
Research Notes and Jacobians:

Real-Time 3D Reconstruction and

6-DoF Tracking with an Event Camera

Patrick Geneva and Kevin Eckenhoff

January 5, 2018

1 Problem Statement

Real-Time 3D Reconstruction and 6-DoF with an Event Camera by Hanme Kim et al. [1] details
the first example of depth estimation of features and 6 dof pose estimation using only an event
camera. They present three decoupled probabilistic filters that provide 6 dof camera motion, log
intensity gradient, and inverse depth estimation.

2 Ray/Triangle Intersection

Figure 1: Pictorial view of the camera in the world frame of reference. A ray passing
through the event (u, v) coordinate intersects a triangle in the 3D map of the

environment in the keyframe.

Based on Fast, Minimum Storage Ray/Triangle Intersection by Moller et al. [2] we have the follow-
ing equation that equates the intersection of the event ray with the map mesh to the interpolation
between the three vertices with barycentric coordinates.

wpc + l wc R

[
u
v
1

]
= (1− a− b)wpv0 + awpv1 + bwpv2 (1)

where (l, a, b)> are the barycentric coordinates in the map mesh plane. It is important to note
that the (u, v) do not have any noise as they are not variables and are constant for the current

1

event from the sensor. We also note that the vertices (v0,v1,v2) are points that have depth in our
keyframe and thus are the map we have a known depth of. We assume that these values are “true”
and thus do not have any error with them. Now using this above equality we can rearrange for the
unknown quantities (l, a, b)>:

wpc + l wc R

[
u
v
1

]
= (1− a− b)wpv0 + awpv1 + bwpv2 (2)

= wpv0 + (wpv1 − wpv0)a+ (wpv2 − wpv0)b (3)

wpc − wpv0 = −l wc R

[
u
v
1

]
+ (wpv1 − wpv0)a+ (wpv2 − wpv0)b (4)

wpc − wpv0 =

[
−wc R

[
u
v
1

]
(wpv1 − wpv0) (wpv2 − wpv0)

][
l
a
b

]
(5)

Finally we get the following:[
l
a
b

]
=

[
−wc R

[
u
v
1

]
(wpv1 − wpv0) (wpv2 − wpv0)

]−1
(wpc − wpv0) (6)

One can note that l is the depth of the feature in the camera frame, while a and b are interpolation
variables can now be used to interpolate between the three vertices’ log intensities intensities or
inverse depth values.

3 3D Pose - Kalman Filter State

We have a state that estimates the current position of the camera given all events up to time t.
This state is the position of the camera pose c seen from the world frame w of reference. We denote
it and its covariance as follows:

Twc = w
c T =

[w
c R

wtc
0 1

]
(7)

4 3D Pose - Kalman Filter Propagation

In the paper they use a “constant position motion model”. Meaning that between event updates
the camera is assumed to follow a random walk (expectation of the camera’s motion is zero). This is
a reasonable assumption if the events are of high frequency. The propagation equations are defined
as follows:

xt|t−τ = xt−τ |t−τ + n (8)

Pt|t−τ = Pt−τ |t−τ + Q (9)

The system is propagated from the last measurement time τ to the current time t.

2

5 3D Pose - Kalman Filter Update

5.1 Measurement Model

An event camera gives us events of log intensity changes of a set threshold. An event is denoted as
the following:

e(u, v) = (u, v, p, t)> (10)

where (u, v) are the camera pixel location, p is the polarity (decrease or increase in log intensity),
and t is a microsecond-precise timestamp. We can then define a measurement equation that maps
our state into our measurement.

zm = ±C = zk + n (11)

where n ∼ N (0, σ2x) (12)

From here we can define how our measurement is a function of our state as follows:

zm = h(xk) + nk (13)

= zk + nk (14)

= IL
(
barycords(xt)

)
− IL

(
barycords(xt−τc)

)
+ nk (15)

where we define the following equations:

IL
(
barycords(xt)

)
= IL

(
[l a b]>

)
(16)

= (1− a− b)Ikey(v0) + aIkey(v1) + bIkey(v2) (17)

barycords(xt) = [l a b]> (18)

= ray/triangle intersection algorithm result (19)

where we have a function IL(·) that takes in the barycentric coordinates of our current event
pixel location intersected with three surrounding vertices (v0,v1,v2) in our keyframe depth map.
It produces a log intensity value that is the interpolation between the three vertices’ log intensity
values. The function barycords(·) takes in the current state and from that computes the barycentric
coordinates. This is based on the intersection of a ray passing through the event coordinates (u, v)
and intersecting the plane created by three surrounding vertices. The function Ikey(·) looks up the
intensity value at the specified vertex seen in the keyframe image plane.

5.2 State Update Method

zm = h(xk) + nk (20)

= IL
(
barycords(xt)

)
− IL

(
barycords(xt−τc)

)
+ nk (21)

It is important to note that the authors in [1] must assume that the state at the time this event
pixel last received an event xt−τc is true since the state only contains the current pose xt.

≈ IL
(
barycords(x̂t)

)
+ HilHbc(xt − x̂t)− IL

(
barycords(x̂t−τc)

)
+ nk (22)

where we applied the chainrule on the compound function to get two Jacobians that need to be
calculated.

3

5.3 Update Jacobian Hil

We need to take the derivative of the equation (17) in respect to the barycentric coordinates. We
can see that we are only a function of the a and b variables calculated by the barycords(·) function.

Hil =
[
∂IL
∂l

∂IL
∂a

∂IL
∂b

]
1×3 (23)

=
[
0 ∂IL

∂a
∂IL
∂b

]
1×3 (24)

It is easy to see that the derivative of equation (17) in respect to a and b are the following:

Hil =
[
0
(
Ikey(v1)− Ikey(v0)

) (
Ikey(v2)− Ikey(v0)

)]
1×3

(25)

5.4 Update Jacobian Hbc

We need to take the derivative of the equation (6) in respect to the state. This involves an inverse,
thus special care needs to be taken when performing the derivative.

Hbc =
∂

∂x̂t

(
M−1D

)
(26)

where M is the first matrix in equation (6) and D is the second part in equation (6). Using the
product rule and Section 2.2 Derivatives of an inverse from the Matrix Cookbook [3] we can say
that our Jacobian is the following:

= −∂M
−1

∂x̂t
D + M−1

∂D

∂x̂t
(27)

= composition

(
−M−1

∂M

∂x̂(i)t
M−1D + M−1

∂D

∂x̂(i)t

)
(28)

where the “composition” is the element-wise derivative of both M and D. This element-wise
derivative is required as the inverse identity from the Matrix Cookbook [3] is only valid when
taking the derivative in respect to a scalar. We can calculate those as follows:

∂M

∂θ̂(i)t
=

w
c R

uv
1

×
 ei 03×1 03×1


3×3

(29)

∂M

∂p̂(i)t
= 03×3 (30)

∂D

∂θ̂(i)t
= 03×1 (31)

∂D

∂p̂(i)t
= ei (32)

4

where we define ei as the unit vector in the direction of that measurement (e.g., ex = [1 0 0]> for
the x-direction derivative). By composing them, we can get the following large Jacobian matrix:

Hbc =
[

∂
∂θ̂(x)t

(
M−1D

)
∂

∂θ̂(y)t

(
M−1D

)
∂

∂θ̂(z)t

(
M−1D

)
∂

∂p̂(x)t

(
M−1D

)
∂

∂p̂(y)t

(
M−1D

)
∂

∂p̂(z)t

(
M−1D

)]
3×6

(33)

= [J1 J2 J3 J4 J5 J6]3×6 (34)

We the following final Jacobian values:

J1 = −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ex 03×1 03×1

]
3×3

M−1D + M−103×1

= −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ex 03×1 03×1

]
3×3

M−1D

(35)

(36)

J2 = −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ey 03×1 03×1

]
3×3

M−1D + M−103×1

= −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ey 03×1 03×1

]
3×3

M−1D

(37)

(38)

J3 = −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ez 03×1 03×1

]
3×3

M−1D + M−103×1

= −M−1
[
w
c R

⌊[
u
v
1

]
×

⌋
ez 03×1 03×1

]
3×3

M−1D

(39)

(40)

J4 = −M−103×3M−1D + M−1ex

= M−1ex

(41)

(42)

J5 = −M−103×3M−1D + M−1ey

= M−1ey

(43)

(44)

J6 = −M−103×3M−1D + M−1ez

= M−1ez

(45)

(46)

6 Pixel-Wise Inverse Depth - Kalman Filter Update

6.1 Measurement Model

For a given pixel from an event, we want to update our inverse depth map of the current keyframe.
We can define the inverse depth of the vertices of the plan in the depth map that the pixel from

5

the event intersects as the following:

ρ = (ρv0, ρv1, ρv2)
> (47)

where ρ) is the stacked inverse depths of the specified . We can then define a measurement equation
that maps our state into our measurement.

zm = ±C = zk + n (48)

where n ∼ N (0, σ2p) (49)

From here we can define how our measurement is a function of our state as follows:

zm = h(ρt) + nk (50)

= zk + nk (51)

= IL
(
barycords(ρt)

)
− IL

(
barycords(ρt−τc)

)
+ nk (52)

where we define the following equations:

IL
(
barycords(ρt)

)
= IL

(
[l a b]>

)
(53)

= (1− a− b)Ikey(v0) + aIkey(v1) + bIkey(v2) (54)

barycords(ρt) = [l a b]> (55)

= ray/triangle intersection algorithm result (56)

=

[
−wc R

[
u
v
1

] (
inv(ρv1)− inv(ρv0)

) (
inv(ρv2)− inv(ρv0)

)]−1 (
wpc − inv(ρv0)

)

inv(ρvi) = w
keyR

1

ρvi

[
uvi
vvi
1

]
+ wpkey (57)

where we have a function IL(·) that takes in barycentric coordinates of our current event pixel
location intersected with three surrounding vertices (v0,v1,v2) in our keyframe depth map. It
produces a log intensity value that is the interpolation between the three vertices’ log intensity
values.

Different from the 3D pose estimation, we use inverse depth parameterization here with the ρ
values that we are looking to update. It should be noted that since the authors model each pixel
as independent, it is impossible to update both ρt and ρt−τc in the same filter. To solve this, we
can update both independently using the same measurement using independent filters.

6.2 State Update Method

zm = h(ρt) + nk (58)

= IL
(
barycords(ρt)

)
− IL

(
barycords(ρt−τc)

)
+ nk (59)

6

It is important to note that the authors in [1] must assume that the ρt−τc is true since the only
thing that is estimated is the three current camera vertices ρt.

≈ IL
(
barycords(ρ̂t)

)
+ HilHbci(ρt − ρ̂t)− IL

(
barycords(ρ̂t−τc)

)
+ nk (60)

where we applied the chainrule on the compound function to get two Jacobians that need to be
calculated.

6.3 Update Jacobian Hil

We need to take the derivative of the equation (54) in respect to the barycentric coordinates. We
can see that we are only a function of the a and b variables calculated by the barycords(·) function.

Hil =
[
∂IL
∂l

∂IL
∂a

∂IL
∂b

]
1×3 (61)

=
[
0 ∂IL

∂a
∂IL
∂b

]
1×3 (62)

It is easy to see that the derivative of equation (54) in respect to a and b are the following:

Hil =

[
0

(
Ikey(v1)− Ikey(v0)

) (
Ikey(v2)− Ikey(v0)

)]
1×3

(63)

6.4 Inverse Feature Jacobian Hinv

Original measurement equation:

inv(ρvi) = w
keyR

1

ρvi

[
uvi
vvi
1

]
+ wpkey (64)

Perturbing each side of the equation we can do the following:

cp̂f + cp̃f = w
keyR

1

ρ̂vi + ρ̃vi

[
uvi
vvi
1

]
+ wpkey (65)

Adding zero to the left side in the form of wkeyR
1
ρ̂vi

[uvi vvi 1]>−w
keyR

1
ρ̂vi

[uvi vvi 1]> we have
the following:

cp̂f + cp̃f = w
keyR

1

ρ̂vi + ρ̃vi

[
uvi
vvi
1

]
+ wpkey + w

keyR
1

ρ̂vi

[
uvi
vvi
1

]
− w
keyR

1

ρ̂vi

[
uvi
vvi
1

]
(66)

= cp̂f + w
keyR

1

ρ̂vi + ρ̃vi

[
uvi
vvi
1

]
− w
keyR

1

ρ̂vi

[
uvi
vvi
1

]
(67)

= cp̂f + w
keyR

ρ̂vi − (ρ̂vi + ρ̃vi)

(ρ̂vi + ρ̃vi)ρ̂vi

[
uvi
vvi
1

]
(68)

= cp̂f − w
keyR

ρ̃vi
ρ̂2vi + ρ̃viρ̂vi

[
uvi
vvi
1

]
(69)

7

Multiplying by the conjugate of the denominator ρ̂2vi − ρ̃viρ̂vi we have the following:

= cp̂f − w
keyR

ρ̃vi(ρ̂
2
vi − ρ̃viρ̂vi)

ρ̂4vi − ρ̃2viρ̂2vi

[
uvi
vvi
1

]
(70)

Removing the negligible squared error terms we have:

= cp̂f − w
keyR

ρ̃viρ̂
2
vi

ρ̂4vi

[
uvi
vvi
1

]
(71)

= cp̂f − w
keyR

ρ̃vi
ρ̂2vi

[
uvi
vvi
1

]
(72)

= cp̂f +

(
− w
keyR

1

ρ̂2vi

[
uvi
vvi
1

])
ρ̃vi (73)

Thus we have the following jacobian:

Hinv = −wkeyR
1

ρ̂2vi

[
uvi
vvi
1

]
(74)

6.5 Update Jacobian Hbci

We need to take the derivative of the equation (57) in respect to the inverse depth values. This
involves an inverse, thus special care needs to be taken when performing the derivative.

Hbc =
∂

∂ρ̂t

(
M−1D

)
(75)

where M is the first matrix in equation (57) and D is the second part in equation (57). Using the
product rule and Section 2.2 Derivatives of an inverse from the Matrix Cookbook [3] we can say
that our Jacobian is the following:

= −∂M
−1

∂ρ̂t
D + M−1

∂D

∂ρ̂t
(76)

= composition

(
−M−1

∂M

∂ρ̂(i)t
M−1D + M−1

∂D

∂ρ̂(i)t

)
(77)

where the “composition” is the element-wise derivative of both M and D. This element-wise
derivative is required as the inverse identity from the Matrix Cookbook [3] is only valid when

8

taking the derivative in respect to a scalar. We can calculate those as follows:

∂M

∂ρ̂(v0)t
=
[
03×1 −Hinv −Hinv

]
3×3 (78)

∂M

∂ρ̂(v1)t
=
[
03×1 Hinv 03×1

]
3×3 (79)

∂M

∂ρ̂(v2)t
=
[
03×1 03×1 Hinv

]
3×3 (80)

∂D

∂ρ̂(v0)t
= −Hinv (81)

∂D

∂ρ̂(v1)t
= 03×1 (82)

∂D

∂ρ̂(v2)t
= 03×1 (83)

By composing them, we can get the following large Jacobian matrix:

Hbc =
[

∂
∂ρ̂(v0)t

(
M−1D

)
∂

∂ρ̂(v1)t

(
M−1D

)
∂

∂ρ̂(v2)t

(
M−1D

)]
3×3

(84)

= [J1 J2 J3]3×3 (85)

We the following final Jacobian values:

J1 = −M−1
[
03×1 −Hinv −Hinv

]
3×3

M−1D−M−1Hinv (86)

J2 = −M−1
[
03×1 Hinv 03×1

]
3×3

M−1D (87)

J3 = −M−1
[
03×1 03×1 Hinv

]
3×3

M−1D (88)

9

References

[1] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. “Real-time 3D reconstruction and 6-
DoF tracking with an event camera”. In: European Conference on Computer Vision. Springer.
2016, pp. 349–364.

[2] Tomas Möller and Ben Trumbore. “Fast, minimum storage ray/triangle intersection”. In: ACM
SIGGRAPH 2005 Courses. ACM. 2005, p. 7.

[3] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix cookbook”. In: Technical
University of Denmark 7 (2008), p. 15.

10

	Problem Statement
	Ray/Triangle Intersection
	3D Pose - Kalman Filter State
	3D Pose - Kalman Filter Propagation
	3D Pose - Kalman Filter Update
	Measurement Model
	State Update Method
	Update Jacobian bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHil
	Update Jacobian bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbc

	Pixel-Wise Inverse Depth - Kalman Filter Update
	Measurement Model
	State Update Method
	Update Jacobian bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHil
	Inverse Feature Jacobian bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHinv
	Update Jacobian bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbci

