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Abstract—In the last decade, supervised deep learning ap-
proaches have extensively employed in visual odometry (VO)
applications, which is not feasible in environments where la-
belled data is not abundant. Therefore, many unsupervised
deep learning approaches based on depth map in unknown
environments from unlabeled data have been proposed. In this
paper, we propose a more simplify framework (Encode and
Regress Network, ERNet) to generate a robust 6-DoF pose of
a monocular camera with Semi-supervised learning strategy.
Compared to other state of the art unsupervised deep VO
methods, our framework without any assistant of depth map
information can also achieve a good performance in terms of
pose accuracy on KITTI dataset.

I. INTRODUCTION

Visual odometry (VO), as one of the most essential tech-
niques for pose estimation and robot localization, has attracted
significant interest in both the computer vision and robotics
communities over the past few decades [1].

In the past few decades, model-based VO or geometric
based VO has been widely studied on its two paradigms,
feature-based method and direct method, which have both
achieved great success. However, model-based methods tend
to be sensitive to camera parameters and fragile in challenging
settings, e.g., featureless places, motion blurs and lighting
changes.

In recent years, data-driven VO or deep learning-based VO
has drawn significant attention due to its potentials in learning
capability, the robustness to camera parameters in challeng-
ing environments. Deep learning-based techniques have been
adopted with precision to solve a lot of computer vision task,
such as image classification [2], semantic segmentation [3] and
object tracking [4]. Starting from the relocation problem with
the use of supervised learning, Kendall et al. [5] proposed to
use a Convolutional Neural Network (CNN) for 6-DoF poses
regression with raw RGB-D images as its inputs, which named
PoseNet. Video clips were employed in VidLoc to capture
the temporal dynamics for relocation. Given pre-processed
optical flow [6], a CNN based frame-to-frame VO system
was reported in Wang et al. [7] then presented a Recurrent
Neural Network (RCNN) based VO method resulting in a
competitive performance against model-based VO methods,
which named DeepVO. Ummenhofer [8] proposed ”DeMoN”
which can simultaneous estimate the camera’s ego-motion,
image depth, surface normal and optical flow. Visual inertial

Fig. 1: Architecture overview. The Semi-supervised deep
learning approach consists of an encode network and a regress
network. Firstly, current frame c and last frame l are feed
into encoding network to generate two feature vector Fc and
Fl. Then, Fc and Fl are feed into regresser net to generate
the final estimated 6-DoF result ω′. The loss of ERNet will
be calculated by Fc, Fl, ω′ and 6-DoF ground truth ω while
supervised training stage, and be calculated only by Fc, Fl and
ω′ without 6-DoF ground truth ω while unsupervised training
stage.

odometry with deep learning was also developed in [9] and
[10]. However, all the above-mentioned methods require the
ground truth of camera poses or depth maps conducting the
supervised training. Currently, obtaining ground truth datasets
in practice is typically difficult and expensive, and the amount
of existing labeled datasets for supervised training is still
limited. These limitations suggest people to look for various
unsupervised learning VO schemes, such as [11] and [12]. In
order to train the network without pose ground truth, most
of them are based on depth map to calculate the loss of the
estimated 6-DoF pose of camera, which makes the network
quite redundancy.

Different from most recently popular unsupervised visual
odometry framework, in this paper, we propose a Semi-
supervised encode and regress network (ERNet) to efficiently
calculate the 6-DoF pose of camera which train on a small part
of labeled sequences and a large part of unlabelled sequences
without any need of depth message. In summary, the main
contribution of our method are as follows:
• To the best of our knowledge, this is the first monocular

VO method in literature, which uses Semi-supervised
deep learning method without any assistant of depth



information.
• Combined supervised learning on a small part of labeled

dataset with unsupervised learning on a large part of
unlabelled dataset, our semi-supervised deep learning
method achieves quite good results compared to the state-
of-the-art unsupervised methods.

• Compared to most popular unsupervised deep learning
methods which most using depth map to generate the
loss of visual odometry, our ERNet can generate the
loss of predicted 6-DoF poses without depth map more
efficiently while unsupervised training process.

Since ERNet only requires a small part of stereo imagery
for supervised training with the need of labeled datasets and a
large part of stereo imagery for unsupervised training without
the need of labeled datasets, it can train it with an extremely
large number of unlabeled datasets to continuously improve
its performance.

The rest of this paper is organized as follows. Section
II gives an overview of the proposed approach named ER-
Net(Encode and Regress Network). Section III describes the
proposed Semi-supervised deep learning architecture and the
different types of losses used in supervised and unsuper-
vised training process on visual odometer system. Section
IV presents experimental results on KITTI dataset. Finally,
conclusion is drawn in Section V.

II. ARCHITECTURE OVERVIEW

As shown in Fig. ??, our Semi-supervised ERNet is com-
posed of an encode network and a regress network. Our
ERNet takes two consecutive monocular images as inputs, and
produces a 6-DoF pose.

For the encode network, we will train the network to
generate two vectors Fc and Fl, which we supposed they are
satisfied the following relationship:

Fc = Fl ◦ ω

where ◦ means a specified operation, and ω is ground truth
we needed to regress.

On supervised learning stage, we will use the ground truth
of ω to train encode and regress net. On unsupervised learning
stage, we will use the predicted ω′ to calculate the loss for
encoding and regresser net. Through Fc and Fl, we are now
able to train ours network on supervised and unsupervised
mode. The next section will have a detail description about
our framework on visual odometry problem.

III. SEMI-SUPERVISED VISUAL ODOMETRY DEEP
LEARNING NETWORK

The network architecture of the proposed method is shown
in Fig. ??. The details of the architecture are explained in the
following sections.

A. Encode and Regress Network Architectures

For the encode network, it takes two consecutive monocular
images as input and concatenated with two paths which consist

of three fully connected linear layers to generate two vectors
with length of 3 as Fc and Fl.

As for visual odometry problem, we designed the following
relationship between Fc and Fl:

Fc = Fl ∗ ωr + ωt

where ∗ stands for dot production and ωr, ωt is rotation and
translation value of 6-DoF pose.

For the pose regress network, we are staked two layers
LSTM with 1000 hidden units to better handle the history
trajectory information. Since rotation (represented by Euler
angles) has high nonlinearity, it is usually difficult to train
compared with translation, for supervised training, a popular
solution is to give a bigger weight to the rotation loss as a
way of normalization. In order to better train the rotation with
unsupervised learning, we decouple the translation and the ro-
tation with two separates paths of fully-connected layers after
LSTM. This enables us to introduce a weight normalizing the
rotation and the translation predictions for better performance.

In order to generate more meaningful vectors Fc and Fl,
in the last four convolution layers of encode network, we
divide feature with two groups while doing convolution which
indicates the current and last frame feature explicitly. And the
relationship between Fc and Fl are more likely to doing a
pose transformation between them. Different with currently
popular unsupervised visual odometry framework which need
to generate depth map for input scenes, then back-project the
depth to three-dimension points and apply the predicted 6-DoF
pose to get the loss of estimated pose, it is not necessary for
us to estimate any depth information but just two vectors Fc

and Fl.

B. Objective Loss Function

We designed two loss functions for supervised and unsu-
pervised training process.

1) Supervised Loss Function: While supervised learning
process, which the ground truth of 6-DoF ω is given, we define
the following loss function for ENet:

LENet =MSE(Fc −Fl ∗ ωr − ωl)

and the following loss function for RNet:

LRNet =MSE(ωr − ω′r) +MSE(ωl − ω′l)

Then, we get the final loss function for our supervised training
process:

Lsupervised = LENet + LRNet

2) Unsupervised Loss Function: While unsupervised learn-
ing process, which the ground truth of 6-DoF ω is missed, we
define the following loss function for ERNet:

Lunsupervised =MSE(Fc −Fl ∗ ω′r − ω′l)



Fig. 2: ERNet on visual odometry system. It takes in two continuous frames every time, and output a 6-DoF pose estimation. In
encode net, we first go through nine convolution layers and the number in the box is (kernels, size, strides, groups). Then, we
stake three fully linear layers to generate Fc based on group one and Fl based on group two. At the same time, we will forward
the encoded feature to regress net. In regress net, we stack two LSTM layers with 1000 units to better capture the trajectories
information. In order to get a better pose estimation, we split 6-DoF into a 3-DoF translation and 3-DoF Euler rotation angles,
then use two path Networks to regress them. Networks in the same color dash line box share the same parameters.

C. Training Strategy

In order to have a better network weight initialization, we
first train ERNet with supervised learning, and then train it
with unsupervised learning on unlabeled dataset. However, it
is hard to make sure that Fc and Fl will perfectly satisfied
the relationship, so we will slow down the learning rate while
unsupervised training stage and then finetune our network with
supervised learning to finish our training process.

IV. EXPERIMENTS AND RESULTS

We implemented the architecture with the publicly available
PyTorch [13] framework. Batch normalization is employed for
all the convolution layers except for the output layers. The
weights of the network are optimized with Adam optimiza-
tion to increase the convergence rate, with the parameters
β1 = 0.9, β2 = 0.999, , learning rate of lsupervised =
0.001, lunsupervised = 0.0005, lfinetune = 0.001, and mini-
batch size of 8. For training purpose, the input tensors of the
model are assigned to sequential images of size 184 × 608.
Two consecutive images are stacked together to form the
input batch. We use the KITTI [14] dataset for benchmarking.
The model is trained on a NVIDIA TITAN XP model GPU.
We compare the proposed method with standard training/test
splits on the KITTI dataset for supervised odometry estimation
task, and use the rest unlabeled sequences as training data on
unsupervised training stage.

A. Pose estimation benchmark

We have evaluated the pose estimation performance of
our ERNet on the standard KITTI visual odometry split.
The dataset contains 11 driving sequences with ground truth
odometry obtained through the IMU/GPS sensors and rest 11

Method Seq.09 Seq.10
ORB-SLAM[15] 0.014±0.008 0.012±0.011
SfM-Learner[16] 0.016±0.009 0.013±0.009
GeoNet[17] 0.012±0.007 0.012±0.009
ERNet 0.018±0.018 0.011±0.016

TABLE I: Absolute Trajectory Error (ATE) on KITTI odom-
etry dataset. We also report the results of the other methods
for comparison that is taken from [16], [17]. Compared to
other supervised methods, our approach can also achieve a
good result on KITTI dataset with a more efficient network
without any assistant of depth map.

driving sequences without ground truth. We use the sequences
00-08 with ground truth for supervised training, 11-21 without
ground truth for unsupervised training and 09-10 for testing.
The network regresses the pose predictions as 6-DoF relative
motion (Euclidean coordinates for translation and rotation)
between sequences. We compare the pose estimation accuracy
with the existing unsupervised deep learning approaches with
the same sequences length of 5, and monocular RGB SLAM.
The results are evaluated using Absolute Trajectory Error
(ATE) for five consecutive input frames with an optimized
scaling factor to resolve scale ambiguity, which is reported
to be the best length for the compared methods. As shown
in Table ??, our ERNet achieves good performance with all
the competing unsupervised and traditional baselines, without
any need of global optimization steps such as loop closure
detection, bundle adjustment and re-localization, revealing
that ERNet captures long-term high level odometry details in
addition to short-term low level odometry features.



B. Supervised Compare to Semi-Supervised ERNet

In order to better demonstrating novel function of our
Semi-supervised ERNet, we have visualized the ERNet with
unsupervised training and without in Fig. 3. With unsupervised
training and finetune, our ERNet shows a better odometry
estimation in terms of bath rotational and translational motions
compared to ERNet only with supervised training.

V. CONCLUSION

In this study, we proposed a Semi supervised deep learning
method for pose estimation without the needed of any depth
information for a monocular video sequences, demonstrating
the effectiveness of Semi supervised learning in these tasks.
The proposed method can achieve a good performance com-
pared to the competing unsupervised and traditional baselines
in terms of pose estimation. In a further work, we would like
to explicitly address another task which is similar with visual
odometer with ERNet framework.
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Fig. 3: Visualization of testing result on sequences 09-10. With unsupervised training and finetune, our ERNet shows a better
odometry estimation in terms of bath rotational and translational motions compared to ERNet only with supervised training.


