
  

  

Abstract—We present Stereo VI-DSO, a novel tightly-coupled 

approach for visual-inertial odometry, which jointly optimizes 

all the model parameters within the active window, including the 

IMU pose, velocity, biases, affine brightness parameters of all 

keyframes and the depth values of all selected pixels. The visual 

part of the system is integrated constraints from static stereo into 

the bundle adjustment pipeline of dynamic multi-view stereo, 

but unlike keypoint based systems it directly minimizes the 

photometric error. Stereo-Vi method can initialize faster than 

mono-VI. IMU information is accumulated between keyframes 

using measurement pre-integration, and it is inserted into the 

optimization as an additional constraint between keyframes. 

Quantitative evaluation demonstrates that the proposed Stereo 

VI-DSO is superior to Stereo DSO both in terms of tracking 

accuracy and robustness. In addition, we introduce a simulation 

platform developed on Unreal Engine 4, it can output raw data 

of most sensors used in the field of autonomous driving.  We 

evaluate our method with absolute ground-truth value base on 

simulation data. 

I. INTRODUCTION 

Motion estimation is a key task for robots, as it can enable 
emerging technologies such as (semi)-autonomous driving, 
augmented and virtual reality, robot or drone navigation. Lidar, 
Radar, RGB-D cameras, differential GPS(DGPS) and other 
sensors can be used. LOAM is a low-drift odometry in term 
of 3D laser rangefinders point clouds[18]. However, it is 
almost inevitable that single sensor odometry fail in certain 
scenarios. For example, scan matching in pure Lidar 
odometry may get wrong match results in degenerate scenes 
such as those dominated by planar areas. Hence, sensor fusion 
aroused great interest among the researchers which explores 
advantages of each sensor and compensates for drawbacks 
from other sensors. In [19], an inertial measurement unit 
(IMU) provides a motion prior and mitigate for gross, high-
frequency motion.  

Since cameras are cheap, lightweight, small and easy to 
mass produce sensors, they have drawn a large attention of 
the robotics community[1][3]. However, current pure visual 
odometry methods require moderate lighting condition and 
fail when confronted with low textured areas or fast 
maneuvers. Visual odometry also meets a big challenge by 
objects moving in front of cameras. IMU that provides sensor 
body-self rotation and position information, unlike vision, is 
not impacted by dynamic objects environment. Usually, the 
IMU frequency is hundreds of Hertz, which captures accurate 
short-term ego-motion constraints. However, IMU has drastic 
drift affected by slowly time-varying sensor bias and the 
presence of measurement noise. Pose results will diverge 
quickly if only integrating IMU measurements.  
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Figure 1.  Bottom: Example images from the simulation platform dataset: A 

Cadillac CT6 is mounted with Lidar, camera, IMU, GNSS and other sensors. 

Strong motion, low illumination are significant challenges for odometry 

estimation. Our method is able to work with a rmse of less then 0.33m. Top: 

Overlay estimated trajectory (bule) in Unreal Editor. Top right is a  topview 

in same road in Google map. 

In this paper, we propose a tightly coupled direct sparse 
stereo visual-inertial odometry. Associating a stereo camera 
with an IMU, the method estimates accurate motion, which is 
based on Stereo Direct Sparse Odometry (Stereo DSO) [6]. 
Combing IMU measurements into the error function, a bundle-
adjustment simultaneously optimizes poses, velocity, IMU 
biases, camera affine brightness parameters and points depth 
in a combined energy function. A drawback of monocular 
visual-inertial odometry is that metric scale needs to be 
properly initialized, otherwise optimization might diverge. 
Adding a stereo camera enables us to speed up system 
initialization. 

Quantitative evaluation on the indoor and outdoor dataset   
demonstrates that we can reliably determine sensor motion 
from a stereo visual-inertial system on a rapidly moving 
unmanned ground vehicle (UGV) and EuRoC. Besides, we 
evaluate our method on an autonomous driving simulation 
platform based on the stereo image stream, IMU raw data and 
ground-truth value. 
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II. RELATED WORK 

In the last few decades, motion estimation using cameras 
and IMUs has been a popular research topic. In this section we 
will give an overview of visual and visual-inertial odometry 
methods.  

Visual odometry was introduced in the work of Nister et al. 
[20]. The main idea underlying these structure and motion 
techniques is to select a set of keypoints (typically corner-like 
structures), especially like MonoSLAM[1], a real-time 
capable EKF-based method. Another famous example is 
PTAM [21], which combines a bundle-adjustment backend for 
mapping with real-time capable tracking of the camera relative 
to the constructed map. Recently, based on ORB features and 
innovations such as map reuse, ORB-SLAM[3][4]  introduced 
an efficient visual SLAM solution. It has gained a lot of 
popularity due to its robustness and high tracking accuracy 
among those state-of-the-art methods for visual SLAM. 

Different from the feature-based methods, direct methods 
use unprocessed intensities in the image to estimate the motion 
of the camera. The first real-time capable direct approach for 
stereo cameras was presented [22]. Certain methods for 
motion estimation for RGB-D cameras were developed by 
Kerl et al. [12]. More recently, direct approaches were also 
applied to monocular cameras, in a dense [23], semi-dense [9] 
and sparse Direct Sparse Odometry(DSO)[5]. Wang et al. 
extended DSO to stereo vision for highly accurate real-time 
visual odometry [6]. 

There are two main categories VIO can be identified. 
Filtering-based approaches [24][25] operate on a probabilistic 
state representation, in a Kalman-filtering framework. 
Optimization approaches on the other hand operate on a 
minimum loss function based representation in a non-linear 
optimization framework.  

IMU pre-integration technique was firstly proposed by 
Lupton and Sukkarieh[13], and Forster et al. extended it to Lie 
group [2], forming a set of elegant theoretical system. Forster 
realized the IMU pre-integration in the GTSAM 4.0 
optimization toolbox[14], and completed the combination 
with SVO[15]. This theory has been widely applied in VIO 
based on Bundle Adjustment and feature-based optimization 
framework, including VI-ORB[4], VINS[16]. Usenko et al. 
combines IMU measurements with direct tracking of a semi-
dense subset of points in the image[8] called Stereo-VI-LSD. 
Stumberg et al. presented monocular VI-DSO[10] which 
merges IMU measurements with monocular direct sparse 
odometry and initializes system with an arbitrary scale instead 
of having to delay the initialization until everything is 
observable. To the best of our knowledge, there isn’t a mature 
method in stereo direct sparse odometry coupled with inertial 
sensor. One of the direct approaches  [26] claims to combine 
IMU measurements with stereo direct image tracking, but does 
not provide a theoretical derivation, a systematic with inertial 
sensor evaluation and comparison to other state-of-the-art 
methods.  

III. CONTRIBUTION 

In this paper we present a stereo inertial extension of Direct 
Sparse Odometry. The main novelty of this paper is the 
formulation of tight IMU integration into stereo direct sparse 

image alignment within sliding window optimization. We 
provide a detailed derivation in an additional supplementary 
material.  

We evaluate our approach on different datasets and 
compare it to alternative stereo DSO systems, while running 
in real-time on a modern CPU. In addition, we introduce 
evaluation method based on an autonomous driving simulation 
platform and open the dataset made with it.  

IV. NOTATION 

Throughout the paper, we will write matrices as bold 
capital letters (R) and vectors as bold lower case letters (»), 
light lower-case letters to denote scalars (s), typewriter letters 

are used to represent functions (I). 

Rigid-body orientation directly is described as elements of 
so(3)  and poses as se(3) . We can identify every skew 
symmetric matrix with a vector in R3  using the hat (^) 

operator [2, eq. (1)]. Exponential map associates Lie Algebra 
to a pose and logarithm is anti-mapping following [2, eq. (3)]:
Exp I so(3) $ SO(3); se(3) $ SE(3) J Log. 

Unlike DSO uses left jacobian and perturbation, we use 
right method in line with [2]. The term Jr(Á),Jr(») is the right 

Jacobian of SO(3),SE(3).We write directly as vectors, i.e., 

Á 2 R3 and » 2 R6. we use the right perturbation retraction 

for SO(3),  

R2 = R1Exp(±Á); ±Á 2 R3 (1) 

and for SE(3), we perturb transformation on the right, 

T2 = T1Exp(±»); ±» 2 R6 (2) 

The input for our Stereo VI-DSO is a stream of IMU 
measurements and stereo camera frames. In IMU body 
fame(abbreviated as “B”), the gyroscope and accelerometer 

measurements at time k, namely Beak and Be!k , are affected by 

additive white noise ́  and a slowly varying sensor bias b. ¢t
is sampling interval. The state of IMU at time i is described by 

the orientation, position, velocity from “B” to the world frame 
“W” and biases:  

xi = [WBRi; Wpi; Wvi;bi] (3) 

Velocities live in a vector space, i.e., Wvi 2 R3. IMU biases 
can be written as bi = [b

g
i ;b

a
i ] 2 R6, where b

g
i ;b

a
i 2 R3 are 

the gyroscope and accelerometer bias. We model them with  
“Brownian motion” which is integrated white noise. 

Homogeneous camera calibration matrices are denoted by 
K. BCT is the pose of the camera frame “C” in the body frame, 

known from prior calibration. The “delta” pose from time j  to 

time i is a homogeneous transformation consist by:  

¢Tij = T¡1
i Tj 2 R4£4 (4) 

where we dropped the coordinate frame subscripts for 
readability (the notation should be unambiguous from now on).  

V. DIRECT SPARSE VISUAL-INERTIAL STEREO ODOMETRY 

We tightly couple inertial integration with non-linear error 
terms arising from direct image alignment – minimization of  
the photometric error. To make the problem computationally 
feasible the optimization is performed on a window of recent 
frames. Our approach can be viewed as a direct formulation of 
[2]. In contrast to [2], we perform a full bundle-adjustment like 
optimization instead of including structure-less vision error. 
Compared to Stereo-VI-LSD[8], we upgrade visual front-end 
tracking and back-end bundle adjustment. 



  

Figure 2.  Different rates of IMU and camera: one IMU term uses all 

accelerometer and gyro readings between successive camera measurements. 

Furthermore, because of asynchronous but same frequency for accelerometer 

and gyro data, there will be different quantity samples of these two sensors. 

We take strategy that for accelerometer sample in time k , combining with  

time-closest kcls gyro sensor sample. 

Compared with VI-DSO[10], scale can be directly 
calculated from static stereo from the known baseline of the 
stereo camera. Static stereo can also provide initial depth 
estimation for multi-view stereo. Initialization coupled with 
IMU is faster and more robust than monocular.  

The proposed approach estimates states by minimizing the 
energy function with a coupling factor ®:  

Etotal = EIMU + ®ECAM (5) 

which consists of the an inertial error term EIMU (section 
V-A) and photometric error ECAM (section V-B). 

The system contains two main parts running in parallel:  

• The coarse pyramid tracking is executed for every 
frame and uses direct image alignment. IMU data isn’t 
used in this part, but saved in data packs. 

• When a new keyframe in time i  is created,  all 

accelerometer and gyroscope data between two 
consecutive keyframes i  and  j  are pre-integrated 

followed [2]. We perform a visual-inertial bundle 
adjustment like optimization that estimates the state of 
all active keyframes. 

In contrast to [2], IMU-measurements are not necessarily 
synchronized with the camera measurement. Furthermore，
accelerometer and gyro-scope data is asynchronous but at the 
same frequency in our IMU sensors (Figure 2. ). 

The new keyframe will be generated and added to the 
active window. For all keyframes in the active window, a joint 
optimization of IMU state, affine brightness parameters, as 
well as the inverse depths of all the observed 3D points is 
performed. To maintain the size of the active window, old 
keyframes and 3D points are marginalized out using the Schur 
complement. Suppose F  is the set of the consecutive key-

frames in the current window. 

A. IMU Error Factors 

Given the pre-integrated measurement model in [2], We 
extend this model to asynchronized measurement. Constant 
large IMU biases part ¹b update by a small amount  ±b during 

optimization, i.e., b = ¹b + ±b. There are m gyro data and n 

acc data(m 6= n) between two consecutive keyframes i and j

in Figure 2. The estimate of rigid “delta” rotation ¢Rij is 

computed iteratively by gyro data in timestamp k  which is 

independent to accelerometer, and first-order Taylor 
expansion is a large value ¢Rim( ¹b

g
i ) = ¢¹Rim  multiply a 

small perturbation ¢Rim(±b
g
i
) = Exp(@¢¹Rim

@bg ±b
g
i
) on right : 

¢¹Rik =
I3£3; k = i

¢¹Ri(k¡1)Exp(( k¡1 ¡
¹b
g
i )¢t); k 2 [i + 1; m]

(6) 

Jacobian @¢
¹Rim

@bg
 is recursively calculated:  

 @¢¹Rik

@bg
=

03£3; k = i

¢¹R
T
(k¡1)k

@¢¹Ri(k¡1)

@bg
¡ Jk¡1

r ¢t;k 2 [i + 1;m]
(7) 

where    Jk¡1
r = Jr((e!k¡1¡

¹b
g
i )¢t) and 

 ¢¹R
T

(k¡1)k = Exp((e!k¡1 ¡
¹b
g
i )¢t). 

Because of ¢evij = ¢¹vin + @¢¹vin

@bg ±b
g
i + @¢¹vin

@ba ±ba
i  

is related to both gyro and accelerometer. We choose time-

closest ¢¹R
cls
ik  and @¢¹Rcls

ik

@bg
 for an accelerometer data eak  and 

recursively calculate:  

¢¹vik = ¢¹vi(k¡1) + ¢¹R
cls

ik ((eak¡1 ¡
¹ba
i )¢t);

@¢¹vik

@bg =

@¢¹Vi(k¡1)

@bg
¡¢¹Rcls

i(k¡1)(~ak¡1 ¡ ¹b
g
i )
^ @¢¹Rcls

i(k¡1)

@ ¹bg ¢t

@¢¹vik

@ba =
@¢¹vi(k¡1)

@ba ¡¢¹Rcls
i(k¡1)¢t; k 2 [i+ 1; n]

(8) 

Repeating the same process for ¢epij, now it is easy to 

write the residual errors rIij
= [rT

¢Rij
; rT

¢vij
; rT

¢pij
] 2 R9 , 

where: 

r¢Rij
= Log(¢¹RimExp( @¢¹Rim

@bg ±bg))TRT
i Rj)

r¢vij
= RT

i (vj ¡ vi ¡ g¢tij)

¡ (¢¹vin + @¢¹vin

@bg ±b
g
i + @¢¹vin

@ba ±ba
i )

r¢pij
= RT

i (pj ¡ pi ¡ vi¢tij ¡
1
2
g¢t2ij)

¡ (¢¹pin + @¢¹pin

@bg ±b
g
i + @¢¹pin

@ba ±ba
i )

(9) 

The noise covariance §ij  depending on rotation and 

position, has a strong influence on the MAP estimator (the 
inverse noise covariance is used to weight the terms in the 
optimization). We can get covariance recursively like previous 
calculations of asynchronized data. Here comes IMU error 
term in current window: 

EIMU =
X

i;j2F

rT
Iij
§¡1

ij rIij (10) 

 

B. Photometric Error Factors 

We apply visual tracking strategy of Stereo DSO[6]:  

• We track the motion of the camera towards a reference 
keyframe in the map and create new keyframes 
according to DSO. 

• We estimate the inverse depth of selected points in the 
current reference keyframe from static and dynamic 
stereo cues. For static stereo we exploit the fixed 
baseline between the pair of cameras in the stereo 
configuration. Dynamic stereo is estimated from pixel 
correspondences in the reference keyframe towards 
subsequent images based on the tracked motion. 

Once creating a new keyframe, a sparse set of points is 
selected from the image, which will be called candidate points, 
this keyframe will be hostframe of selected points in the rest 
of the paper. Points that have sufficient image gradient are 
selected across the image. To make sure selected points 
distribute sparsely and evenly, the image is divided into small 
blocks and for each block an adaptive threshold is adopted. 



  

Figure 3.   Visualization of typical data association on a European Robotics Challenge(EUROC) dataset: current stereo image pair(left) match points(colorful). 

Green line stands for epipolar lines. Depth map(right) of sufficient gradient points. 

1) Static Stereo 

Suppose a 2D image coordinate point p  is selected in 

keyframe iL and observed by iR, we search the corresponding 

pixel on the epipolar line, making the pixel with the highest 
similarity as the matching point in corresponding iR . 

Considering the precision and robustness of match, NCC 
criterion was used in window match method. Once obtaining 

the pair of match points, a inverse depth initialization diL

p  can 

be calculated by using the method of triangular intersection  
illustrated in Figure 3. . Frame iL,iR gray function is IL

i ,IR
i . 

Static one-view stereo residuals are defined to: 

E
p

iLiR = wpjjr
s
pjj° ;

rs
p = IR

i (p
0

)¡ bRi ¡
e

aR
i

e
aL

i

((IL
i (p)¡ bL

i )
(11)  

where k ¢ k°  is Huber norm, aL
i ; a

R
i ; b

L
i ; b

R
i is affine 

brightness parameters to frame iL and iR , wp is a gradient-

dependent weighting parameter that down-weights high image 
gradients, c is a constant value. 

wp =
c2

c2 + jjrIi(p)jj22
; (12) 

Relative transformation between the left and right cameras 

TRL is fixed. p in frame IL
i  projected to IR

i  is p
0

 as : 

p
0

= diR

p K(TRL((d
iL

p )¡1K¡1p)) (13) 

2) Dynamic Multi-View Stereo 

Assume p is observed and projected to another keyframe 

jL denoted as p
0

. Instead of using camera frame pose CTji 

[8][10], we use IMU pose ¢T¡1
ij = T¡1

j Ti and TBC maps a 

3D landmark from iL to jL. We find this is more rigorous in 

theory to derive compared to assume that gyro and 
accelerometer of camera frame is same to IMU frame: 

 p
0

= djL

p K(T¡1
BC T¡1

j Ti((d
iL

p )¡1TBCK
¡1p)) (14) 

Direct residuals E
p
ij are defined as:  

E
p

iLjL = wpjj(r
d
p)ijjj°;

(rd
p)ij = IL

j (p
0

)¡ bLj ¡
e

aL
j

e
aL

i

(IL
i (p)¡ bLi )

(15) 

where aL
j ; b

L
j  are affine brightness parameters to frame jL. 

Assume a point set P  are selected, obs(p) is the set of the 

keyframes in F  that can observe p, a coupling factor ̧ . Total 

dynamic multi-view stereo and static one-view stereo residuals 
is listed as (16). 

 

Figure 4.  Factor graph of the energy function. In this example, 4 points are 

observed by 3 keyframes. Each energy factor is related to one point and two 

keyframes, thus depends on IMU pose, velocity, bias, inverse depth of the 

point, their affine brightness correction factors. Cameras constraints from 

host keyframes and static stereo are shown in dark blue and red respectively. 

Remaining constraints in light blue are the ones from the keyframes the points 

are observed. IMU constraints from two consecutive keyframes is yellow. 

ECAM =
X

iL2F

X

p2Pi

(
X

jL2obs(p)

E
p

iLjL + ¸E
p

iLiR)
(16) 

C. Optimization 

The total energy is optimized iteratively using Gauss-
Newton algorithm with IMU pose, velocity, biases, affine 
brightness and inverse depth parameters to be optimized: 

(JT
I WIJI + JT

C WCJC)±Â

= ¡(JT
I WIrI + JT

C WCrC)

Ânew = ÂÐ ±Â

(17) 

where rI, rC contains the stacked residuals of  EIMU, ECAM, and

JI, JC   is the Jacobian, WI, WC   is the weight matrix. The 

parameters we want to optimize are enclosed in (18). Where 
Nf and Np are the numbers of keyframes and active points in 

the current window, respectively. The Ð -operator is state 

space update and ±Â is a right-multiplied increment to the 

current state. A factor graph is shown in Figure 4. . 
To keep the active window of bounded size, old keyframes 

are removed by marginalization using the Schur complement  
to marginalize a subset of variables[5][11]. 
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T
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)T

(vT
1 ; : : : ;v

T
Nf

)T

(bT
1 ; : : : ;b

T
Nf

)T

(dp1
; : : : ; dpNp

)T

(aL
1 ; a

R
1 ; b

L
1 ; b

R
1 )T
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(aL
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; aR
Nf

; bL
Nf

; bR
Nf

)T

1

C
C
C
C
C
C
C
C
C
C
C
C
A

2 R19Nf+Np ;

Ái = Log(Ri)
(18) 

TABLE I.  TRANSLATIONAL DRIFT EVALUATED OVER DIFFERENT 

SEGMENT LENGTHS 

Length(m) 30 60 90 120 RMSE(m) 

Our 0.369 0.703 0.991 1.309 0.8273 

S-DSO 0.636 1.105 1.894 4.814 2.1179 

TABLE II.  ACCURACY OF THE ESTIMATED TRAJECTORY ON THE 

EUROC DATASET FOR SEVERAL METHODS. WE RUN AND CALCULATE RMSE 

OF VINS AND OKVIS IN OUR OWN LAPTOP. 

Seq 
Length 

(m) 

Stereo-DSO Stereo-VI-DSO VINS OKVIS 
Orien. 

(deg) 

Pos. 

(m) 

Orien. 

(deg) 

Pos. 

(m) 

Orien.

(deg) 

Pos. 

(m) 
Pos. (m) 

MH1 78.7 17.808 1.282 10.798 0.754 4.536 0.444 0.597 

MH2 70.1 14.652 1.133 8.461 0.659 3.939 0.327 0.698 

MH3 132.4 12.224 3.913 8.352 0.701 8.612 0.335 0.551 

VI. RESULTS 

We evaluate our approach both qualitatively and 
quantitatively on different datasets, including a direct   
comparison to Stereo-DSO. We used the datasets captured by 
the hardware, EuRoC benchmark and datasets made of our 
autonomous driving simulation platform. 

A. Real Experiments 

The custom-built visual-inertial sensor consists of an 
BMI088 MEMS IMU and two embedded WVGA 
monochrome cameras with 12 cm baseline that are all rigidly 
connected. The data is streamed to a host computer via USB. 
The datasets used in this work were collected at an IMU rate 
of 200Hz, while the camera frame rate was set to 30 Hz. 

We have taken the IMU noise parameters from the 
datasheet BMI088. We used the following IMU parameters: 
Gyroscope and accelerometer continuous-time noise density: 

¾g = 0:007[rad=(s
p
Hz];¾a = 0:019[m=(s2

p
Hz)], Gyro and 

accelerometer bias continous-time noise density: ¾bg = 0:02 

[rad=(s2
p
Hz];¾ba = 0:06[m=(s3

p
Hz)].  

The sensor was mounted onto an UGV for driving of a 
triangular region in our work zone and back to the starting 
point. 3D ground truth obtained using a high-precision BeiDou 
GNSS module. We furthermore neglect the offset between 
GPS antenna and IMU center. Using first keyframe IMU body 
to be world frame, we align GNSS coordinate systems to world  

Some example images collected by the hardware are shown 
in Figure 5. In TABLE I. , we show the RMSE error increases 
as the driving distance increases. 

B. EuRoC Benchmark 

We tested the proposed Stereo-VI-DSO on part of 
sequences in EuRoC dataset [27], in which a FireFly hex-rotor 
helicoptere quipped with VI-sensor (an IMU @ 200Hz and  

 

Figure 5.  Images from the real experiment (upper row: dynamic people, 

bottom row: sudden change of light) with depth estimates. Left is rgb image, 

then convert to grayscle, with color-coded depth estimates are shown on the 

right. 

dual cameras 752×480 pixels @ 20Hz) was used for data 
collection. 

In TABLE II. , we present results of Stereo-DSO and 
Stereo-VI-DSO. The results of Stereo-DSO come from our 
approach removing the IMU constraint. VINS[16] and 
OKVIS[11] are open-source and the state of the art works. For 
comparison, we also provide accuracy RMSE results of VINS, 
OKVIS. 

We also present all robot states estimation results in Figure 
6.  Figure 7.  Figure 8.  We can draw a conclusion that Stereo-
VI-DSO have a significant improvement over Stereo-DSO in 
accuracy. 

C. Simulation Experiments 

We reconstructed the scene of our work zone on Unreal 
Engine 4 as shown in Figure 1.  Benefit from Unreal real-time 
rendering , we also develop some simulation sensors which 
can output raw data of most sensors used in the field of 
autonomous driving. The simulated acceleration and 
gyroscope measurements are computed from the absolute 
vehicle pose in Engine and additionally corrupted by white 
noise and a slowly time-varying bias terms, according to the 
IMU model in [2] and parameters in real experiments. We 
evaluate the accuracy of our method with absolute ground-
truth value base on simulation data shown in Figure 9.  

VII. CONCLUSION 

We have presented a novel approach to direct sparse, 

tightly integrated visual-inertial odometry. It combines a fully 

direct structure and motion approach – operating on per-pixel 

depth instead of individual keypoint observations–with tight, 

minimization-based IMU integration. Our method can 

outperform existing Stereo-DSO approaches in terms of 

tracking accuracy while running in real-time on a standard 

laptop CPU.  

In future work, we will investigate tight direct visual IMU 

integration with Lidar. Lidar can correction depth of 



  

landmarks, on the other hand, a better initial pose of VIO can 

help Lidar odometry optimization convergence quickly. 

Figure 6.  Trajectory and height estimates in MH2. 

Figure 7.  Velocity estimates in MH2. 

Figure 8.  IMU bias estimates in MH2. 

Figure 9.   Trajectory estimates in simulation experiments. We install a  

stereo camera and an IMU on a Cadillac CT6. Driving manually for some 

distance, we record stereo images, IMU data and ground truth.  

 

APPENDIX 

A detailed derivation in an additional supplementary 

material below, if the article can’t display online, you can 

click Download button for reading offline. 

https://github.com/ArmstrongWall/Sup_S_VI_DSO/blob/

master/Sup_S_VI_DSO.pdf. 

Our autonomous driving simulation platform dataset: 

https://github.com/ArmstrongWall/unreal_autonomous_dr

iving_dataset. 

We present evaluation results on EuRoC dataset and real 

experiments video. 

https://youtu.be/cEBNrhgElk4 . 
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