Multidimensional Normal Distribution

Definition: The p-dimensional random vector \mathbf{Z} called *standard normal* if the coordinates of \mathbf{Z} are independent standard normal one-dimensional random variables, i.e. $\mathbf{Z} = (Z_1, \ldots, Z_p)$, $Z_i \sim \mathcal{N}(0,1)$, $i = 1, \ldots, p$.

Theorem 1. If $\mathbf{Z} \in \mathbb{R}^p$ is a random vector with standard normal distribution then the following statements are equivalent

(i) The density of \mathbf{Z} is given by

$$f(Z_1, \ldots, Z_p) = (2\pi)^{-\frac{p}{2}} \exp\{-\frac{1}{2} \mathbf{Z}' \mathbf{Z}\}.$$

(ii) Let $R_p(\mathbf{u}) = \mathbb{E}(\exp\{\mathbf{u}' \mathbf{Z}\})$ be the moment generating function of \mathbf{Z}, then

$$R_p(\mathbf{u}) = \exp\{\frac{1}{2} \mathbf{u}' \mathbf{u}\}.$$

(iii) For arbitrary $\mathbf{c} \in \mathbb{R}^p$ where \mathbf{c} is a constant vector, $\mathbf{c}' \mathbf{Z}$ is a one dimensional random variable with normal distribution; $\mathbb{E}(\mathbf{c}' \mathbf{Z}) = 0$, $\text{Var}(\mathbf{c}' \mathbf{Z}) = \mathbf{c}' \mathbf{c}$, i.e. $\mathbf{c}' \mathbf{Z} \sim \mathcal{N}(0, \mathbf{c}' \mathbf{c})$.

(iv) Let \mathbf{U} be a $p \times p$ orthogonal matrix, then the distribution of \mathbf{Z} and \mathbf{UZ} are the same and $\mathbf{Z}' \mathbf{Z}$ has a χ^2 distribution with p degree of freedom.

Definition: The random vector $\mathbf{X} \in \mathbb{R}^p$ has *normal distribution* if it can be expressed as

$$\mathbf{X} = \mathbf{A} \mathbf{Z} + \mathbf{\mu},$$

where \mathbf{A} is a $p \times \ell$ constant matrix, $\mathbf{Z} \in \mathbb{R}^{\ell}$, $\ell \leq p$ is a random vector with standard normal distribution and $\mathbf{\mu} \in \mathbb{R}^p$ is a constant vector.

Remarks:

1. $\mathbb{E}\mathbf{X} = \mathbf{\mu}$.

2. $\Sigma_\mathbf{X} = \mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - \mathbb{E}(\mathbf{X}))') = \mathbb{E}((\mathbf{A} \mathbf{Z})(\mathbf{A} \mathbf{Z})') = \mathbb{E}(\mathbf{A} \mathbf{Z} \mathbf{Z}' \mathbf{A}') = \mathbf{A} \mathbf{I}_\ell \mathbf{A}' = \mathbf{A} \mathbf{A}'$, where \mathbf{I}_ℓ denotes the $\ell \times \ell$ matrix with 1-s in the main diagonal and 0-s elsewhere.
Theorem 2. The multidimensional normal distribution is uniquely defined by its expected value vector and its covariance matrix.

Proof. There is a one to one correspondence between moment generating function and distribution.

\[E(\exp(u'X)) = E(\exp(u'AZ + u'\mu)) = e^{u'\mu}e^{\frac{1}{2}u'AA'u}. \]

The last equality is true since by definition \(E(\exp(u'AZ)) \) is the moment generating function of \(Z \) at \(A'u \).

Notation: \(X \in \mathbb{R}^p \) random variable with normal distribution, with expected value \(E X = \mu \) and covariance matrix \(\Sigma_X \) is denoted as

\[X \sim \mathcal{N}_p(\mu, \Sigma_X). \]

Remark: Moment generating function of \(X \):

\[R_p(u) = E(\exp\{u'X\}) = e^{u'\mu}e^{\frac{1}{2}u'Su}. \]

Definition: Let \(X \sim \mathcal{N}_p(\mu, \Sigma_X) \), then

\[X = AZ + \mu \]

is the canonical form of \(X \) if \(A \) has the following properties:

(i) the column vectors of \(A \) are orthogonal with positive norms,

(ii) the norms of column vectors of \(A \) are non-increasing.

Theorem 3. Any \(X \in \mathbb{R}^p \) normally distributed random variable has canonical form.

Proof. Let \(X \sim \mathcal{N}_p(\mu, \Sigma_X) \), then by definition there exists a \((p \times \ell) \) matrix \(A \) such that \(X = AZ + \mu \), where \(z \in \mathbb{R}^\ell \) standard normal random variable. Consider the singular value decomposition of \(A \). \(A = VDU' \) where \(V \) and \(U \) are \(p \times p \) and \(\ell \times \ell \) orthogonal matrices and \(D \) is a \(p \times \ell \) diagonal matrix where the values \(s_1 \geq s_2 \geq \ldots \geq 0 \) non-increasing in the diagonal. Thus

\[X = VD(U'Z) + \mu. \]

Using Theorem 1 (iv), \(U'Z \) has the same distribution as \(Z \). It means that

\[X = (VD)Z + \mu = AZ + \mu, \]

is a canonical representation of \(X \).

Theorem 4. Let \(X \sim \mathcal{N}_p(\mu_X, \Sigma_X) \) random variable. Then any linear transformation of \(X \) has normal distribution.

Proof. Let \(Y = BX + \mu_Y \). Then

\[Y = B(AZ + \mu_X) + \mu_Y = (BA)Z + (B\mu_X + \mu_Y). \]