Solution to Exercise C-3.14, Goodrich & Tamassia, Page 214

Oct 11, 2001

R-3.14: Let T and U be 2-3-4 trees storing n and m items, respectively, such that all the items in T have keys less than the keys of all the items in U. Describe a method requiring time dominated by $\log n + \log m$ for joining T and U (destroying the old versions of T and U).

Answer: We outline a method for accomplishing this task.

1. Find the height, h_T, of tree T by going down the right-most side of T, splitting any 4-nodes found on this path. Splitting 4-nodes may make the original height of the tree increase. If this happens, set h_T to the new height.

 This step takes time codominant with $\log n$.

2. Find the height (after any splitting), h_U, of U by going down the left-most side of U, splitting any 4-nodes found on this path.

 This takes time codominate with $\log m$.

3. Suppose $h_T < h_U$ (there is an analogous case if $h_T > h_U$).

 Delete the right-most item, r, of T, that is, the item with the largest key. This may cause the height of T to decease by 1. If so, update h_T.

 This requires time codominant with $\log n$.

4. Make the left-most node of U (which will be a 2-node or 3-node because of the splitting of 4-nodes done in step (2)) that appears at one level above the root of T (when the external nodes of both trees are placed at the same level) into a a 3- or 4-node by inserting item r into this node and letting key k_1 of this node be the key of item r and the left subtree of the node be T. This is now the required 2-3-4 tree.

 The time for this step is dominated by $\log m$.

5. If $h_T = h_U$, we delete the right-most item, r, of T. If the height of T decreases with this deletion, then go to step (4). Otherwise, join the trees by making a new 2-node containing r as the root with T and U being the left- and right-subtrees, respectively. This is now the required 2-3-4 tree.

 This can be done in time codominant with $\log n$.

1
This procedure will be illustrated with an example in lecture.

B. F. Caviness
Univ. of Delaware