Null-Space-based Marginalization: Analysis and Algorithm

Yulin Yang, James Maley and Guoquan Huang

Abstract—In SLAM, the size of the state vector tends to grow when exploring unknown environments, causing the ever-increasing computational complexity. To reduce the computational cost, one needs to continuously marginalize part of previous states (features and/or poses). This can be achieved by using either the null-space operation or Schur complement based marginalization. The former was originally developed particularly for visual-inertial odometry (VIO), while the latter is the standard approach to reduce the state vector in bundle adjustment (BA). In this paper, for the first time ever, we prove that under mild assumptions (i.i.d. white Gaussian noise model and same linearization points) these two techniques retain the same amount of information about the state, which is validated with real-world experiments. Moreover, based on this key insight, we derive analytically the left null-space expressions for multi-state constraint Kalman filter (MSCKF)-based VIO, which is verified through Monte-Carlo simulations.

I. INTRODUCTION

It is essential for robots to perform SLAM when navigating in the unknown environments. However, a SLAM solution typically suffers from ever-increasing computational cost. To address this issue, the marginalization technique is often used. One common approach is to use the Schur complement to marginalize out part of the states while preserving all information about the remaining states [1]–[6]. For example, in visual-inertial navigation systems (VINS) [1]–[3], visual point features are continuously marginalized by the Schur complement to prevent the state vector from growing too large while retaining relative camera motion constraints, which are then fused with (preintegrated) IMU measurements. In the graph-based SLAM, Schur complement is also employed to reduce the graph by marginalizing some of the graph nodes (features and/or poses) [4]–[6]. Alternatively, the null-space based marginalization can be used, which was originally developed in the multi-state constraint Kalman filter (MSCKF) [7] particularly for visual-inertial odometry (VIO) and recently has been applied to different VINS [7]–[16]. The basic idea is to use the left null-space of the measurement Jacobian to marginalize feature components from the state vector. Note that a similar idea has also been employed in graph-based VINS [17] and our recent work on acoustic underwater navigation [16].

While the aforementioned work has shown that the null-space marginalization is efficient. In this work, we move one step further and for the first time ever, establish a link between the null-space operation and the Schur compliment. Besides using the null-space marginalization for features, we also adapt the null-space marginalization for both poses and features. In particular, the main theoretical contributions of this work include:

- We analytically show that the null-space operation and the Schur complement operation for feature marginalization retain the same amount of information, under the mild assumptions of independent and identically distributed (i.i.d.) white Gaussian noise and using the same linearization points, which motivates us to apply the null-space operation for feature marginalization in graph-based SLAM.
- We show that the null-space-based marginalization can be applicable for both poses and features under the white Gaussian noise assumption.
- We analytically drive the well-structured null-space expression for commonly-used sensors such as stereo and RGBD cameras, which is shown to perform better than the numerically-computed counterpart.

The rest of the paper is structured as follows: After briefly overview of the null space and the Schur complement operations in next section, we present our main result in Section III that the two marginalization techniques are equivalent up to certain mild conditions. In Section IV we apply the null space operation to both pose and feature marginalization, and in Section V we derive the analytical null space expressions for MSCKF. Our analysis and algorithms are validated with simulations and experiments in Section VI. Section VII concludes the paper and outlines the future work.

II. MARGINALIZATION

In this section, we briefly explain the null-space marginalization and Schur complement operation in the context of SLAM, which will form the basis for our ensuing analysis. In particular, the SLAM state of a robot exploring an unknown environment propagates according to the motion model:

\[x_{k+1} = f_k(x_k, u_k) + w_k \]

(1)

where \(x_k \) represents the robot poses at time step \(k \) with \(k \in 1 \ldots K \), \(u_k \) represents measurements from odometry, inertial or other motion sensors, and \(w_k \) is additive white Gaussian noise with covariance \(Q_k \). The robot also observes features based on the measurement model:

\[z_{kj} = h_k(x_k, f_j) + n_{kj} \]

(2)
where \(z_{kj} \) denotes the measurements to feature \(x_f \) \((j \in 1 \ldots N)\) at time step \(k \), and \(u_{kj} \) represents the white Gaussian noise with covariance \(R_{kj} \).

Based on (1) and (2), a SLAM solution is to estimate both robot pose \(x \) and all observed features \(x_f \) \((j = 1 \ldots N)\), clearly, if \(N \) is large (which is often the case for visual navigation), the estimation process of SLAM may become cost prohibitive. Thus, we will marginalize all the \(N \) features.

A. Null-Space Marginalization

We first review the null-space marginalization that was introduced in the MSCKF [7]. Specifically, the state vector of the MSCKF is given by:

\[
x = \left[x_f^T \ x_{C_1}^T \ x_{C_2}^T \ ... \ x_{C_m}^T \right]^T
\]

where \(x_f \) represents the current IMU states, and \(x_{C_i}, i \in 1 \ldots m \) represents the cloned robot (sensor) poses in \(m \) previous time steps when the sensor get measurements according to (2).

During MSCKF update, we assume a feature \(x_f \) has been observed \(m_i \) \((m_i \leq m)\) times by the robot within the cloned state window. With all these measurements, we can compute feature estimates \(\hat{x}_f \). By linearizing the nonlinear measurement model (2) about the current state estimate \(\hat{x} \) and feature estimates \(\hat{x}_f \), we can stack all the linearized measurements and multiply by the left null space \(U \) of feature Jacobian \(H_f \) as follows:

\[
U^\top \begin{bmatrix} z_{1j} \\ \vdots \\ z_{mj} \\ \hat{z}_{m,j} \\ n_{i,j} \\ \hat{n}_{i,j} \\ n_{m,j} \end{bmatrix} \cong U^\top \begin{bmatrix} H_{1j} \\ \vdots \\ H_{mj} \\ H_{m,j} \\ n_{i,j} \\ n_{m,j} \end{bmatrix} \begin{bmatrix} \hat{x} + U^\top \hat{x}_f + U^\top n_f \\ \hat{n}_f \end{bmatrix}
\]

where \(i = 1 \ldots m_j, z_{ij} = h_i(x_{C_i}, x_f) \) denotes the measurement residual for feature \(x_f \) at the \(i \)-th camera pose within the window, \(H_{ij} \) and \(H_{mj} \) denote the state and feature Jacobians of the measurement \(z_{ij} \). In [7], \(n_{ij} \) is white Gaussian noise with covariances as \(R_{ij} = \sigma^2_i I_{R_{ij}} \), where \(I_{R_{ij}} \) denotes identity matrix with same dimension as \(R_{ij} \). Since that \(U^\top H_f = 0 \), the feature \(\hat{x}_f \) is marginalized from (4) by null space operation. Finally, stacking all the \(n \) feature measurements observed within the sliding window, we obtain:

\[
\tilde{z}^o = H^o \tilde{x} + n^o
\]

where \(\tilde{z}^o, H^o \) and \(n^o \) are all stacked measurement residuals, state Jacobians and measurement noise from \(\tilde{z}^o, H^o \) and \(n^o \) \((j = 1 \ldots n)\), respectively [see (4)]. Up to this point, we essentially have marginalized all the features by the null-space operation (i.e., null-space marginalization), and obtained the inferred measurement equations (5) with only robot states involved, which is ready for EKF update.

B. Schur Complement

We optimally formulate the SLAM problem as maximum likelihood estimation (MLE). Assuming that all the measurements are independent, under the Gaussian noise assumption, this MLE problem is equivalent to a weighted nonlinear least squares problem [2], [18]:

\[
\min_{x, x_f} \sum_{k=1}^{K} \left\| z_{k+1} - f_k(x_k) \right\|^2_{Q_k} + \sum_{k,j} \left\| z_{kj} - h_k(x_k, x_f) \right\|^2_{R_{kj}}
\]

where \(x = \left[x_f^\top \ldots x_K^\top \right]^\top \) denotes all the robot poses, \(x_f = \left[x_{f_1}^\top \ldots x_{f_N}^\top \right]^\top \) denotes all the landmarks. Iterative methods, such as Gaussian-Newton or Levenberg-Marquardt algorithms, are often used to solve (6) for \(\hat{x} \) and \(\hat{x}_f \). Upon this linearization point \((\hat{x}, \hat{x}_f) \), the system information matrix \(\Sigma \) can be computed as:

\[
\Sigma = \sum_{k=1}^{K} \sum_{i,j} H_{ij}^\top F_k^{-1} H_{ij} + \sum_{k,j} \sum_{i,j} H_{mj}^\top F_k^{-1} H_{mj} =: \begin{bmatrix} \Sigma_{xx} & \Sigma_{xf} \\ \Sigma_{fx} & \Sigma_{ff} \end{bmatrix}
\]

which implies that in spite of the feature marginalization, the remaining information matrix \(\Sigma_x \) contains all the information inherited from (7) about \(x \).

III. Analysis of Null-Space Marginalization

In this section, from the information perspective, we analytically study the connection between null-space marginalization and Schur complement based marginalization. To make the presentation concise, we assume a simple SLAM scenario: A robot takes measurements of feature \(x_f \) at poses \(x_1 \) and \(x_2 \) respectively while this result can be generalized to any SLAM cases:

\[
x_2 = f_1(x_1) + w_1 \quad (9)
\]

\[
z_k = h_k(x_k, x_f) + n_k \quad (10)
\]

where \(k = 1, 2 \). Given the prior knowledge of \(x_1 \sim N(\bar{x}_1, P_1) \), we can solve the SLAM problem and get the estimate of robot pose by marginalizing the feature. Given the linearization point \((\bar{x}_1, \bar{x}_2, \bar{x}_f) \), the linearized system can be written as:

\[
\begin{aligned}
\bar{x}_2 & \approx f_1(\bar{x}_1) + w_1 \\
\bar{z}_k & \approx H_k \bar{x}_k + H_{0} \bar{x}_f + n_k
\end{aligned}
\]

We will marginalize features with null-space (NS) and Schur complement (SC) operations and compare the resulting information matrix for robot poses.

A. Information Matrix After Null-Space Marginalization

We solve this problem within the MSCKF framework. The system propagates from \(x_1 \) to \(x_2 \) according to (1) and clones the state of \(x_1 \). At the same time, the system stacks all the measurements and updates at \(x_2 \). The covariance matrix for the robot poses after the propagation is:

\[
P(x_1, x_2) = \begin{bmatrix} P_1 & P_1 F_1^\top \\ F_1 P_1 & F_1 P_1 F_1^\top + Q_1 \end{bmatrix}
\]

\((12) \)
After linearization of the measurement model, we perform the null-space operation:

\[
\begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2
\end{bmatrix} = \begin{bmatrix}
H_1 & 0 \\
0 & H_2
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
H f_1 \\
H f_2
\end{bmatrix} \tilde{x}_r + \begin{bmatrix}
n_1 \\
n_2
\end{bmatrix}
\]

\[
\Rightarrow U_n^T \begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2
\end{bmatrix} = U_n^T H x + U_n^T \begin{bmatrix}
n_1 \\
n_2
\end{bmatrix}
\]

where \(H = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix} \) and \(H_r = \begin{bmatrix} H f_1 & H f_2 \end{bmatrix} \). \(U_n \) represents the left null space for \(H_r \) and can be computed by QR:

\[
H_r = \begin{bmatrix} U_e & U_n \end{bmatrix} \begin{bmatrix} R_s \\ 0 \end{bmatrix} = U_e R_A
\]

where \(\begin{bmatrix} U_e & U_n \end{bmatrix} \) is a unitary matrix and \(R_A \) is an upper triangular matrix. We can get the information for the robot poses \((x_1, x_2)\) after the EKF update as:

\[
\Sigma_{NS} = \left[\begin{array}{cc}
P_1 & P_1 F_1^T \\
P_1 F_1 P_1 & F_1 F_1 P_1 + Q_1
\end{array} \right]^{-1} + H_2^T U_n (U_n^T R U_n)^{-1} U_n^T H_2
\]

\[
i \Sigma_{2i}^{(NS)}
\]

where \(\Sigma_{11}^{(NS)} \) and \(\Sigma_{22}^{(NS)} \) denote the information from the motion model (9) and the measurement model (10), respectively. \(R = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix} \) denotes the stacked noise covariances.

B. Information Matrix After Schur Complement

We now formulate the SLAM problem as a MLE where cost function is given by:

\[
\text{cost function} = \sum_i |x_i - \tilde{x}_i|^2 _{\tilde{y}_i^{-1}} + |x_2 - f_1(x_1)|^2 _{\tilde{y}_1^{-1}} + \sum_2 |z_k - h_k(x_k, x_2)|^2 _{\tilde{y}_k^{-1}}
\]

The information matrix \(\Sigma_I \) for the system can be computed according to (7), and for simplicity, we partitioned \(\Sigma_I \) as:

\[
\Sigma_I = \begin{bmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{12}^T & \Sigma_{22}
\end{bmatrix}
\]

where:

\[
\Sigma_{11} = \begin{bmatrix} P_1 & P_1 F_1^T \\
P_1 F_1 P_1 & F_1 F_1 P_1 + Q_1\end{bmatrix}^{-1} + H_2^T U_n (U_n^T R U_n)^{-1} U_n^T H_2
\]

\[
\Sigma_{12} = H_1^T R_1 ^{-1} H_1 + H_2^T R_2 ^{-1} H_2
\]

\[
\Sigma_{22} = H_1^T R_1 ^{-1} H_1 + H_2^T R_2 ^{-1} H_2 = H_r^T R^{-1} H_r
\]

We marginalize the feature \(x_f \) with Schur complement and obtain the information matrix of the robot poses \((x_1, x_2)\) as:

\[
\Sigma_{SC} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T
\]

\[
= \left[\begin{array}{cc}
P_1^{-1} + F_1^T Q_1^{-1} F_1 & -F_1^T Q_1^{-1} \\
-Q_1^{-1} F_1 & Q_1^{-1}
\end{array} \right] + \left[\begin{array}{c}
H_1^T R^{-1} H_1 - H_1^T R^{-1} H_r (H_r^T R^{-1} H_r)^{-1} H_r^T R^{-1} H_1 \\
H_2^T R^{-1} H_2 - H_2^T R^{-1} H_r (H_r^T R^{-1} H_r)^{-1} H_r^T R^{-1} H_2
\end{array} \right]
\]

C. Equivalence of Two Marginalizations

Based on the above, we present our main result:

Lemma 1. Under the i.i.d. white Gaussian noise assumption, the information matrix (23) after Schur complement operation is equivalent to the information matrix (16) after null-space marginalization.

Proof. See Appendix I. \(\square \)

Note that since we have separated the information from the motion model (9) and measurement model (10), this analysis can be easily extended to multiple poses and features (see Appendix II). We also want to point out the following:

(i) The assumption that the noise is i.i.d. white Gaussian noise is widely used in most SLAM systems (e.g., [7], [9], [10]). If there is a difference between the null-space marginalization and Schur complement, it is due to different linearization points used.

(ii) The null-space marginalization for features can be applied to pre-integration based VINS [3], [17]. We can provide a simplified expression for the information matrix \(\Sigma_{NS} \) for robot poses after marginalization:

\[
\Sigma_{NS} = \left[\begin{array}{cc}
P_1 & P_1 F_1^T \\
P_1 F_1 P_1 & F_1 F_1 P_1 + Q_1\end{array} \right]^{-1} + \frac{1}{\sigma^2} (U_n H_r) (U_n H_r)^T
\]

where \(\Sigma_{11}^{(NS)} \) represents the information from the inertial measurements by pre-integration, while \(\Sigma_{22}^{(NS)} \) represents the information from the visual measurements after null-space feature marginalization. Note that for \(\Sigma_{22}^{(NS)} \), we do not need to calculate the null space \(U_n \) explicitly. \(U_n H_r \) can be directly computed by Givens rotations.

(iii) With (42) in the proof, we find that \(I - U_n U_n^T \) is also the null space of the feature Jacobian \(H_r \). Inspired by this finding, we propose an algorithm for constructing analytical null space expression in Section V.

D. Computational Complexity

We further compare the computational costs for Schur component and null-space marginalization. From the proof we know that \(\Sigma_I^{SC} \) and \(\Sigma_I^{NS} \) undertake the same operations, we only need to compare the computation of \(\Sigma_I^{SC} \) and \(\Sigma_I^{NS} \). We assume there are \(n \) features that are all tracked by the \(m \) robot poses. Given the i.i.d. white Gaussian noise assumption, the computational complexity are outlined in Table I and II.

It is not difficult to see that the computation for null-space operation is much easier. The dominant step for Schur complement operation is Step SC3 \(O(mn^3) \), while the dominant step for null-space operation is Step NS2 \(O(m^3n) \). Since features number \(n \) is much larger than that of the robot poses \(m \), Step SC3 is more costly than Step NS2. Therefore, the null-space operation is more efficient. In Step NS1, \(O(mn) \) represents the computational complexity with Givens rotations. Note that the complexity in Table I represents the most general case, but if taking into account the sparse structure of information matrix and using techniques such
By Schur complement, we get the information for (26) as described:

Thus we have:

The stacked linearized system can be written as:

We want to marginalize the pose and feature given that we consider the same SLAM system (1) and (2) as before. To see this, we extend the null-space operation for both pose and feature marginalization given that \(\mathbf{H}_m \) is of full column rank, which is often needed in reducing the cost of graph SLAM (e.g., [6]).

IV. Pose-and-Feature Marginalization

We discover that the null-space marginalization can also be applied to pose and feature marginalization. To see this, we consider the same SLAM system (1) and (2) as before. We want to marginalize the pose \(\mathbf{x}_C \) and the feature \(\mathbf{x}_f \).

The stacked linearized system can be written as:

In order to simplify the derivation, we denote \(\mathbf{x}_k \) the state that we are going to keep and \(\mathbf{x}_m \) the state that are going to be marginalized, \(\mathbf{H}_k \) and \(\mathbf{H}_m \) are their related Jacobians, \(\mathbf{n} \) is the stacked noise with covariances \(\mathbf{R} \) as:

If \(\mathbf{H}_m \) is of full column rank, then we can also use the left null space of \(\mathbf{U}_m \) to marginalize the state \(\mathbf{x}_m \) with \(\mathbf{U}_m \mathbf{H}_m = \mathbf{0} \). Thus we have:

where \(\mathbf{U}_m \) can be computed by QR factorization of \(\mathbf{H}_m \) as:

The information for (26) is described as:

(28)

By Schur complement, we get the information for \(\mathbf{x}_k \) as:

where we have partitioned the information matrix \(\Sigma \) according to the \(\mathbf{x}_k \) and \(\mathbf{x}_m \) as:

Then we can arrive at:

Thus, we can assume that \(\mathbf{C}_k \mathbf{x}_f = \mathbf{C}_k \mathbf{R}(\mathbf{x}_f - \mathbf{Gp}_C) \), \(\mathbf{H}_{k}\mathbf{f} = \frac{\partial \mathbf{C}_k \mathbf{x}_f}{\partial \mathbf{x}_f} = \mathbf{C}_k \mathbf{R}_G \mathbf{p}_C \) and \(\mathbf{C}_l \mathbf{R} \) are position and orientation from the cloned state \(\mathbf{x}_C \). \(\mathbf{H}_{C_k} \) represents the Jacobians of the sensor measurements (i.e., image key points) regarding to the local feature position \(\mathbf{C}_k \mathbf{x}_f \). Hence, if the sensor(s) can get the relative position estimate \(\mathbf{C}_k \mathbf{x}_f \) of feature \(\mathbf{x}_f \) with only one measurement, \(\mathbf{H}_{C_k} \) is of full column rank (e.g., stereo camera, RGBD camera). Thus, we can assume that \(\mathbf{H}_{C_k}^{-1} \) is the inverse (or pseudo inverse) of \(\mathbf{H}_{C_k} \), then multiply by (32) we get:

Assuming that we have \(m \) measurements for feature \(\mathbf{x}_f \), the system can be linearized regarding to the cloned states and features as:

We now can find two analytical solutions for the left null space \(\mathbf{U} \) of \(\mathbf{H}_f \) such that \(\mathbf{U}^\top \mathbf{H}_f = \mathbf{0} \).

(i) One analytical left null space solution \(\mathbf{U}_{3m \times 3m} \) is:

(ii) Another analytical left null space \(\mathbf{U}_{3(3m-1) \times 3m} \) is:

Note that \(m \mathbf{I}_3 = \mathbf{H}_f^\top \mathbf{H}_f = \sum_{k=1}^{m} \mathbf{C}_k \mathbf{R}_G \mathbf{C}_k^\top \mathbf{R}_G \).
Note that many other null spaces can be formulated. Compared with (35), (36) has fewer elements and a lower dimension, thus less computation cost. Thus, it is used in our experiments.

VI. EXPERIMENTAL RESULTS

In this section, we present three sets of experiments to validate our analysis, in particular, Lemma 1 and the analytical null-space. Specifically, we evaluate with the MSCKF on real data to show that the null-space marginalization and Schur complement produce the same estimation accuracy. We then examine a factor graph-based visual odometry (VO) implementation to show that the information retained after both operations is identical. Lastly, we compare the analytical and numerical null-space operations implemented in the MSCKF evaluated in Monte-Carlo simulations.

A. MSCKF Case

We use the EuRoC data sets [19] to experimentally validate the equivalence of the null space and Schur compliment operations. The datasets were created by flying a AscTex Firefly MAV equipped with two global shutter greyscale cameras and an ADIS16448 IMU through two separate indoor environments. Position and attitude ground truth measurements are provided with the datasets from a post processing solution aided by a VICON system or a Leica laser tracker depending on the environment. The IMU data was provided at 200Hz, and the image data at 20Hz. Camera and IMU calibrations were provided.

We implemented the conventional covariance form of the MSCKF as described in [7] that utilizes the null space operation. We also implemented the MSCKF in information form, so that we could use the Schur complement operation. To clarify, we do not eliminate the feature sensitivity from the measurement equation as in (4) and (5). Instead, after the propagation step we obtain the total information matrix:

$$
\Sigma_k = \begin{pmatrix}
 P^{-1}_{k|k-1} & 0 \\
 0 & 0
\end{pmatrix} + \begin{bmatrix}
 H_x^T \\
 H_f^T
\end{bmatrix} R^{-1} \begin{bmatrix}
 H_x & H_f
\end{bmatrix} = \begin{bmatrix}
 A_{xx} & A_{xf} \\
 A_{fx} & A_{ff}
\end{bmatrix}
$$

Equation (37)

We then obtain the updated covariance matrix and state correction from:

$$
P_{k|k} = \left(A_{xx} - A_{xf}A_{ff}^{-1}A_{fx} \right)^{-1}
\tilde{x}_{k|k} = P_{k|k}^{-1} \left(A_{xf}A_{ff}^{-1} - P_{k|k}A_{fx}A_{ff}^{-1} \right) H_x^T R^{-1} \tilde{z}_k
$$

Equation (38) and (39)

Both filters were tuned the same, and had the same sliding window size of 7. The filters were run side-by-side so that the information form filter could be forced to use the same features in the update step (although each filter performed its own triangulation). The output of the two filters was identical up to machine precision. Figure 1 shows the similarity in position root mean squared error (RMSE) and normalized estimation error squared (NEES) [20]. The former measures the estimation consistency while the latter evaluates the estimation accuracy.

![Comparison between nullspace and Schur compliment methods for feature marginalization in two EuRoC dataset sequences.](image)

B. Factor Graph Case

We also implemented a simple example of a typical vision factor (Fig. 2) to validate Lemma 1. As shown in the photo from the KITTI odometry data set [21], the car is moving from time step 1 to time step 2. In order to fuse the visual information with other sensors (e.g., Lidar, GPS), we need to get the estimate of the odometry information \tilde{x} and its covariance (or its information Σ). For this single vision factor, there is no motion model information. Therefore, we only need to compare the visual information $\Sigma^{(SC)}_2$ from (23) and $\Sigma^{(NS)}_2$ from (16). We choose 2 pairs of stereo images from this dataset, extracted and matched 121 pairs of stereo features. We then formulate the measurement model with respect to the relative transformation \tilde{x} and all the features. The information matrix after the Schur complement operation and null space operation are shown in the Figure 2. Note that σ^2 represents the normalized image noise variance. The differences $\Sigma_{diff} (= \Sigma^{(SC)}_2 - \Sigma^{(NS)}_2)$ have orders of magnitude less than 10^{-12}, which is identical to machine precision. The differences are shown below:

$$
\Sigma_{diff} = \begin{bmatrix}
 5.04e^{-14} & -1.25e^{-13} & -1.05e^{-13} & -4.44e^{-15} & 3.64e^{-14} & 3.05e^{-15} \\
 -5.15e^{-14} & 3.06e^{-12} & -1.60e^{-14} & 9.41e^{-14} & 2.73e^{-15} & 1.17e^{-13} \\
 -9.26e^{-14} & -6.39e^{-13} & -3.09e^{-13} & -3.77e^{-15} & -8.33e^{-17} & 2.18e^{-15} \\
 6.63e^{-15} & 1.51e^{-13} & 2.22e^{-15} & 5.11e^{-15} & -3.94e^{-16} & 2.60e^{-15} \\
 3.91e^{-14} & -1.56e^{-16} & 3.33e^{-16} & 8.71e^{-17} & -3.22e^{-15} & -2.64e^{-16} \\
 1.17e^{-14} & 1.15e^{-13} & -1.90e^{-15} & 5.22e^{-15} & -4.99e^{-16} & 2.96e^{-15}
\end{bmatrix}
$$

C. Null-Space Comparison

In order to validate our proposed analytical null space (36), we run 50 Monte Carlo simulations of MSCKF with both numerical and analytical null spaces and compare the NEES and RMSE. In particular, Figure 3 shows the average NEES.
of 50 Monte-Carlo simulations for robot’s position, attitude and orientation. It shows that numerical and analytical null space solutions work well for the estimate of attitude and velocity, and the results (average NEES) are almost the same. However, the MSCKF with analytical null space can generate more consistent position estimates. Similarly in Figure 4, both null space solutions have similar accuracy for attitude estimate, while the analytical solution generates a more accurate position estimate. The better performance of the proposed analytical null space is probably because the matrix has a sparse structure and utilizes the orthogonality of the state rotation matrix. Therefore, applying this analytical null space is similar to adding an implicit motion constraint to the estimator.

![Image](https://via.placeholder.com/150)

Fig. 2. A typical vision factor for visual odometry. $\hat{x}^1\mathbf{R}^1, \hat{p}_2$ represents the transformation from stereo camera pose 1 to pose 2, where \mathbf{R} and \mathbf{p}_2 denote the rotation and translation between pose 1 and pose 2, respectively.

![Image](https://via.placeholder.com/150)

Fig. 3. Average NEES of 50 Monte-Carlo Simulations for Robot’s Position, Attitude and Velocity. The blue and red lines represent the results for the MSCKF with numerical null space and analytical null space, respectively.

![Image](https://via.placeholder.com/150)

Fig. 4. Average RMSE of 50 Monte-Carlo Simulations for Robot’s Position and Attitude. The blue and red lines represent the results for the MSCKF with numerical null space and analytical null space, respectively.

VII. Conclusions and Future Work

We have analytically shown that the null-space marginalization and Schur complement preserve the same information about the remaining states under certain mild assumption (i.i.d. Gaussian noise model and same linearization points). This validates the application of null space marginalization to graph SLAM for potential efficiency gain. Moreover, we have offered the analytical null space expression for commonly used sensors such as stereo and RGBD cameras, which has been shown to have better performance than the numerically computed one. As for the future work, we plan to apply the null-space marginalization to a broader family of estimation problems that require marginalization to gain better efficiency.

APPENDIX I

Proof of Lemma 1

To show $\Sigma_1^{(NS)} = \Sigma_1^{(SC)}$, matrix inversion lemma yields,

$$
\Sigma_1^{(NS)} = \begin{bmatrix}
\mathbf{P}_1 & \mathbf{P}_1 \mathbf{F}_1 \\
\mathbf{F}_1 \mathbf{P}_1 & \mathbf{F}_1 \mathbf{P}_1 \mathbf{F}_1 + \mathbf{Q}_1
\end{bmatrix}^{-1} = \begin{bmatrix}
\mathbf{P}_1^{-1} + \mathbf{F}_1 \mathbf{Q}_1 \mathbf{F}_1 & -\mathbf{F}_1 \mathbf{Q}_1 \\
-\mathbf{Q}_1 \mathbf{F}_1 & \mathbf{Q}_1
\end{bmatrix} = \Sigma_1^{(SC)}
$$

To show $\Sigma_2^{(NS)} = \Sigma_2^{(SC)}$, we consider the following cases:

1) **Case I:** We start with $\mathbf{R} = \sigma^2 I_{\mathbf{R}}$, where σ^2 is the noise variance and $I_{\mathbf{R}}$ is an identity matrix with size of \mathbf{R}. Under the assumption of i.i.d. Gaussian noise, we can easily get the stacked noise covariances as $\mathbf{R} = \sigma^2 I$. Then, from (15) (16) and (23), we have:

$$
\Sigma_2^{(SC)} = \mathbf{H}_x^\top \left[\mathbf{R}^{-1} - \mathbf{R}^{-1} \mathbf{U}_n \mathbf{U}_n^\top \mathbf{R}^{-1} \right] \mathbf{R}^{-1} = \mathbf{H}_x^\top \left[\frac{1}{\sigma^2} (\mathbf{I} - \mathbf{U}_n \mathbf{U}_n^\top) \right] \mathbf{H}_x
$$

$$
\Sigma_2^{(NS)} = \mathbf{H}_x^\top \left[\mathbf{U}_n (\mathbf{U}_n^\top \mathbf{R} \mathbf{U}_n)^{-1} \mathbf{U}_n^\top \right] \mathbf{H}_x = \mathbf{H}_x^\top \left[\frac{1}{\sigma^2} \mathbf{U}_n \mathbf{U}_n^\top \right] \mathbf{H}_x
$$

From QR, we know $\mathbf{U}_n \mathbf{U}_n^\top + \mathbf{U}_n \mathbf{U}_n^\top = \mathbf{I}$. Thus, upon the same linearization point, we have $\Sigma_2^{(SC)} = \Sigma_2^{(NS)}$. Therefore, we conclude that (23) and (16) are equivalent, that is: information from NS operation equals to that with SC operation.

2) **Case II:** If the noise covariances matrix \mathbf{R}_k are full matrix, we can perform pre-whitening for the measurement equations before the null space operation. Since \mathbf{R}_k is symmetrical, positive and definite, we can factorized \mathbf{R}_k as:

$$
\mathbf{R}_k = \mathbf{V} \mathbf{A} \mathbf{V}^\top = (\mathbf{V} \mathbf{A} \mathbf{V})^\top = \mathbf{V} \mathbf{V}^\top
$$

$$
\Rightarrow \mathbf{V}^{-1} \mathbf{R}_k \mathbf{V}^{-1} = \mathbf{I}_A
$$
where Λ is a diagonal matrix and $\hat{V} = VA^{\frac{1}{2}}$. Left multiplication of \hat{V}^{-1} to the linearized measurement equation yields:

$$\hat{V}^{-1}\tilde{x}_k = \hat{V}^{-1}H_k\hat{x}_k + \hat{V}^{-1}H_k\hat{y}_f + \hat{V}^{-1}n_k$$

(45)

After pre-whitening, the new measurement noise becomes $\hat{n}_k \sim \mathcal{N}(0, I_{\Lambda})$, where I_{Λ} is identity matrix. Then, we can follow the same steps in case I with new Jacobians in (45).

Appendix II

Marginalization of Multi-Pose and Features

We first solve the information matrix with null space operation Σ_{NS} according to (16):

$$\Sigma_{NS} = \Sigma_{1}^{(NS)} + \Sigma_{2}^{(NS)}$$

(46)

where $\Sigma_{1}^{(NS)}$ and $\Sigma_{2}^{(NS)}$ denote the information from multiple poses and features, respectively. We know that the inverse of state covariances after K steps of propagation $(\Sigma_{x})^{-1} = \Sigma_{1}^{(NS)}$, and Σ_{x} is:

$$\Sigma_{x} = \begin{bmatrix}
P_1 & P_1F_1^T & 0 & 0 & 0 \\
F_1P_1 & P_1F_1^T & P_2[1] & F_2^T & 0 \\
0 & F_2P_2[1] & P_3[2] & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & P_{K-1}K-1PK-1 & F_PK-1 \\
0 & 0 & 0 & \ddots & P_{K-1}K-1PK-1 & F_PK-1 \\
0 & 0 & 0 & P_{K-1}K-1PK-1 & F_PK-1 & 0 \\
\end{bmatrix}$$

(47)

The information $\Sigma_{1}^{(NS)}$ from features $j = 1 \ldots N$ can be expressed as follows:

$$\Sigma_{1}^{(NS)} = \Sigma_{1}^{(NS)} + \Sigma_{2}^{(NS)} = \Sigma_{1}^{(NS)} + H_k^{(j)}(U_n^{(j)}(U_n^{(j)})^T + R^{(j)}(U_n^{(j)})^T - U_n^{(j)}H_k^{(j)})$$

(48)

where $\langle \cdot \rangle^{(j)}$ represents the corresponding parameters regarding to the feature x_f^j. Similarly, we can solve the information matrix in MLE formulation with Schur complement operation Σ_{SC} as follows:

$$\Sigma_{SC} = \Sigma_{1}^{(SC)} + \Sigma_{2}^{(SC)}$$

(49)

where $\Sigma_{1}^{(SC)}$ and $\Sigma_{2}^{(SC)}$ denote the information from poses and features after Schur complement operation, respectively.

$$\Sigma_{1}^{(SC)} = \begin{bmatrix}
P_1^{(SC)} & 0 & 0 & 0 \\
0 & Q_1^{(SC)} & 0 & 0 \\
0 & 0 & Q_2^{(SC)} & 0 \\
0 & 0 & 0 & Q_3^{(SC)} \\
\end{bmatrix}$$

(50)

The matrix $\Sigma_{2}^{(SC)}$ can be written as:

$$\Sigma_{2}^{(SC)} = \sum_{j=0}^{N} \Sigma_{2}^{(SC),(j)} \sum_{j=1}^{N} \begin{bmatrix}
H_k^{(j)}(R_k^{(j)})^{-1} - (R_k^{(j)})^{-1}U_k^{(j)}U_k^{(j)}(R_k^{(j)})^{-1}U_k^{(j)}(R_k^{(j)})^{-1}H_k^{(j)} \\
\end{bmatrix}$$

(51)

$\Sigma_{1}^{(NS)} = \Sigma_{1}^{(SC)} + \Sigma_{2}^{(SC),(j)}$ can be proved by induction. Besides, from the proof for a single feature x_f^j, we can have $\Sigma_{1}^{(NS)} = \Sigma_{2}^{(SC),(j)}$. (48) and (51) are just the summation of each feature's information. Therefore, they are also equivalent.

References

