinear system is determined by calculating the dimension of the space

spanned by the gradients of Lie derivative of its output functions[20]. Hence, the observability
matrix O of system (93) is defined as:

O ,



∇L0h
∇L1

fi
h

...
∇Lnfifj...fkh

...

 (96)

To prove that a system is observable, it suffices to show that O is of full column rank. However,
to prove that a system is unobservable, we have to find the null space of matrix O, which may
have infinitely many rows. This can be very challenging especially for high-dimensional systems,
such as ”X” aided INS. To address this issue, we adopt the method proposed by [21] for analyzing
observability of nonlinear systems in the form of Eq. (93).

Theorem D.1. Assume that there exists a nonlinear transformation β(x) = [β1(x)> . . .βn(x)>]>(i.e.,
a set of basis functions) of the variable x, such that:

1. The system measurement equation can be written as a function of β, i.e., z = h(x) = h(β)

2. ∂β
∂x fj, for j = {0, . . . , `}, is a function of β

Then the observability matrix of system (93) can be factorized as: O = ΞΩ where Ξ is the observ-
ability matrix of the system: {

β̇ = g0(β) +
∑`

i=1 gi(β)ui
z = h(β)

(97)

and Ω can be represented as:

Ω =
∂β

∂x
(98)

Proof. See [21].

Note that system (97) results by pre-multiplying the process function to system (93) with ∂β
∂x :{

∂β
∂x

∂x
∂t = ∂β

∂x f0(x) + ∂β
∂x

∑`
i=1 fi(x)ui

z = h(x)
⇒
{
β̇ = g0(β) +

∑`
i=1 gi(β)ui

z = h(β)

where gi(β) , ∂β
∂x and h(β) , h(x).

Corollary D.2. If Ξ is of full column rank, i.e., system (97) is observable, then the unobservable
directions of system (97) will be spanned by the null vectors of Ω.

Proof. From O = ΞΩ, we have null(O) = null(Ω)∪ (null(Ξ)∩ range(Ω)). Therefore, if Ξ is of full
column rank, i.e., system (97) is observable, then null(O) = null(Ω).

Base on Theorem D.1 and Corollary D.2, to find the unobservable directions of a system, we
first need to define the basis functions, β, which fulfill the first and second conditions of Theorem
D.1. Then, we should prove that the infinite-dimensional matrix Ξ has full column rank, which
satisfies the conditions of Corollary D.2.
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D.2: System Propagation Model

For the ”X” aided INS, the IMU measurements are used for state propagation while the measure-
ments from ”X” sensor are used for state update. The INS state xI can be defined as:

xI = [IGs> b>g
Gv>I b>a

Gp>I ]> (99)

where I
Gs is the Cayley-Gibbs-Rodriguez parameterization [32] representing the orientation of the

global frame {G} in the IMU frame of reference {I}. The time-continuous system evolution model:

I
Gṡ(t) = D(Iω(t)− bg(t))

ḃg(t) = ng
GV̇I(t) = Ga(t) = Gg + R(IGs(t))>(Ia(t)− ba(t)) (100)

ḃa(t) = na
GṖI(t) = GVI(t)

where D , ∂s
∂θ = 1

2(I + bs×c + ss>), θ = αk̂ represents a rotation by an angle α around the

axis k̂, Iω(t) = [ω1 ω2 ω3]> and Ia(t) = [a1 a2 a3]> are the rotational velocity and linear
acceleration respectively, measured by the IMU and represented in {I}. Gg is the gravitational
acceleration, R(s) is the rotation matrix corresponding to s, and ng and na are the gyroscope and
accelerometer biases driving white Gaussian noises.

D.3: Observability Analysis for Point Feature

Based on the above analysis, the key is to prove Ξ is of full rank and then to find the unobservable
direction from the Ω. Ω is determined by the basis functions β. That means if we can find the
same basis functions set β for ”X” aided INS, we can prove that these systems have the same
unobservable directions. Therefore, the only job left unfinished is to prove the different Ξs for these
systems.

D.3.1: Basis Functions For Point Measurement

With the generalized point measurement model and state propagation model, we can define the
state vector as:

x = [IGs> b>g
GV>I b>a

GP>I
GPff

>]> (101)

For simplicity, we retain only a few of the subscripts and superscripts in the state elements and
denote the system state vector as:

x = [s> b>g V> b>a P> P>f ]> (102)

Then the system state equation can be rewritten as:

ṡ

ḃg
V̇

ḃa
Ṗ

Ṗf


=



−Dbg
0

g −R>ba
0
v
0


︸ ︷︷ ︸

f0

+



D
0
0
0
0
0


︸ ︷︷ ︸

F1

ω +



0
0

R>

0
0
0


︸ ︷︷ ︸

F2

a (103)
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where R , R(s). Note that f0 is a 18× 1 vector, while F1 and F2 are both 24× 3 matrices which
is a compact form for representing process functions as:

F1ω = f11ω1 + f12ω2 + f13ω3 (104)

F2a = f21a1 + f22a2 + f23a3 (105)

Since all the terms in the preceding projections are defined based on the existing basis functions,
we have found a complete basis set:

β =


β1

β2

β3

β4

β5

 =


R(pf − p)

bg
Rv
ba
Rg

 (106)

Therefore, the new system with β basis:
β̇1

β̇2

β̇3

β̇4

β̇5

 =


−bβ1×cβ2 − β3

0
−bβ3×cβ2 + β5 − β4

0
−bβ5×cβ2


︸ ︷︷ ︸

g0

+


bβ1×c

0
bβ3×c

0
bβ5×c


︸ ︷︷ ︸

G1

ω +


0
0
I3

0
0


︸ ︷︷ ︸

G2

a (107)

where g0 is a 18× 1 vector, while G1 and G2 are both 24× 3 matrices which is compact form for
representing process functions as:

G1ω = g11ω1 + g12ω2 + g13ω3 (108)

G2a = g21a1 + g22a2 + g23a3 (109)

Base on the Theorem D.1, the observability matrix O of the ”X” aided INS is the product of
observability matrix Ξ with the derivatives of the basis functions Ω. In what follows, we will first
prove that matrix Ξ is of full column rank. Then, the null space of matrix Ω corresponds to the
unobservable directions of the ”X” aided INS.

From the generalized measurement model Eq. (10), the Ξ contains two parts:

Ξ =

[
Ξ(r)

Ξ(b)

]
(110)

where Ξ(r) and Ξ(b) represents observability matrix from the range measurement and bearing mea-
surement respectively. Therefore, in order to prove that matrix Ξ is of full column rank, we will
inspect the column rank of Ξ(r) and Ξ(b) respectively. In Appendix E.2 and E.3 we showed that for
range measurement and fulling bearing measurement Ξ(r) and Ξ(b) will have full column rank

D.3.2: Unobservable Direction

According to the basis set of β, we have:

Ω =
∂β

∂x
=


bR(pf − p)×c∂θ∂s 0 0 0 −R R

0 I3 0 0 0 0

bRv×c∂θ∂s 0 R 0 0 0
0 0 0 I3 0 0

bRg×c∂θ∂s 0 0 0 0 0

 (111)
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Assuming A is the null space of Ω, and A should have the following form:

A =
[
A>1 A>2 A>3 A>4 A>5 A>6

]>
6= 0 (112)

such that:
ΩA = 0 (113)

Hence, the system’s unobservable directions can be described as:

A =



∂s
∂θRg 0

0 0
−bv×cg 0

0 0
−bp×cg I3

−bpf×cg I3

 (114)

Therefore, the unobservable directions are the global position of ”X” sensor and the the point
landmark, and the rotation about the gravity vector.

Appendix E: Basis Function and Rank Test for Point Measurement

E.1: Basis Functions for Point Measurement

According to the two conditions of Theorem D.1, we define the system’s first basis function accord-
ing to Eq. (9):

β1 , R(pf − p) (115)

According to the second condition of Theorem D.1, we will compute:

∂β1

∂x
=

[
∂β1

∂s

∂β1

∂bg

∂β1

∂v

∂β1

∂ba

∂β1

∂p

∂β1

∂pf

]
(116)

=

[
bR(pf − p)×c∂θ

∂s
0 0 0 −R R

]
(117)

∂β1

∂x
f0 = −bR(pf − p)×cbg −Rv , −bβ1×cβ2 − β3 (118)

∂β1

∂x
f1i = bR(pf − p)×cei , bβ1×cei (119)

∂β1

∂x
f2i = 0 (120)

where ∂θ
∂sD = ∂θ

∂s
∂s
∂θ = I3, i ∈ {1, 2, 3} and we have defined two new basis elements: β2 , ba,

β3 , Rv.
Similarly, for the span of β2, we have:

∂β2

∂x
=

[
∂β2

∂s

∂β2

∂bg

∂β2

∂v

∂β2

∂ba

∂β2

∂p

∂β2

∂pf

]
(121)

= [0 I3 0 0 0 0] (122)

∂β2

∂x
f0 = 0 (123)

∂β2

∂x
f1i = 0 (124)

∂β2

∂x
f2i = 0 (125)
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where i ∈ {1, 2, 3}.
Then, for the span of β3, we have:

∂β3

∂x
=

[
∂β3

∂s

∂β3

∂bg

∂β3

∂v

∂β3

∂ba

∂β3

∂p

∂β3

∂pf

]
(126)

=

[
bRv×c∂θ

∂s
0 R 0 0 0

]
(127)

∂β3

∂x
f0 = −bRv×cbg + Rg − ba , −bβ3×cβ2 + β5 − β4 (128)

∂β3

∂x
f1i = bRv×cei , bβ×cei (129)

∂β3

∂x
f2i = I3ei (130)

where i ∈ {1, 2, 3}, and we have defined β4 , ba and β5 , Rg.
Then, for the span of β4 and β5 we have:

∂β4

∂x
=

[
∂β4

∂s

∂β4

∂bg

∂β4

∂v

∂β4

∂ba

∂β4

∂p

∂β4

∂pf

]
(131)

= [0 0 0 I3 0 0] (132)

∂β4

∂x
f0 = 0 (133)

∂β4

∂x
f1i = 0 (134)

∂β4

∂x
f2i = 0 (135)

where i ∈ {1, 2, 3}.

∂β5

∂x
=

[
∂β5

∂s

∂β5

∂bg

∂β5

∂v

∂β5

∂ba

∂β5

∂p

∂β5

∂pf

]
(136)

=

[
bRg×c∂θ

∂s
0 0 0 0 0

]
(137)

∂β5

∂x
f0 = −bRg×cbg , −bβ5×cβ2 (138)

∂β5

∂x
f1i = bRg×cei , bβ5×cei (139)

∂β5

∂x
f2i = 0 (140)

where i ∈ {1, 2, 3}.

E.2: Rank test for Ξ(r)

Since the for the range measurement:r =
√
xP>f

xPf and r ≥ 0, we take r2 = xP>f
xPf as the

equivalent measurement to simplify the mathematical analysis. Hence, the range measurement
model can be expressed in terms of basis functions as:

h
(r)

= β>1 β1 (141)

Then we will perform the nonlinear observability rank condition test according to [20].

RPNG-2017-OBSERVABILITY 24



• The zeroth-order Lie derivatives of the measurement function is:

L0h
(r)

= β>1 β1 (142)

Then, the gradient of the zeroth order Lie derivative is:

∇L0h
(r)

=
∂h

(r)

∂β
=
[
2β>1 0 0 0 0

]
(143)

• The first-order Lie derivative of h
(r)

with respect to g0, g1i and g2i are computed respectively,
as:

L1
g0

h
(r)

= ∇L0h
(r) · g0 = −2β>1 β3 (144)

L1
g1i

h
(r)

= ∇L0h
(r) · g1i = 0 (145)

L1
g2i

h
(r)

= ∇L0h
(r) · g2i = 0 (146)

while the corresponding gradients are given by:

∇L1
g0

h
(r)

=
∂L1

g0
h

(r)

∂β
=
[
−2β>3 0 − 2β>1 0 0

]
(147)

∇L1
g1i

h
(r)

=
∂L1

g1i
h

(r)

∂β
= [0 0 0 0 0] (148)

∇L1
g2i

h
(r)

=
∂L1

g2i
h

(r)

∂β
= [0 0 0 0 0] (149)

• The second-order Lie derivatives are as following:

L2
g0g0

h
(r)

= ∇L1
g0

h
(r) · g0 = 2β>3 β3 − 2β>1 β5 + 2β>1 β4 (150)

L2
g0g1i

h
(r)

= ∇L2
g0

h
(r) · g1i = 0 (151)

L2
g0g2i

h
(r)

= ∇L1
g0

h
(r) · g2i = −2β>1 ei (152)

while the corresponding gradients are:

∇L2
g0g0

h
(r)

=
∂L2

g0g0
h

(r)

∂β
=
[
−2(β>5 − β>4 ) 0 4β>3 2β>1 − 2β>1

]
(153)

∇L2
g0g1i

h
(r)

=
∂L2

g0g1i
h

(r)

∂β
= [0 0 0 0 0] (154)

∇L2
g0g2i

h
(r)

=
∂L2

g0g2i
h

(r)

∂β
=
[
−2e>1 0 0 0 0

]
(155)

• The third-order Lie derivatives are as following:

L3
g0g0g0

h
(r)

= ∇L2
g0g0

h
(r) · g0 = 2β>3 β5 − 2β>3 β4 − 2β>4 bβ1×cβ2 (156)

L3
g0g0g1i

h
(r)

= ∇L2
g0g0

h
(r) · g1i = 2β>4 bβ1×cei (157)

L3
g0g0g2i

h
(r)

= ∇L2
g0g0

h
(r) · g2i = 4β>3 ei (158)

L3
g0g2ig0

h
(r)

= ∇L2
g0g2i

h
(r) · g0 = 2e>i bβ1×cβ2 + 2e>i β3 (159)

L3
g0g2ig1j

h
(r)

= ∇L2
g0g2i

h
(r) · g1j = −2e>i bβ1×cej (160)
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while the corresponding gradients are:

∇L3
g0g0g0

h
(r)

=
∂L3

g0g0g0
h

(r)

∂β

=
[
2β>4 bβ2×c − 2β4bβ1×c 2(β>5 − β>4 ) − 2β>3 + 2β>2 bβ1×c 2β>3

]
(161)

∇L3
g0g0g1i

h
(r)

=
∂L3

g0g0g1i
h

(r)

∂β
=
[
2β>4 bei×c 0 0 − 2e>i bβ1×c 0

]
(162)

∇L3
g0g0g2i

h
(r)

=
∂L3

g0g0g2i
h

(r)

∂β
=
[
0 0 4e>i 0 0

]
(163)

∇L3
g0g2ig0

h
(r)

=
∂L3

g0g2ig0
h

(r)

∂β
=
[
−2e>i bβ2×c 2e>i bβ1×c 2e>i 0 0

]
(164)

∇L3
g0g2ig1j

h
(r)

=
∂L3

g0g2ig1j
h

(r)

∂β
=
[
−2e>i bej×c 0 0 0 0

]
(165)

• The fourth-order Lie derivatives are as following:

L4
g0g0g0g0

h
(r)

= ∇L3
g0g0g0

h
(r) · g0

= −2β>4 bβ2×cbβ1×cβ2 − 4β>4 bβ2×cβ3 + 2(β>4 − β>5 )(β4 − β5) (166)

L4
g0g0g2ig0

h
(r)

= ∇L4
g0g0g2i

h
(r) · g0 = −4e>i bβ3×cβ2 + 4e>i β5 − 4e>i β4 (167)

while the corresponding gradients are:

∇L4
g0g0g0g0

h
(r)

=

∂L4
g0g0g0g0

h
(r)

∂β1

∂L4
g0g0g0g0

h
(r)

∂β2

∂L4
g0g0g0g0

h
(r)

∂β3

∂L4
g0g0g0g0

h
(r)

∂β4

∂L4
g0g0g0g0

h
(r)

∂β5


(168)

∇L4
g0g0g2ig0

h
(r)

=
∂L4

g0g0g2ig0
h

(r)

∂β
=
[
0 − 4e>i bβ3×c − 4e>i bβ2×c − 4e>i 4e>i

]
(169)

where the terms in Eq. (168) are:

∂L4
g0g0g0g0

h
(r)

∂β1

= 2β>4 bβ2×c2 (170)

∂L4
g0g0g0g0

h
(r)

∂β2

= −2β>4 bβ2×cbβ1×c+ 2β>2 bβ1×cbβ4×c+ 4β>4 bβ3×c (171)

∂L4
g0g0g0g0

h
(r)

∂β3

= −4β>4 bβ2×c (172)

∂L4
g0g0g0g0

h
(r)

∂β4

= −2β>2 bβ1×cbβ2×c+ 4β>3 bβ2×c+ 4(β>4 − β>5 ) (173)

∂L4
g0g0g0g0

h
(r)

∂β4

= 4(β>5 − β>4 ) (174)
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Therefore, we can construct the Ξ(r) matrix (175) and it is obvious that Ξ(r) is of full rank.

Ξ(r) =



∇L2
g0g21

h
(r)

∇L2
g0g22

h
(r)

∇L2
g0g23

h
(r)

∇L3
g0g0g11

h
(r)

∇L3
g0g0g12

h
(r)

∇L3
g0g0g13

h
(r)

∇L3
g0g0g21

h
(r)

∇L3
g0g0g22

h
(r)

∇L3
g0g0g23

h
(r)

∇L3
g0g21g0

h
(r)

∇L3
g0g22g0

h
(r)

∇L3
g0g23g0

h
(r)

∇L4
g0g0g21g0

h
(r)

∇L4
g0g0g22g0

h
(r)

∇L4
g0g0g23g0

h
(r)



=



−2e>1 0 0 0 0
−2e>2 0 0 0 0
−2e>3 0 0 0 0

−2e>1 bβ4×c 0 0 −2e>1 bβ1×c 0
−2e>2 bβ4×c 0 0 −2e>2 bβ1×c 0
−2e>3 bβ4×c 0 0 −2e>3 bβ1×c 0

0 0 4e>1 0 0
0 0 4e>2 0 0
0 0 4e>3 0 0

−2e>1 bβ2×c 2e>1 bβ1×c 2e>i 0 0
−2e>2 bβ2×c 2e>2 bβ1×c 2e>i 0 0
−2e>3 bβ2×c 2e>3 bβ1×c 2e>i 0 0

0 −4e>1 bβ3×c −4e>1 bβ2×c −4e>1 4e>1
0 −4e>1 bβ3×c −4e>2 bβ2×c −4e>2 4e>2
0 −4e>1 bβ3×c −4e>3 bβ2×c −4e>3 4e>3



(175)

E.3: Rank test for Ξ(b)

For the analysis, with the generalized point measurement model(10)(11), we consider the noise
free case, and define γ = b⊥1, γ = b⊥2. Then we will perform the nonlinear observability rank
condition test according to [20].

• The zeroth-order Lie derivatives of the measurement function is:

L0h
(b)

=

[
L0h

(b)
1

L0h
(b)
2

]
=

[
γ>1 β1

γ>2 β1

]
=

[
γ>1
γ>2

]
β1 (176)

Then, the gradients of the zeroth-order Lie derivative is:

∇L0h
(b)

=

[
∇L0h

(b)
1

∇L0h
(b)
2

]
=

 ∂h
(b)
1

∂β

∂h
(b)
2

∂β

 =

[
γ>1 0 0 0 0
γ>2 0 0 0 0

]
=

[
γ>1
γ>2

] [
I3 0 0 0 0

]
(177)

• The first-order Lie derivative of h
(b)

with respect to g0, g1i and g2i are computed respectively,
as:

L1
g0

h
(b)

= ∇L0h
(b) · g0 =

[
∇L0h

(b)
1 · g0

∇L0h
(b)
2 · g0

]
(178)

=

[
−γ>1 bβ1×cβ2 − γ>1 β3

−γ>2 bβ1×cβ2 − γ>2 β3

]
=

[
γ>1
γ>2

]
[−bβ1×cβ2 − I3β3] (179)

L1
g1i

h
(b)

= ∇L0h
(b) · g1i =

[
∇L0h

(b)
1 · g1i

∇L0h
(b)
2 · g1i

]
=

[
γ>1 bβ1×cei
γ>2 bβ1×cei

]
=

[
γ>1
γ>2

]
[bβ1×cei](180)

L1
g2i

h
(b)

= ∇L0h
(b) · g2i =

[
∇L0h

(b)
1 · g2i

∇L0h
(b)
2 · g2i

]
=

[
0
0

]
(181)
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while the corresponding gradients are given by:

∇L1
g0

h
(b)

=

[
∇L1

g0
h

(b)

1

∇L1
g0

h
(b)

2

]
=

 ∂L1
g0

h
(b)
1

∂β

∂L1
g0

h
(b)
2

∂β

 =

[
γ>1 bβ2×c −γ>1 bβ1×c −γ>1 0 0
γ>2 bβ2×c −γ>2 bβ1×c −γ>2 0 0

]
(182)

=

[
γ>1
γ>2

] [
bβ2×c −bβ1×c I3 0 0

]
(183)

∇L1
g1i

h
(b)

=

[
∇L1

g1i
h

(b)

1

∇L1
g1i

h
(b)

2

]
=

 ∂L1
g1i

h
(b)
1

∂β

∂L1
g1i

h
(b)
2

∂β

 =

[
−γ>1 bei×c 0 0 0 0
−γ>2 bei×c 0 0 0 0

]
(184)

=

[
γ>1
γ>2

] [
−bei×c 0 0 0 0

]
(185)

∇L1
g1i

h
(b)

=

[
∇L1

g1i
h

(b)

1

∇L1
g1i

h
(b)

2

]
=

 ∂L1
g1i

h
(b)
1

∂β

∂L1
g1i

h
(b)
2

∂β

 =

[
0
0

]
(186)

• The second-order Lie derivatives are as following:

L2
g0g0

h
(b)

= ∇L1
g0

h
(b) · g0 =

[
∇L1

g0
h

(b)
1 · g0

∇L1
g0

h
(b)
2 · g0

]
(187)

=

[
γ>1
γ>2

]
[−bβ2×cbβ1×cβ2 − bβ2×cβ3 + bβ1×cβ2 − β5 + β4] (188)

L2
g0g1i

h
(b)

= ∇L1
g0

h
(b) · g1i =

[
∇L1

g0
h

(b)
1 · g1i

∇L1
g0

h
(b)
2 · g1i

]
=

[
γ>1
γ>2

]
[bβ2×cbβ1×c − bβ3×c] ei(189)

L2
g1ig0

h
(b)

= ∇L1
g1i

h
(b) · g0 =

[
∇L1

g1i
h

(b)
1 · g0

∇L1
g1i

h
(b)
2 · g0

]
=

[
γ>1
γ>2

]
[bei×cbβ1×cβ2 − bei×cβ3](190)

L2
g1ig1j

h
(b)

= ∇L1
g1i

h
(b) · g1j =

[
∇L1

g1i
h

(b)
1 · g1j

∇L1
g1i

h
(b)
2 · g1j

]
=

[
γ>1
γ>2

]
[−bei×cbβ1×cej ] (191)
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with the corresponding gradients as:

∇L2
g0g0

h
(b)

=

[
∇L2

g0g0
h

(b)

1

∇L2
g0g0

h
(b)

2

]
=

 ∂L2
g0g0

h
(b)
1

∂β

∂L2
g0g0

h
(b)
2

∂β

 (192)

=

[
γ>1
γ>2

] [
bβ2×c2 − bβ2×c − bβ2×cbβ1×c+ bβ3×c+ bβ1×c − bβ2×c I3 − I3

]
(193)

∇L2
g0g1i

h
(b)

=

[
∇L2

g0g1i
h

(b)

1

∇L2
g0g1i

h
(b)

2

]
=

 ∂L2
g0g1i

h
(b)
1

∂β

∂L2
g0g1i

h
(b)
2

∂β

 (194)

=

[
γ>1
γ>2

]
[−bβ2×cbei×c − bbβ1×cei×c − bei×c 0 0] (195)

∇L2
g1ig0

h
(b)

=

[
∇L2

g1ig0
h

(b)

1

∇L2
g1ig0

h
(b)

2

]
=

 ∂L2
g1ig0

h
(b)
1

∂β

∂L2
g1ig0

h
(b)
2

∂β

 (196)

=

[
γ>1
γ>2

]
[−bei×cbβ2×c bei×cbβ1×c bei×c 0 0] (197)
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g1ig1j

h
(b)

=

[
∇L2

g1ig1j
h

(b)

1

∇L2
g1ig1j

h
(b)

2

]
=

 ∂L2
g1ig1j

h
(b)
1

∂β

∂L2
g1ig1j

h
(b)
2

∂β

 =

[
γ>1
γ>2

]
[bei×cbej×c 0 0 0 0] (198)

• The third-order Lie derivatives are as following:

L3
g0g0g1i

h
(b)

= ∇L2
g0g0

h
(b) · g1i =

[
∇L2

g0g0
h

(b)
1 · g1i

∇L2
g0g0

h
(b)
2 · g1i

]
(199)

=

[
γ>1
γ>2

] [
bβ2×c2bβ1×c − bβ2×cbβ1×c − bβ3×c2 − bβ5×c

]
ei (200)
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g0g0g2i
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∇L2

g0g0
h

(b)
1 · g2i

∇L2
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h
(b)
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]
=

[
γ>1
γ>2

]
[−bβ3×c] ei (201)

with the corresponding gradients as:
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∂β1

∂L3
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h
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 (203)
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2
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[0 0 bei×c 0 0](204)
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where in the equations:

∂∇L3
g0g0g1i

h
(b)

∂β1

=

 ∂L3
g0g0g1i

h
(b)
1

∂β1
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] [
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]
(205)
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h
(b)

∂β2

=

 ∂L3
g0g0g1i

h
(b)
1

∂β2

∂L3
g0g0g1i

h
(b)
2

∂β2

 (206)

=
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γ>1
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[−bbβ2×cbβ1×cei×c − bβ2×cbbβ1×cei×c − bbβ1×cei×c] (207)
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[bei×c] (210)

• The fourth-order Lie derivatives are computed as:
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g0g0g2ig0
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=

[
γ>1
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[−bei×cbβ1×cβ2 + bei×cβ5 − bei×cβ4] (212)

with corresponding gradients as:
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=
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γ>1
γ>2

]
[bei×cbβ2×c − bei×cbβ1×c 0 − bei×c bei×c] (214)

RPNG-2017-OBSERVABILITY 30



Therefore, we can construct the Ξ(b) matrix as (215) and it is of full rank.

Ξ(b) =
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