PCM-DRAM Hybrid Memory – Next Generation Storage

Chengmo Yang and Navdeep Sekhon, Electrical and Computer Engineering, University of Delaware

Phase Change Memory (PCM)
- Non-volatile storage devices
- Use electrical signals to change crystal structure from crystalline to amorphous and vise versa

A Promising Candidate to Replace DRAM!
- **Higher Density**: PCM has a smaller feature size than DRAM
- **Low Power**: PCM is non-volatile, while DRAM is volatile and needs to continuously refresh storage capacitors.

PCM vs. DRAM
<table>
<thead>
<tr>
<th></th>
<th>DRAM</th>
<th>PCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>68 nm</td>
<td>65 nm</td>
</tr>
<tr>
<td>Write Speed</td>
<td>10 ns</td>
<td>50 ns</td>
</tr>
<tr>
<td>Read Speed</td>
<td>10 ns</td>
<td>60 ns</td>
</tr>
<tr>
<td>Retention</td>
<td>64 ms</td>
<td>10 years</td>
</tr>
<tr>
<td>Endurance</td>
<td>3E+16</td>
<td>1E+8</td>
</tr>
</tbody>
</table>

Two Critical Problems To Solve!
- **Slower**: Each read and write takes longer time
- **Limited Endurance**: Each PCM cell can only be written for limited times

Endurance Enhancement:
- Use DRAM buffer to absorb most of memory writes
- Bring data directly to DRAM upon page faults.
- Modify clock algorithm to map hot virtual pages to cold physical pages and vise versa.
- Use wear leveling techniques to evenly distribute the writes to PCM cells.

Read/Write Acceleration:
- Access the DRAM buffer for most reads and writes.
- 4MB DRAM is sufficient to bridge most of the latency gap of a 1GB PCM.