1 Regular languages

A language is regular iff there is a rewrite grammar which generates it whose production rules all have one of the following forms

\[A \rightarrow \lambda \]
\[A \rightarrow aB \]

where \(A \) and \(B \) are non-terminal symbols and \(a \) is any terminal symbol.

Example 1 The language \(L = \{cv, cvcv, cvcvcv, \ldots\} \) is regular.

Exercise 1 Can you write a rewrite grammar which accepts language

\[L = \{cv, cvcv, cvcvcv, \ldots\} \]

whose production rules have the required form above?

Another way of representing these grammars is with a diagram. The nonterminal symbols represent the “states” of the diagram, indicated by circles. Production rules of the form \(A \rightarrow aB \) are indicated by transitions (arrows) from state \(A \) to state \(B \) with the label \(a \). Production rules of the form \(A \rightarrow \lambda \) are indicated by marking a state with double peripheries. These states are called “final” states because that is where the generation process ends. The starting category is indicated with an incoming arrow beginning from nowhere.

Example 2 The finite-state diagram for \(L = \{cv, cvcv, cvcvcv, \ldots\} \) is shown here.

These diagrams are also called finite-state diagrams. Remember, there are only finitely-many terminal symbols and so under the translation we described there are only finitely many states. The diagrams are also called finite-state machines, and the particular machine above is called a finite-state acceptor because it recognizes/generates/accepts a language (as opposed to doing something else).

The way we can see what the finite-state acceptor does is to

Exercise 2 Draw a finite-state diagram that describes the SP language where the subsequences [fs, sf] are forbidden.

Exercise 3 Draw a finite-state diagram that describes a language where there must be an even number of [f] sounds.

1Next week we will examine finite-state transducers and weighted finite-state machines.
Exercise 4 Is the language where words an even number of $[f]$ sounds Strictly k-local for any k? Strictly k-Piecewise for any k?

Exercise 5 Try to draw a finite-state diagram for the language $a^n b^n$. What problems do you encounter?