Contrastive Topics: an extra-syntactic account

Introduction. It is a common opinion that contrastive topics (CT, henceforth) have a ‘mixed’ nature, being both topical (i.e., they are anchored in discourse) and focal (i.e., they induce alternatives in discourse and generate oppositional pairs in relation to other topics) (see Krifka 2007 as a main reference). In the literature there have been several attempts to define the nature of CTs, either underlining the similarities between the semantics of CTs and focalized constituents (Wagner 2008) or resorting to positional parameters (e.g., specific functional projections carrying a cluster of features are assumed within a cartographic framework, see Benincà/Poletto 2004 and Frascarelli/Hinterhölzl 2007). Such approaches, however, have often revealed inconsistent with empirical data. This work aims to overcome these inconsistencies through two successive steps: a) disentangling the notion of CT in its basic informational components, i.e., contrast and topicality, in order to analyse their respective contribution to the whole semantics of CT constituents (see Valduvi 1992 for a similar view); b) understanding which components of language come into play for the encoding of each of the two informational notions.

Methods. I set up a tentative study, consisting in collecting samples of read speech, which has been elicited by asking five Italian speakers to read aloud the sentences written under Figures 1-4. Both sentences (1)-(2) contain a topic (topicalizations are expressed through left-dislocations in Italian). They differ, however, in the super-ordinate context: only the context in (2) induces contrast. Sentences (3)-(4) correspond to sentences (1)-(2), respectively, differing only in that the left-dislocated constituents in the latter appear in-situ in the former (the contrastive interpretation is, thus, evoked also in (4)). The intonational information of each sentence has been analysed using Praat (Boersma/Weenink 1999-2006): I extracted the F0 contour of each sector in the utterances and I measured: i) the mean height of F0 in both the left-dislocated constituents and their in-situ counterparts; ii) the mean height of the whole utterance; iii) the range (i.e., the difference between the maximal and the minimal value of F0) in the sectors corresponding either to the left-dislocated constituents or to their in-situ counterparts.

Results. Figures (1)-(4) represent the F0 contours associated with each utterance of our study and they are all relative to the same speaker, while Table 1 shows the results of the measurements indicated in i)-iii) above. The data suggest that the F0 contours of both the left-dislocated and in-situ constituents in those sentences introduced by a ‘contrast-inducing’ context (i.e., sentences (2)-(4)) develop according to similar patterns: the mean height of F0 of the sector is higher than the mean height of F0 of the whole sentence, contrary to what happens to sentences (1)-(3) (notice that the mean height of the in-situ constituent in (3) is less than 1 Hz higher than that of the whole utterance: this is due to its final position in the utterance; the result, however, is relevant in comparison to what happens in sentences (1)-(3)). Moreover, the range of the sectors in (2)-(4) seems to be much higher than that of the sectors in (1)-(3).

Conclusion. The methodological distinction between the informational notions of ‘topic’ and ‘contrast’ revealed useful for the identification of their respective contribution to the semantics of CTs. In previous work I came to some generalizations on the semantic factors allowing the left-dislocation movement of sentential constituents (see Ward/Prince 1991 for a similar view). Here, the analysis of the data seems to show that the informational notion of ‘contrast’ is not encoded through a specific syntactic position (vs. cartographic approaches): both left-dislocated and in-situ constituents are able to induce a contrastive interpretation. Moreover, the data seem to suggest that the ‘contrastiveness effect’ and the semantic-pragmatic phenomena related to the use of CTs (e.g.,
the induction of alternatives and implicatures, see Tomioka to appear for an overview on the semantics of CTs) are encoded through phonological means, i.e., intonation. As a further speculation, it has to be noticed that if this line of analysis is correct, one would need to rethink the traditional model of generative grammar, including also some kind of interface rules linking the phonological and the semantic components, in line with Jackendoff’s Parallel Architecture hypothesis (see Jackendoff 2002).

Table 1: Values of i) the mean height of the F0 of the sector; ii) the mean height of the F0 of the whole utterance; iii) the range (i.e., the difference between the maximal and the minimal value of F0) of the sector. By ‘sector’ we mean either the left-dislocated or the in-situ constituent.

<table>
<thead>
<tr>
<th></th>
<th>Sentence 1</th>
<th>Sentence 2</th>
<th>Sentence 3</th>
<th>Sentence 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean F0 sector (Hz)</td>
<td>108,90</td>
<td>183,59</td>
<td>134,43</td>
<td>117,3231</td>
</tr>
<tr>
<td>Mean F0 utter. (Hz)</td>
<td>132,34</td>
<td>142,07</td>
<td>133,67</td>
<td>135,648</td>
</tr>
<tr>
<td>Range sector (Hz)</td>
<td>71,53</td>
<td>137,19</td>
<td>123,48</td>
<td>29,25174</td>
</tr>
</tbody>
</table>

Bibliography:
Frascarelli M./Hinterhölzl R. (2007b), Types of topics in German and Italian, in Winkler & Schwabe (eds.), On information structure, meaning and form (pp. 87-116), Amsterdam/Philadelphia: John Benjamins.