The Parsing Problem:
Given a grammar G, and a string s:

1. is $s \in L(G)$?
2. what is a/the/every structure assigned to s in G?

- Two basic parsing strategies:
 - Top-down
 - Bottom-up
- Today, we focus on the top-down strategy

Parsing Context-Free Grammars Top-Down

The basic idea:

1. We will try to build a tree t which generates s and which satisfies G. If we can, then s is generated by G, and moreover with structure t. If we can’t, then we will conclude that s is not generated by G.
2. We know:
 every string s is in $L(G)$ iff there is some tree t whose yield is s and which
 (a) has as its root label the start symbol in G
 (b) for every parent n and list of daughters d, $n \rightarrow d$ is a rule in G
3. So we know that if s is generated by G, then it must have a structure rooted in S (the start symbol of G). Thus, we start building a simple tree t, with one node, labeled with S.
4. We know that a tree can only have terminals at its leaves. So we choose the left-most leaf node in t labeled with a non-terminal A, and try to expand it by selecting a production in G $A \rightarrow \gamma$, and updating t so that it has γ as daughters of that node A. Thus, we predict what the structure of s is.
5. Some of our predictions will be leaves labeled with terminal symbols. These we can scan, matching them against the data (s). In general, we will only be concerned with scanning initial segments of the fringe of our tree t against s: if the yield of t is $\sigma A \gamma$, where σ is a string of terminals, and A is a non-terminal, then we match our predictions against the data by verifying that σ is a prefix of s.

Example 1 Let $G = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow \epsilon\})$

Let us try to parse the string $aabb$.

1. We begin by assuming that the tree is a single node:

 S
2. Next, we predict that the left-most leaf node labeled by a non-terminal, S, is expanded with the rule $S \rightarrow aSb$:

```
    S
   / \  \
  a   S   b
```

3. We scan the left-most terminal sequence in our tree, a, attempting to match it with a sub-sequence of the input, $aabb$

4. Next we predict that the left-most leaf node labeled by a non-terminal, S, is expanded with the rule $S \rightarrow aSb$:

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

5. We again scan the left-most terminal sequence in our tree, aa, and match it with a subsequence of the input, $aabb$

6. We next predict that the left-most leaf node labeled by a non-terminal, S, is expanded with the rule $S \rightarrow \epsilon$:

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

```
    S
   / \  \
  a   S   b
```

```
  a   S
 / \  \
 a   S   b
```

7. We again scan the left-most terminal sequence in our tree, $aabb$, matching it with the input, $aabb$.

8. As we have scanned the complete input, and derived a legitimate tree, we are done!

Formulating top-down parsing incrementally

- Our parser minimally needs to keep track of:
 1. what parts of the input have yet to be scanned with our predictions
 2. what non-terminals decorate the fringe of our thus-far predicted tree

- We represent this in terms of a parser state $c = \langle s, \gamma \rangle$, which contains:
 1. a list of input words s
2. a list of non-terminal symbols \(\gamma \)

- We can thus re-formulate our top-down parsing strategy more economically:

<table>
<thead>
<tr>
<th>operation</th>
<th>effect</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>(\langle s, A\gamma \rangle \Rightarrow \langle s, \delta\gamma \rangle)</td>
<td>(A \rightarrow \delta \in G)</td>
</tr>
<tr>
<td>scan</td>
<td>(\langle as, a\gamma \rangle \Rightarrow \langle s, \gamma \rangle)</td>
<td></td>
</tr>
</tbody>
</table>

- the initial configuration on a string \(s \) is \(\langle s, S \rangle \), where \(S \) is the start symbol of our grammar
- a final configuration is one in which we’ve scanned the entire string, and have no non-terminal leaves left: \(\langle \epsilon, \epsilon \rangle \)

Example 2 Let \(G = \langle \{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow \epsilon\} \rangle \)

Let us try to parse the string \(aabb \).

start: \(\langle aabb, S \rangle \)

predict: \(\langle aabb, aSb \rangle \) (using rule \(S \rightarrow aSb \))

scan: \(\langle abb, Sb \rangle \)

predict: \(\langle abb, aSbb \rangle \) (using rule \(S \rightarrow aSb \))

scan: \(\langle bb, Sbb \rangle \)

predict: \(\langle bb, bb \rangle \) (using rule \(S \rightarrow \epsilon \))

scan: \(\langle b, b \rangle \)

scan: \(\langle \epsilon, \epsilon \rangle \)

- This gives us a way to check whether a string has a parse
- How do we recover that parse?
- We extend our parser state to include a record of which rules were used to rewrite the left-most non-terminal at each step:

<table>
<thead>
<tr>
<th>operation</th>
<th>effect</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>(\langle s, A\gamma, \omega \rangle \Rightarrow \langle s, \delta\gamma, \omega(A, \delta) \rangle)</td>
<td>(A \rightarrow \delta \in G)</td>
</tr>
<tr>
<td>scan</td>
<td>(\langle as, a\gamma, \omega \rangle \Rightarrow \langle s, \gamma, \omega \rangle)</td>
<td></td>
</tr>
</tbody>
</table>

Example 3 Let \(G = \langle \{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow \epsilon\} \rangle \)

Let us try to parse the string \(aabb \).

start: \(\langle aabb, S, \epsilon \rangle \)

predict: \(\langle aabb, aSb, (S, aSb) \rangle \) (using rule \(S \rightarrow aSb \))

scan: \(\langle abb, Sb, (S, aSb) \rangle \)
predict: \(\langle abb, aSbb, (S, aSb)(S, aSb) \rangle \) (using rule \(S \rightarrow aSb \))

scan: \(\langle bb, Sbb, (S, aSb)(S, aSb) \rangle \)

predict: \(\langle bb, bb, (S, aSb)(S, aSb)(S, \epsilon) \rangle \) (using rule \(S \rightarrow \epsilon \))

scan: \(\langle b, b, (S, aSb)(S, aSb)(S, \epsilon) \rangle \)

scan: \(\langle \epsilon, \epsilon, (S, aSb)(S, aSb)(S, \epsilon) \rangle \)

So \(aabb \) is accepted by our grammar, with a parse tree given as a left-most derivation: \((S, aSb)(S, aSb)(S, \epsilon) \)