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Motivation

VIO algorithms continue to produce impressive 

results in terms of accuracy. 

However, most VIO algorithms are still prone to 

failure under certain conditions.

2

Question:

Can we improve the robustness of VIO by using 

multiple cameras with non-overlapping FOVs?



Motivation

Using information from multiple cameras makes it more likely we maintain good 

visual features even if any individual camera loses them.

How do we best use information from multiple cameras?

Approach 1 Approach 2
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Run a single optimization using 
features from all cameras

Run multiple independent VIO 
algorithms



Potential approaches

Approach 1 Approach 2

● Relatively simple to use and 
integrate

● Requires some mechanism to fuse 
multiple odometry estimates or 
switch between them

● Still difficult to recover if any single 
odometry estimate fails

● Optimizing on all features jointly 
provides better constraints on 
odometry

● No need to select between 
different odometry estimates 

● Need to select features from 
multiple cameras to optimize 
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Potential approaches
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Approach 1 Approach 2

● Relatively simple to use and 
integrate

● Requires some mechanism to fuse 
multiple odometry estimates or 
switch between them

● Still difficult to recover if any single 
odometry estimate fails

● Optimizing on all features jointly 
provides better constraints on 
odometry

● No need to select between 
different odometry estimates 

● Need to select features from 
multiple cameras to optimize 



Contributions

We propose a novel 1-point RANSAC algorithm which jointly selects features 

across all stereo pairs

We describe our full VIO pipeline which includes a backend based on information 

sparsification
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VIO Overview 

Backend Optimization

We use a fixed-lag 

smoother and make use of 

information sparsification to 

accurately solve for the 

pose of the robot.

Feature Tracking 

KLT tracking on Shi-Tomasi 

corners detected in each 

image. Tracking is done 

temporally and between 

images in a stereo pair.

Joint RANSAC

The proposed RANSAC 

scheme jointly selects a 

subset of inliers from 

features located across 

all stereo pairs.
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Feature Tracking  

Our feature tracking pipeline is comprised 

of the following steps:

1. Feature detection and bucketing

2. KLT matching temporally between 

images

3. KLT matching between images in 

stereo pair

4. Replenish buckets with new features
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Multi-Stereo RANSAC

Given a set of tracked feature points in each stereo pair, we can 

formulate RANSAC as 3 steps:
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Triangulate 
Points

Transform to IMU frame Sample and find inliers



Multi-Stereo RANSAC

Each stereo feature is triangulated in its 

respective camera frame using DLT.

We keep track of the triangulated points in 

the current frame and their correspondences 

at the previous time step.

10Triangulate Points Transform to IMU frame Sample and find inliers



Multi-Stereo RANSAC

For each 3D correspondence we:

● Transform it into the IMU frame using the camera extrinsics

● Rotate points from the previous IMU frame into current IMU frame 

using integrated gyroscope measurements

At this point corresponding feature points should only differ by temporal 

translation

11Triangulate Points Transform to IMU frame Sample and find inliers



Multi-Stereo RANSAC

Using any single point correspondence we can 

estimate temporal translation. This means our 

RANSAC model is fully defined by only one point 

correspondence!

12Triangulate Points Transform to IMU frame Sample and find inliers



Multi-Stereo RANSAC

Using our estimates of temporal 

rotation and translation we can 

reproject 3D features from the 

previous time step into the current 

image and determine inliers

13Triangulate Points Transform to IMU frame Sample and find inliers



Uncertainty Compensation

In the process of performing RANSAC we use camera extrinsics twice:

1. Transforming 3D features from individual camera frames to the IMU frame

2. Reprojecting 3D points back to the original images to determine inliers

What happens if these extrinsics are noisy?
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Uncertainty Compensation

In the process of performing RANSAC we use camera extrinsics twice:

1. Transforming 3D features from individual camera frames to the IMU frame

2. Reprojecting 3D points back to the original images to determine inliers

What happens if these extrinsics are noisy?

Features observed by cameras with uncertain extrinsics will tend to have a higher 

reprojection error than those observed by cameras with accurate extrinsics
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Uncertainty Compensation

In simulated environments we have 

perfect control over extrinsics and can 

directly observe the effects of noisy 

extrinsics!
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Uncertainty Compensation

Represent uncertain extrinsic parameter as a member of SE(3) perturbed by Gaussian noise,

By propagating the uncertainty through the coordinate frame transformation and nonlinear reprojection 
function, we get a covariance in the pixel space of the left image [1,2].

Rather than computing inliers using Euclidean distance to compute inliers, we use Mahalanobis distance 
in the pixel space.
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1. Associating uncertainty with three-dimensional poses for use in estimation problems. Barfoot and Furgale.

2. Characterizing the uncertainty of jointly distributed poses in the lie algebra. Mangelson et al.



Uncertainty Compensation
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Noise model of each projection 
factor is modified to account for 

the extrinsic uncertainty 



Backend Using Information Sparsification

● Formulate backend as a factor graph with pre-integration factors, IMU bias random 
walk factors, and stereo projection factors

● At each new image frame we marginalize out a node from the smoother window and 
add a node for the incoming state

19



Backend Using Information Sparsification
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Marginalization creates densely connected priors which creates “fill-in” in the 
information matrix!



Backend Using Information Sparsification
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A typical approach to deal with the densified information matrix is to selectively discard 
entries in the information matrix 



Backend Using Information Sparsification
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Can we do better?

A typical approach to deal with the densified information matrix is to selectively discard 
entries in the information matrix 



Backend Using Information Sparsification
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1. Nonlinear Factor Recovery for Long-Term SLAM. Maruzan et al.
2. Information Sparsification in Visual-Inertial Odometry. Hsiung et al.



Backend Using Information Sparsification
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We sparsify the information matrix using the method described in [1] by enforcing a 
sparse topology on priors without losing the information encoded in the dense priors

Fixed-Lag Smoother Sparsified Fixed-Lag Smoother

1. Information Sparsification in Visual-Inertial Odometry. Hsiung et al.



Simulation Results
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Method ATE (m)

Proposed 0.700

VINS-Mono1 1.561

VINS-Mono2 7.048

1 Forward facing camera
2 Backward facing camera



Real-world Results

26

Method FTE (m)

Proposed 1.77

Proposed1 6.980

VINS-Fusion2 Failed

VINS-Fusion3 Failed

1 Proposed algorithm without uncertainty compensation
2 Forward facing stereo pair
3 Downward facing stereo pair



For any questions feel free to contact:

Joshua Jaekel

jjaekel@andrew.cmu.edu
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