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ABSTRACT

Online discussion forums are trending as popular platforms
that allow asynchronous online interactions through a unique
communication structure composed of main threads and the
associated replies. In this paper, we present a learning frame-
work – called SocialGrid – for modeling event dynamics in
online discussion forums. Using a grid transformation, we
explore the possibility of converting the problem of tempo-
ral space modeling into the problem of density space model-
ing. Inspired by the nature of the grid, we leverage a tempo-
ral convolution network to learn the dynamics in the density
space. Changing the transformation precision, our approach
can model the temporal dynamics at different granularities,
thereby fulfilling prediction tasks with different needs. Ex-
periments on real-world datasets have shown that our frame-
work excels at various prediction tasks compared with other
possible approaches.

Index Terms— information dynamics, online discussion
forum, temporal convolution network

1. INTRODUCTION

Online discussion forums (ODFs) constitute a major branch
of digital platforms, including social networking sites (e.g.,
Reddit and Digg), question-and-answer websites (e.g., Stack
Overflow and Stack Exchange), and content sharing applica-
tions (e.g., Youtube and Pinterest). The study of ODFs are
drawing increasing attention in recent years and has enabled
important applications, such as thread recommendation in ed-
ucational ODFs [1], latent community discovery [2], and user
activity prediction [3]. Among the research advances, one of
the fundamental problems is to model the temporal dynamics
of the events occurring in ODFs.

Motivation. There have been plenty of learning methods
that can deal with network-based platforms like Facebook and
Twitter that are built on explicit user-user relationships (such
as friendship relationship [4] and follower-followee relation-
ship [5]). However, ODFs are distinct from the others by their
unique thread-reply structure: people raise a discussion or a
question by posting a thread, and users can respond to the
threads by posting replies (Fig. 1). This unique structure
opens new research opportunities in the sense that the existing
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Fig. 1: The thread-reply structure of ODFs.

methods are not applicable. One challenge is that the dynam-
ics under the thread-reply structure are less coherent without
an explicit backbone network, and therefore, network-based
models (such as the triggering models [6]) are not feasible.
In addition, threads can be generated dynamically as new
event streams, so one cannot use the temporal point models or
deep learning methods that are designed for fixed-dimension
sequences [7, 8]. In coping with these challenges, this pa-
per seeks to design an end-to-end learning method suited for
modeling threads and relies in ODFs.

Contribution. We propose a novel framework called So-
cialGrid for forecasting dynamic in ODFs, designed with
two techniques: grid transformation and temporal convolu-
tion network. SocialGrid represents the thread-reply cascades
using a grid structure where each cell summarizes the events
within a short interval, which transforms the temporal point
space into the event density space (Sec. 2). The obtained
grid representation can approximate the original hypothesis
space at different regularities, and it allows us to learn with
matrix-like features, which are more tractable in terms of
learnability. With the grid representation, we extend the one-
dimension temporal convolution network (TCN) to a multi-
dimension level and design models for predicting the arrival
time of threads and replies at the grid level (Sec. 3). Our ap-
proach implicitly model the latent correlation between replies
crossing different threads via 2D convolutions, and it there-
fore has the potential for resolving the cold start problem [9]:
the initial replies in a new thread are hard to predict due to the
lack of historical information. In experiments, we have found
SocialGrid robust and promising for various prediction tasks
(Sec. 4). In the supplementary materials, we provide a brief
literature survey, the additional experimental results, and our
source code.
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Fig. 2: Transformation Pipeline. Fig. 2a shows a typical pattern of ODFs; Fig. 2b views the thread-reply dynamics as multiple
time sequences; Fig. 2c illustrates the grid representation.

2. GRID TRANSFORMATION

An ODF (Fig. 2a) is composed of two types of event streams,
thread stream {Ti} and reply stream {ti,j}, where each thread
Ti is posted as a new web content to which users can re-
spond through the associated replies {ti,1, ti,2, ..., ti,j , ...}.
We slightly abuse the notation and use Ti ∈ R+ and ti,j ∈ R+

to also denote the arrival time of the event. Taking a super-
vised learning perspective, the event forecasting problem is to
learn a conditional distribution:

Problem 1 (Event Forecasting). Given the arrival times E≤t
of the events before a time point t ∈ R+, we are interested in
the conditional distribution Pr[E>t|E≤t], where E>t denotes
the arrival times of the events occurring after t.

Viewing each thread with its replies as a time sequence
(Fig. 2b), the space we are concerned with is similar to the
multi-variant point process [8], with the distinction that its
dimension is dynamic and not unknown in advance, which
makes the classic Hawkes-like models designed for the fixed-
dimension case inapplicable. Notice that predicting the ar-
rival time is equivalent to predicting the event density – the
intensity (frequency) of the events at each time instance [10].
Thus, by relaxing an infinitesimal instance as a time interval,
we have a natural grid-shaped representation of the temporal
pattern of the events in ODFs, which we call the Grid.

Definition 1 (Grid). Grid G (Fig. 2c) is a matrix-like struc-
ture in which each column j is associated with a main thread
Tj and the rows denote the timeline, where each row i rep-
resents a time interval of a controllable length d. The Grid
consists of two types of elements. For each Gi,j , if the main
thread Tj has already arrived in or before the i-th time inter-
val, Gi,j denotes the total number of replies of thread Tj oc-
curring within the i-th time interval; otherwise, Gi,j is marked
by a special symbol 0s. A binary mask matrix M with the
same shape as G is used to record the positions of the special

symbol 0s:

Mi,j =

{
1 if Gi,j = 0s,
0 otherwise.

(1)

In the example of Fig. 2c, supposing that d is five minutes,
thread Tj arrives at the time interval indexed by i − 2, and it
draws two replies in the first five minutes and six relies in the
next five minutes.

Under the grid approximation, Problem 1 can be accordingly
transformed into the grid prediction:

Problem 2 (Grid Prediction). Given the Grid G, we aim to
learn the distribution Pr[G≥i,j |G<i,j ] where G≥i,j denotes the
entries that are at or beyond the i-th time interval, and G<i,j
denotes the entries before the i-th time interval.

Learning the Grid enables us to forecast the number of events
in the future time intervals, and we therefore can predict the
arrival time of the upcoming events at different granularities
by adjusting the interval length d used for building the Grid.
The main merit of doing so is that, compared with tempo-
ral sequences, the grid representation is much easier to learn
using machine learning methods. We can see that the grid
recovers the event sequences when d approaches to 0. This
creates an interesting trade-off controlled by d, which will be
studied in experiments. In the next section, we discuss the
learning strategy to solve Problem 2.

3. LEARNING STRATEGY

One can imagine the grid in Fig. 2c as a social image in
which each cell provides the features summarizing the events
within a small time period, making the convolutional neural
networks a natural choice for mining the latent representation.
Our approach employs a temporal convolution architecture to
parameterize the distribution Pr[G≥i,j |G<i,j ].

We first design the individual modules and then present
our model pipeline.
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Fig. 3: 2D dilated causal convolution. Suppose that the el-
ement x in the first layer corresponds to the element y in the
output layer. As shown in the figure, the element y is decided
by ∗i, i ∈ [1, 2, 3, 4] at Layer 2, and each of the ∗i element
is decided by the ♦ element with the same index number. By
stacking with more dilated 2D causal convolution layers, the
output element y will be decided by a larger receptive field.

3.1. 2D Temporal Convolution Layer

On the basis of the temporal convolution network for model-
ing one-dimension sequences [11], we design the 2D tempo-
ral convolution layers through two techniques: causal convo-
lution and dilated convolution.

Causal Convolution. For temporal event modeling,
causal convolution ensures the temporal causality: the rep-
resentation of a grid in G should be determined by the past
grids with smaller row indices. Formally, the feature transfor-
mation between layers can be written as:

Λli,j =

K∑
k1=1

K∑
k2=1

fk1,k2 · Λl−1
i−k1,j−k2 ,

where Λli,j represents the hidden representation at the l-th
layer (with Λ0 being the input features), and f ∈ RK×K is
a square-shaped convolution filter with size K ∈ Z+.

Dilated Convolution. The traditional CNN often at-
tempts to enlarge its receptive field by stacking layers, but this
also unnecessarily increases the model complexity [11]. TCN
employs the dilated convolution to exponentially enlarge the
receptive field when stacking with more convolution layers.
For the two-dimension case, the causal convolution endowed

Input Output

Fully Conv2D

Dilated Conv2D Normalization

𝒢 "# ,%& 𝒢 #,&

Fig. 4: Temporal Convolution Block.

with a dilation rate τ is formally given by

Λli,j =

K∑
k1=1

K∑
k2=1

fk1,k2 · Λl−1
i−k1·τ,j−k2·τ .

Therefore, the recursive formula of the receptive field RFl of
the l-th layer is analytically given by

RFl =
(

(RFl−1−1) +K + (K − 1) · (τ − 1)
)2

with RF1 = K2. As for our grid prediction problem (Fig.
2c), the receptive field indicates a) the number of the past
threads to be considered (along the columns) and b) the num-
ber of the past time intervals to take effect (along the rows).
Fig. 3 provides an illustration of the 2D dilated causal convo-
lution layer.

3.2. Temporal Convolution Block

With the proposed 2D temporal convolutional layers, we de-
sign the temporal convolution block, which constitutes the
main modules of our model pipeline. In each block, a 2D di-
lated causal convolution layer is followed by a normalization
layer (denoted by Norm) and a non-linear activation function
(denoted by σ) to reduce the internal covariate shift, which
leads to the transformation

Λ∗ = σ(Norm(Λl)).

To reduce the potential risk of the network performance
degeneration caused by the deep network structure, we add
a residual connection [12] between the temporal convolution
blocks. This is intended to help the model directly learn the
modification from the identity mapping of the last block (in-
stead of the full transformation). In our design, the prediction
in the output Λ∗

i,j is added element-wisely with the input Λli,j
from the last layer, and we apply an additional fully convolu-
tion network to Λ∗ to account for discrepant shapes between
Λ∗ and Λl. As a result, the output Λl+1 can be represented as

Λl+1
i,j = σ(Λ∗

i,j ⊕ Λli,j).

The structure of the block is summarized in Fig. 4. We
adopt batch normalization [13] and use the Parametric Recti-
fied Linear Unit (PReLU) [14] as the activation function.
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Fig. 5: Model Pipeline. Each model takes the tensor G consisting of three feature channels G, R andM, and the inputs are
processed by a sequence of temporal convolution blocks to generate the output tensors Um and Ur. Um and Ur are further
compressed by MLP to get Ôjj+1 and Ĝi,j , respectively, for predicting the thread arrival times and reply numbers in the grid.
MSE loss between the predicted value and the ground truth is used for training the parameters. During the training, the entire
grid G is slices into 200× 200 subareas as training samples, though the grid G is conceptually infinite.

3.3. Model Pipelines

For enhancing the grid prediction (Problem 2), we utilize two
auxiliary features, in addition to the grid input G. The first
feature matrix (denoted by Ri,j) records the number of time
intervals (rows) from each cell Gi,j to the first time interval of
the associated main thread Tj . We codeRi,j as zero if Gi,j is
the special symbol 0s, and further normalize all the columns
in R to the range of [0, 1] in order to keep the count of each
cascade in the same scale. R is intended to inform our model
of the latent influence from the associated main thread. We
use the mask matrixM (Eq. 1) as the second feature matrix
to remind the model of the locations of the special symbol.

Under the grid presentation, the arrival time of future
main threads can be predicted by inferring Ojj+1 ∈ N, which
is defined to be the number of intervals (rows) between the
first intervals of two consecutive main threads Tj and Tj+1.
Successfully doing so will allow us to (approximately) esti-
mate the arrival time Tj+1 by

Tj+1 = Tj + (Ojj+1 · d).

To this end, we parameterize Pr[Ojj+1|G≤i,≤j ] using a se-
quence of temporal convolutional blocks, where the residue
connection is omitted and the number of blocks is taken as
a hyperparameter determined by the grid search. To predict
the number of future replies G≥i,j at the grid level, the dis-
tribution Pr[G≥i,j |G<i,j ] is again learned through temporal
convolutional blocks. The entire process is detailed in Fig. 5.

4. EXPERIMENT

4.1. Experiment Setting

We have implemented several standard and popular methods
for sequence modeling, including ARIMA [15], GRU [16]
and LSTM [7]. Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are adopted to measure the difference
between the ground truth array and the predicted array. They
are measured in hours in predicting the arrival times and mea-
sured in number in predicting the number of replies.

We adopt two Reddit datasets: NBA and NFL. NBA
dataset contains 1, 610 main threads and 71, 638 correspond-
ing replies collected from the NBA subreddit during the 2019
playoff month. We use the data of the first three weeks as the
training-validation set, and use the rest of the data as the test-
ing set. NFL dataset is created by retrieving the discussions
on Superbowl 2019 during the week of the NFL final match.
This dataset contains 1, 895 main threads and 138, 911 asso-
ciated replies. We use the data in the first five days (roughly
1, 600 thread-reply cascades) as the training-validation set,
and use those in the rest two days as the testing set.

In the rest of this section, we present the results on two
tasks: non-adaptive prediction and breakout thread detection.
The supplementary material contains the full experiment, in-
cluding the detailed implementation of each method, results
on adaptive-prediction and ablation study, results of more
competitors, and the source code.
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Fig. 6: Sensitivity Analysis. The x-axle denotes the value of
d in seconds, and the y-axle denotes the prediction error.

4.2. Non-adaptive Prediction

Given the current snapshot of the grid G≤i,≤j , the first task
we consider is to predict the arrival time of the next thread
(i.e., Tj+1) as well as the number of replies occurring in the
next time interval (i.e., row i + 1). This prediction task is
non-adaptive in the sense that the predictions are made using
only the given histories, as opposed to the adaptive prediction
where the prediction of distant future events relies on the pre-
dicted events in the near future. We first present the sensitivity
study to determine the value of d used in SocialGrid and then
examine the performance of the considered approaches.

Sensitivity Analysis. The value of d affects the model
precision by controlling the minimum time interval that So-
cialGrid can model. There is an essential trade-off: the larger
d decreases the model precision and therefore makes the pre-
diction coarse, but this also reduces the model complexity,
making it easy to learn. Thus, we examine the impact of d
on the final metric (MAE). Fig. 6 shows the performance of
SocialGrid with different values of d in predicting the thread
arrival times and reply numbers. Interestingly, in all four
experiments on the two datasets, the MAE curve fits a con-
vex function, and there exists an optimal length d that gives
the best prediction accuracy, which echos the aforementioned
trade-off – extreme values are not preferred. The optimal d is
reached at 300 seconds for the NBA dataset and at 180 sec-
onds for the NFL dataset. In our experiments, we fix d as 300
and 180 seconds for the NBA dataset and the NFL dataset,
respectively.

Main Thread Arrival Time. We first consider the task
of predicting the arrival time of the future main threads. The
main thread stream is taken as a one-dimension sequence
so that non-SocialGrid approaches can be readily applied.
We predict the arrival times of 100 randomly selected main
threads for each dataset and report the average MAE and
RMSE in hours, together with the standard deviation (Table
1). As shown in Table 1, SocialGrid consistently outperforms

Model
NBA Dataset NFL Dataset

MAE RMSE MAE RMSE

ARIMA 1.35 0.21 1.88 0.34 0.59 0.09 0.75 0.07

GRU 1.24 0.09 1.84 0.09 0.42 0.06 0.61 0.05

LSTM 1.73 0.10 2.62 0.19 0.51 0.05 0.78 0.06

SocialGrid 0.58 0.04 0.93 0.05 0.18 0.03 0.28 0.04

Table 1: Main Thread Arrival Time Prediction.

Model
NBA Dataset NFL Dataset

MAE RMSE MAE RMSE

ARIMA 5.05 0.22 6.27 0.24 2.56 0.02 2.90 0.03

GRU 4.82 0.21 5.90 0.20 2.21 0.07 2.81 0.08

LSTM 4.63 0.29 5.80 0.41 2.24 0.12 2.86 0.04

SocialGrid 1.97 0.04 3.81 0.16 1.52 0.05 2.16 0.10

Table 2: Reply Number Prediction.

other approaches. Plausibly, ARIMA is limited by its model
capacity and RNN-based models (GRU and LSTM) cannot
utilize the information from the associated replies. In con-
trast, SocialGrid can capture the thread-reply dependency due
to the 2D convolutional operations.

Reply Number. When predicting the reply numbers in
the next row, treating the reply stream of each thread as one
point process suffers from the cold start issue: the first sev-
eral replies are not predictable due to the lack of sufficient
historical data. Therefore, we train the non-SocialGrid mod-
els using the arrival time information of 3, 000 replies from
previous cascades to infer the average pattern of the replies,
and use the obtained model to predict future reply numbers.
The testing is done on 200 randomly selected thread-reply
cascades, and for each of them we predict the reply numbers
in 20 consecutive time intervals. For non-SocialGrid meth-
ods, we adaptively simulate the arrival time of future replies
and count the predicted number within the next time interval,
in order to compare them with SocialGrid. The results are
shown in Table 2. As we can see from there, SocialGrid still
has the lowest prediction error on both datasets, and its superi-
ority is evident. The limitation of non-SocialGrid methods is
obvious: since threads may have different evolution patterns,
it is impossible to get accurate predictions using a fixed fitting
function. Furthermore, compared with other methods, Social-
Grid provides a more robust prediction (in terms of standard
deviation).

4.3. Breakout Thread Detection

While we have shown that SocialGrid performs better than
the baselines, we cannot conclude that the arrival time of each

5
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individual event has been accurately predicted. A less ambi-
tious task is to predict macro-level quantities such as the total
amount of the replies in one thread; one important application
is to identify breakout threads, which is closely related to ru-
mor detection and anomaly detection in ODFs. More specif-
ically, we aim at forecasting if a thread would attract more
than the average replies, by using the data in the first several
time intervals. To this ends, we first find the average cascade
size, and define the breakout threads as those having a total
number of replies more than twice the average. Given the
information in the first kd seconds (called start duration) of a
thread, k ∈ {1, ..., 10}, we use the learned models to simulate
the final volume of the replies, and report if the thread would
be classified as an outbreak cascade. The classification accu-
racy is given in Fig 7. Intuitively, this task becomes easier
when the information of a longer start duration is provided,
so the accuracy would increase with k. As we can see from
both figures, SocialGrid can identify more breakout threads
in their early stages for both datasets. When the informa-
tion of 300 seconds is provided, SocialGrid is able to identify
roughly 65% of the breakout cascades in the NBA dataset,
and an accuracy of 66% is observed on the NFL dataset with
a start duration of 180 seconds. Other approaches often need
more than 600 seconds to achieve the same.

5. CONCLUSION

In this paper, we propose a TCN-enhanced deep learning
framework (SocialGrid) for modeling the information dynam-
ics in ODFs. We propose to leverage a grid-shaped represen-
tation to reduce the model complexity for a better learning
effect, and utilize the 2D temporal blocks to build a learn-
ing pipeline for modeling the obtained grid structure. Exper-
iments have shown that our method outperforms alternative

approaches on two real-world datasets.
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A. RELATED WORK

The current research on ODFs is ranging from user behavior
modeling [1,2] to content analysis and recommendation [3,4],
focusing on the Massive Open Online Course platforms. Very
few works have paid attention to the unique structure of the
ODF in studying the information diffusion dynamics [3,5–7].
In the study of general social networks, existing works [8–10]
have utilized the Gaussian-based point processes [11] to pre-
dict the popularity of a post by fitting a single intensity func-
tion. Deep recurrent architectures [12, 13] have also been
leveraged for mining the complex latent relationship between
the temporal sequences. Nevertheless, the current tempo-
ral point process models and RNN models are often limited
to the fixed-dimension cases, while ODFs are composed of
dynamic thread-reply cascades. Convolution networks are
proven to have the ability to model sequence data back to the
90s [14, 15]; over time, CNNs have further been utilized in
various sequence modeling tasks (e.g., [16,17]) with compet-
itive results comparing with deep recurrent architectures. To
date, inspired by the dilated convolution in [18], TCN [19]
has been introduced as one of the strong competitors in var-
ious sequence modeling tasks. The proposed framework So-
cialGrid is specially designed based on TCN to process the
thread-reply structure of ODFs.

B. EXPERIMENT (EXTENDED VERSION)

B.1. Experiment Setting

We implement SocialGrid with Tensorflow and employ Adam
optimizer with a learning rate of 1.0 × 10−3 for training. In
addition, L2 regularizer (1.0 × 10−2) is applied to all con-
volution filters in the model of predicting future replies. We
execute the grid search strategy to locate the best parameters
through validation set: the number of filters is chosen from
{16, 32, 64, 128}, and the filter size is chosen from {3, 5, 7, 9}
in all dilated causal convolution layers. The number of tem-
poral convolution blocks is taken from {3, 4, 5, 6, 7}, and the
dilation rate τ is 2i−1 at the i-th block.

While Grid G is conceptually an infinite matrix, it is suf-
ficient for the training purpose that we slice the entire Grid G

into segments that cover the receptive field of the predicted
cell. The segments of feature matrices R andM are gener-
ated accordingly. We apply zero-padding to the top and left
side of the feature matrices to ensure the input-output shape
consistency and to achieve the temporal causality.

Baselines. We compare our framework SocialGrid with
four types of baselines:

• Traditional Statistical Model. ARIMA (Auto Regres-
sive Integrated Moving Average) [20] is the classic sta-
tistical model for time-series analysis. We implement
the ARIMA model with the public Python library [21].

• Recurrent Neural Networks (RNN). Recurrent archi-
tectures are standard deep learning methods for se-
quence modeling [22, 23]. We implement the vanilla
GRU and LSTM as the comparison model, where both
GRU and LSTM contain 64 hidden units and 4 layers
of the recurrent structure.

• Temporal Point Processes (TPP). Temporal point pro-
cess [11] is another popular class for modeling tempo-
ral sequences, and a number of following works [8, 10]
have utilized the TPP to study online social network.
We select the most fundamental TPP model Hawkes
process [11] as well as a recent TPP model - NesTPP
[7] that is specified in simultaneously modeling the dif-
fusion of main threads and associated replies. We use
the public Python library [24] for implementation.

• Variants of SocialGrid. We further compare SocialGrid
with its variants. Specifically, one-dimension TCN [19]
is implemented to examine if building multi-dimension
temporal convolution structure can benefit the predic-
tion accuracy. In order to investigate the efficacy of the
channels, we test SocialGrid-S which is the SocialGrid
with only one feature channel G, and SocialGrid-M
which makes use of two feature channels of G and R
without the maskM.

Evaluation Metrics. Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) are adopted to measure the
error between the ground truth array and the predicted array.
They are measured in hours when we predict the arrival times
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Fig. 1: Sensitivity Analysis. The x-axle denotes the value of
d measured in seconds, and the y-axle denotes the prediction
error.

and measured in number when we predict the amount of the
replies.

Dataset. We adopt datasets of Reddit, which is one of the
largest ODFs. The underlying assumption behind our mod-
eling approach is that the events are correlated and mutually
excited so that they are learnable; therefore, we assemble the
threads concerning one topic as one dataset. In particular, we
target two popular subreddits: NBA and NFL.

NBA Dataset [7]. This dataset is composed of 1, 610
main threads and 71, 638 corresponding replies related to the
famous player LeBron James, collected from the NBA sub-
reddit of one month during the 2019 Playoffs. We apply the
main threads and linked replies in the first three weeks as the
training-validation set, and use the rest of the data as the test-
ing set.

NFL Dataset. We retrieved the discussions of the topic
Superbowl 2019 during the week of the NFL final match.
This dataset contains 1, 895 main threads and 138, 911 asso-
ciated replies. We use the threads and their replies arriving in
the first 5 days (roughly 1, 600 thread-reply cascades) as the
training-validation set, and those in the rest two days serve as
the testing set.

B.2. Application #1: Non-adaptive Prediction

For an anchor cell Gi,j , the first task we consider is to predict
the arrival time of the next thread (i.e., Tj+1) and to predict
the number of replies occurring in the next time interval (i.e.,
row i+1). This prediction task is non-adaptive since the pre-
dictions are made using only the given histories, as opposed
to the adaptive prediction where the prediction of distant fu-
ture events relies on the predicted events in the near future.
We first present the sensitivity study to determine the value of
d used in SocialGrid and then examine the performance of the
considered approaches.

Sensitivity Analysis. The value of d affects the model

Model
NBA Dataset NFL Dataset

MAE RMSE MAE RMSE

ARIMA 1.35 0.21 1.88 0.34 0.59 0.09 0.75 0.07

GRU 1.24 0.09 1.84 0.09 0.42 0.06 0.61 0.05

LSTM 1.73 0.10 2.62 0.19 0.51 0.05 0.78 0.06

TCN 0.88 0.10 1.13 0.12 0.35 0.08 0.70 0.12

SocialGrid-S 0.59 0.03 1.11 0.04 0.21 0.03 0.30 0.02

SocialGrid-M 0.52 0.03 0.92 0.07 0.17 0.01 0.27 0.02

SocialGrid 0.58 0.04 0.93 0.05 0.18 0.03 0.28 0.04

Table 1: Main Thread Arrival Time Prediction.

precision by controlling the minimum time interval that can
be modeled by SocialGrid. There is an essential trade-off: the
larger d decreases the model precision, making the predic-
tion coarse, but it also reduces the model complexity, making
it easy to learn. Therefore, we are interested in the impact
of d on the final metric (MAE). Fig. 1 shows the perfor-
mance of SocialGrid with different values of d in predicting
the thread arrival times and reply numbers. Interestingly, in
all four experiments on the two datasets, the MAE curves fit
a convex function, and there exists an optimal length d that
gives the best prediction accuracy, which echos the aforemen-
tioned trade-off. The optimal d is reached at 300 seconds for
the NBA dataset and at 180 seconds for the NFL dataset. In
the rest experiments, we fix d as 300 and 180 seconds for the
NBA dataset and the NFL dataset, respectively.

Main Thread Arrival Time. We first consider the task
of predicting the arrival time of the future main threads. The
main thread stream is taken as a one-dimension sequence
so that non-SocialGrid approaches can be readily applied.
We predict the arrival times of 100 randomly selected main
threads for each dataset and report the average MAE and
RMSE in hours, together with the standard deviation (Table
1). As shown in Table 1, TCN-related models consistently
outperform other approaches, and SocialGrid-M achieves the
best performance. ARIMA is limited by its model complex-
ity; RNN-based models and TCN can capture a more com-
plex underlying relation, but they cannot utilize the informa-
tion from the associated replies. Comparing TCN with other
non-SocialGrid methods, we see that simplifying the learning
task by using the grid structure is indeed helpful; compar-
ing TCN with SocialGrid methods, it confirms that modeling
the mutual influence between the thread and reply through
2D temporal convolutions further improves the generalization
performance. For SocialGrid and its variants, we observe that
SocialGrid and SocialGrid-M slightly outperform SocialGrid-
S, which suggests that the featureR is relatively useful while
M may have a negative effect.

Reply Number. While predicting the reply numbers in



Model NBA Dataset NFL Dataset

MAE RMSE MAE RMSE

ARIMA 5.05 0.22 6.27 0.24 2.56 0.02 2.90 0.03

GRU 4.82 0.21 5.90 0.20 2.21 0.07 2.81 0.08

LSTM 4.63 0.29 5.80 0.41 2.24 0.12 2.86 0.04

TCN 2.99 0.14 3.48 0.31 2.02 0.10 2.58 0.15

SocialGrid-S 2.20 0.09 3.86 0.17 1.63 0.04 2.13 0.06

SocialGrid-M 2.06 0.07 3.83 0.27 1.57 0.03 2.28 0.07

SocialGrid 1.97 0.04 3.81 0.16 1.52 0.05 2.16 0.10

Table 2: Reply Number Prediction.

the next cell in G, treating the reply stream of a thread as one
point sequence suffers from the cold start issue: the first sev-
eral replies are not predictable due to the lack of sufficient his-
torical data. Therefore, we train the non-SocialGrid models
using the arrival time information of 3, 000 replies from pre-
vious cascades to infer the average pattern of the replies, and
use the obtained model to predict future reply numbers. The
testing is done on 200 randomly selected thread-reply cas-
cades, and for each of them we predict the reply numbers in
20 consecutive time intervals. For non-SocialGrid methods,
we adaptively simulate the arrival time of future replies and
count the predicted number within one time interval (cell).
The results are shown in Table 2. As we can see from the ta-
ble, TCN-based models still exhibit a lower prediction error
on both datasets, and their superiority is evident. For non-
SocialGrid methods that only utilize univariate thread-reply
cascade information as their training instances, since each in-
formation cascade may have different evolution patterns, it is
difficult for them to successfully learn all the reply evolutions
using the same fitting function. Furthermore, compared with
the TCN, SocialGrid considers the mutual influence between
information cascades, which leads to a more robust prediction
in terms of the standard deviation. In the ablation study, we
do not see much difference between the three methods and
observe that the two extra feature matricesR andM are both
helpful.

B.3. Application #2: Adaptive Prediction

Given the full history G<i,≤j , we can infer the arrival time of
thread Tj+1 by predictingOj

j+1, and repeating this procedure,
we are able to adaptively predict a sequence of future threads.
Similarly, the reply streams can also be predicted adaptively
using SocialGrid. We compare our model with Hawkes and
NesTPP, omitting ARIMA and RNN-based methods since
they have been proven to be ineffective for non-adaptive pre-
diction. While using Hawkes model, we treat the thread and
reply streams as two individual temporal point processes, and
the two processes are trained separately with the information
of 1, 000 main threads and 3, 000 replies (similar to the set-
tings in Sec. B.2). While making predictions, the Hawkes
process first simulates the main threads and then simulates

Model
NBA Dataset (MAE in Hrs)

1 5 10 20

Hawkes 0.89 0.82 1.25 1.12 1.48 1.31 2.49 1.68

NesTPP 0.79 0.68 1.01 0.89 1.23 0.84 1.97 1.37

SocialGrid-S 0.79 0.77 1.11 0.97 1.27 1.16 1.93 1.48

SocialGrid-M 0.71 0.71 0.98 0.84 1.16 1.06 1.81 1.27

SocialGrid 0.71 0.80 0.99 0.97 1.17 1.02 1.87 1.15

Model
NFL Dataset (MAE in Hrs)

1 5 10 20

Hawkes 0.11 0.09 0.15 0.12 0.20 0.15 0.27 0.21

NesTPP 0.07 0.05 0.10 0.08 0.13 0.11 0.20 0.17

SocialGrid-S 0.06 0.06 0.12 0.12 0.13 0.13 0.22 0.19

SocialGrid-M 0.05 0.07 0.09 0.11 0.11 0.11 0.18 0.19

SocialGrid 0.05 0.07 0.10 0.15 0.12 0.19 0.19 0.24

Table 3: Adaptive Prediction of Main Threads.

the replies under each predicted main thread. NesTPP [7]
has been featured with a nested intensity function for dealing
with the dynamic two-dimension sequences, and we follow
the same setting therein. Note that the multivariate TPP like
SEISMIC [8] is suitable for fix-dimensional sequence model-
ing and thus not applicable to our case. We randomly select
the start point and simulate the arrival time of the following 20
main threads with the associated replies in the next 10 cells.
This process was repeated for 20 times, and we report the av-
erage results in Tables 3 and 4.

Main Thread Arrival Time. As shown in Table 3, the
average MAEs of all models exhibit an increasing trend over
time, indicating that long-term adaptive prediction is a chal-
lenging task. Although the distinction of prediction errors
among each approach is not far behind, the proposed frame-
work SocialGrid and its variants still have the overall low-
est MAE in both datasets. Our methods are generally more
capable of learning both short- and long-range diffusion pat-
terns by incorporating the influence of adjacent cascades. It is
worth noting that NesTPP is comparable to SocialGrid in this
experiment. In the ablation study, we see that the performance
of SocialGrid-S is still the worst among the SocialGrid vari-
ants, and SocialGrid-M still offers the lowest prediction error.

Reply Number. Following the same procedure of simu-
lating the main thread, given a start point, we predict the reply
numbers in the following 2 to 10 time intervals, with d being
300 (resp., 150) second in the NBA (resp., NFL) dataset. Ac-
cording to Table 4, SocialGrid and its variant models have
an overall considerable improvement in adaptively predicting
the reply numbers, which suggests that mining the correlation
between adjacent threads is critical for adaptive prediction.



Model
NBA Dataset (d = 300 sec) NFL Dataset (d = 180 sec)

2d 4d 6d 8d 10d 2d 4d 6d 8d 10d

Hawkes 22.38 6.32 19.78 4.13 15.25 4.12 12.38 4.32 9.43 2.38 17.98 5.92 14.52 3.79 11.13 3.32 9.76 3.12 7.72 3.97

NesTPP 15.56 5.62 13.86 3.89 10.87 6.12 8.59 3.06 7.68 2.79 12.82 3.81 10.03 3.65 9.15 3.67 7.59 2.61 5.89 3.14

SocialGrid-S 5.98 1.39 5.24 1.13 4.14 1.07 3.57 0.98 2.93 0.71 3.12 0.69 2.98 0.57 2.76 0.48 2.63 0.37 2.50 0.31

SocialGrid-M 5.34 1.07 4.65 1.04 3.77 0.96 2.87 0.71 2.16 0.47 2.90 0.56 2.58 0.39 2.47 0.32 2.32 0.36 2.28 0.31

SocialGrid 5.27 0.19 4.04 0.83 3.26 0.64 2.79 0.51 1.87 0.49 2.61 0.58 2.49 0.48 2.37 0.42 2.28 0.38 2.25 0.35

Table 4: Adaptive Prediction of Reply Numbers (MAE in reply numbers).
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Fig. 2: Breakout Threads Detection. The x-axle denotes the
length (sec) of the start duration, and the y-axle denotes the
classification accuracy. There are 60 breakout cascades in the
NBA dataset and 55 breakout cascades in the NFL dataset.

In contrast to what has been observed in Table 3, we see that
there is a decreasing trend of MAE with the growth of the
time intervals, and this is due plausibly to the dying-out char-
acteristic [25]: the majority of the replies occur right after the
posting time of the main thread. However, SocialGrid can
better capture the historical impact from adjacent cascades to
make a more accurate prediction. Finally, since SocialGrid
is slightly better than its variants, the results indicate that the
extra feature matrices are worthy of leveraging.

B.4. Application #3: Identifying Breakout Threads

While the previous sections have shown that SocialGrid per-
forms better than the baselines, we cannot conclude that the
arrival time of each individual event has been accurately pre-
dicted. A less ambitious task is to predict macro-level quanti-
ties such as the total replies of one thread, and one important
application is to identify breakout threads, which is closely re-
lated to rumor detection and product advertisement in ODFs.

More specifically, we aim at forecasting if a thread would at-
tract more than average replies by using the data in the first
several minutes. We first find the average cascade size among
all cascades in our testing set, and define the breakout threads
as those with a total number of replies more than twice the
average. Given the information in the first kd seconds (called
start duration) of a thread, k ∈ {1, ..., 10}, we employ the
adaptive prediction approach to simulate the final volume of
the replies and report if the thread would be classified as an
outbreak cascade. The results measured by the classifica-
tion accuracy are recorded in Fig 2. Intuitively, this task be-
comes easier when the information of a longer start duration
is provided. As we can see from both figures, SocialGrid can
identify more breakout threads in their early stages for both
datasets. When the information of 300 seconds is provided,
SocialGrid is able to identify roughly 65% of the breakout
cascades in the NBA dataset; an accuracy of 66% is observed
on the NFL dataset with a start duration of 180 seconds. Other
approaches often need more than 600 seconds to achieve the
same.
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