
Contents

1 Discrete Linear Filtering 1

1.1 Propagation of State without Noise . 1

1.2 Propagation of State with Noise . 2

1.3 Propagation of Covariance Matrix . 3

1.4 State Update with Measurement . 4

1.5 Update Gaussian Probabilistic Model . 5

1.6 Update Covariance Values . 7

2 Discrete Nonlinear Filtering 10

2.1 Propagation of State with Noise . 10

2.2 Propagation of Covariance Matrix . 12

2.3 Notes about Comparing to Linear Filter . 13

2.4 State Update with Measurement . 14

2.5 Update Covariance Values . 17

3 Quaternion Example 18

3.1 Propagation of State with Noise . 18

3.2 Integration of Governing Equations . 19

3.3 Covariance Propagation . 22

4 MSCKF Discussion 23

4.1 MSCKF Camera Cloning . 23

4.2 MSCKF Update with Measurement . 24

4.3 Update Jacobian Derivation . 26

4.4 MSCKF Update with Nullspace Operation . 27

4.5 MSCKF Measurement Compression . 29

Chapter 1

Discrete Linear Filtering

1.1 Propagation of State without Noise

We start with an simple 2D example of filter that tracks the current pose of a robot. In this
case we have a state that contains a orientation and position at a given time k.

xk =
[
k
Gθ

Gpxk
Gpyk

]>
(1.1)

=
[
k
Gθ

Gp>k
]>

(1.2)

We have have a single GPS sensor that provides us with angular velocity, linear velocity and
position measurements.1 We can use these measurements to move the state forward in time
and estimate the current position of the robot. Using a state transition matrix Φk and control
input model Bk we can define the following:

xk+1 = Φkxk + Bkuk (1.3)

We can see here that we have a linear transition model from one state to the next and a
linear relation between our control input uk and the state. In our example, we know that the
there is no change in the state from the previous timestep because no state variable depends
on another in its motion model. We can define our state transition matrix Φk by looking at
what happens on a control input of zero:

k
Gθk+1 = k

Gθk (1.4)

Gpk+1 = Gpk (1.5)

Φk = I3×3 (1.6)

We can now look to how our control input effects the state. In our case we have a GPS
sensor that provides the rate of change of the orientation and position along with periodic

1Normally this is not something that is seen in robotic sensors. We introduce the use of wheel encoders, in
the next section, which are nonlinear in nature. We also assume here that the GPS sensor gives us both the
rate of rotation and position change at a higher frequency compared to the position updates. Additionally, we
assume that it gives us theses readings in the same frame of reference.

1

position information. We cannot use the position GPS measurement because it does not cause
a change in the state over a period of time. It instead is a direct measurement of the state at
a single time instance so we must use GPS position only for update. We define the following
measurements and control input models Bk:

∆k
Gθ = Gωk∆t (1.7)

∆pk = Gvk∆t (1.8)

Bk = (∆t)I3×3 (1.9)

uk = ẑk =

[
Gωk
Gvk

]
3×1

(1.10)

Now we have a full linear propagation system that we use to propagate our state to a new
timestep when we receive a measurement of the current orientation and position rate of change.
This can be summarized into the following equation:

xk+1 = I3×3 xk + (∆t)I3×3

[
Gωk
Gvk

]
(1.11)

1.2 Propagation of State with Noise

Now we want to include measurement noise into the equation. Normal measurements have
some noise in them, so we want to model the noise introduced into the system by each
measurement. We model each noise as a zero-mean additive white Gaussian noise (AWGN).
Note that additive white Gaussian noise means that any pair of random vectors are identically
distributed and statistically independent (and hence uncorrelated). We define the effect noise
has on the system as follows:

xk+1 = Φkxk + Bkuk + Gknk (1.12)

where Gk maps the sensor noise into the state noise. We define our measurements as a true
measurement plus some additive Gaussian noise:

uk = zm =

[
Gωm
Gvm

]
=

[
Gωk + nwk
Gvk + nvk

]
3×1

= zk + nk (1.13)

nwk ∼ N (0, σ2
w) and nvk ∼ N (0,Qvd) and nk ∼ N (0,Qd) (1.14)

Qvd =

[
σ2
v 0

0 σ2
v

]
2×2

and Qd =

[
σ2
w 0
0 Qvd

]
3×3

(1.15)

where uk and zm denote the physical measurement from the sensor corrupted by noise and zk
is the “true” measurement. We can now construct the whole linear transition model by first

2

substituting the true values with the measurement equations and then rearrange as follows:

xk+1 = I3×3 xk + (∆t)I3×3

[
Gωm − nvk
Gvm − nwk

]
(1.16)

= I3×3 xk + (∆t)I3×3

[
Gωm
Gvm

]
− (∆t)I3×3

[
nvk
nwk

]
(1.17)

= Φkxk + Bkuk + Gknk (1.18)

After taking the expectation of the measurement models, we have the following full model
that can be used to propagate our state:

x̂k+1 = I3×3 x̂k + (∆t)I3×3

[
Gωm
Gvm

]
(1.19)

= Φkx̂k + Bkuk (1.20)

Clarification: Hidden in the notation, the expectation of the measurement vector uk is
constant as this is something that we directly measure/get from the sensor. We are not
taking the expectation of the true measurement random vector, and are instead looking at
the deterministic value we directly get from the sensor.

1.3 Propagation of Covariance Matrix

We would like to model this noise that corrupts each measurement that we are propagating
with. To do this, we will look at the expectation between a true and estimated state.

Pk+1 = E
[
(xk+1 − x̂k+1)(xk+1 − x̂k+1)>

]
(1.21)

= E
[(

(Φkxk + Bkuk + Gknk)− (Φkx̂k + Bkuk
)(
· · ·
)>]

(1.22)

= E
[(

Φk(xk − x̂k) + Gknk
)(
· · ·
)>]

(1.23)

= E
[(

Φk(xk − x̂k) + Gknk
)(

(xk − x̂k)
>Φ>k + n>k G>k

)]
(1.24)

= E
[
Φk(xk − x̂k)(xk − x̂k)

>Φ>k + Φk(xk − x̂k)n
>
k G>k

+Gknk(xk − x̂k)
>Φ>k + Gknkn

>
k G>k

]
(1.25)

= Φk E
[
(xk − x̂k)(xk − x̂k)

>
]

Φ>k + Gk E
[
nkn

>
k

]
G>k (1.26)

= Φk PkΦ
>
k + GkQdG

>
k (1.27)

note that we know that the E[n̂k] = 0 (our estimated noise is zero-mean), and that the expec-
tation of any non-squared noise is zero because the state is independent from the measurement

3

noise.2 The most important assumption we make here is the fact that our incoming measure-
ment is not correlated with our state. If it was we cannot simplify the above equation and
would have to instead know what the correlation between the measurement and the state was.
From this we can see that our covariance in the next propagated step is simply multiplied by
the state transition matrix Φk with an additive term of the sensor noise map Gk times the
discrete noise covariance matrix Qd.

3

We finally have the following two equations for propagating our state (mean) and state un-
certainty (covariance):

x̂k+1 = Φkx̂k + Bkuk (1.28)

Pk+1 = Φk PkΦ
>
k + GkQdG

>
k (1.29)

1.4 State Update with Measurement

To perform an update we need a measurement that directly effects the values of our state. In
our case we have a GPS sensor which directly updates the position of the state. We describe
the measurement as the following:

zm =

[
pxm
pym

]
2×1

=

[
px+ npx
py + npy

]
2×1

= zk + nk (1.30)

where nk ∼ N (0,Rd) (1.31)

Rd =

[
σ2
p 0

0 σ2
p

]
2×2

(1.32)

We use discrete sigmas because our sensor is modeled as collecting discrete position samples
and the Kalman filter update is discrete in nature. We want to “correct” the state with
this measurement, so first we can see how incorrect the state is when compared to this
measurement. To do this we need to make sure that we have a mapping from the state to the

2We can see that a zero-mean noise squared is the variance of the measurement by looking at E[n2
w] =

E[(nw − 0)(nw − 0)] = σ2
w.

3Note that this is not the sigma values read from the GPS manual. These are discrete sigmas. We will
compare this with the continuous sigmas normally specified in a device’s manual in the continuous section.
σdiscrete = σcontinuous/∆t.

4

measurement (this is called our measurement function).

zm = zk + nk (1.33)

= Hxk + nk (1.34)

E [zm] = E [Hxk + nk] (1.35)

ẑm = Hx̂k + 0 (1.36)

H =

[
∂zk
∂xk

]
2×3

=

[
∂zk
∂IGθ

∂zk
∂Gpk

]
2×3

=

[
0 1 0
0 0 1

]
2×3

(1.37)

H is our measurement Jacobian that maps the full state into the measurement domain and
our expected value of our true measurement is the estimated measurement calculated using
the current state x̂k. Another way to interpret this measurement equation, is that we want
our state to estimate the true value of the measurement, but since we do not know the noise,
the best we can do is estimate the expected value of the measurement.

1.5 Update Gaussian Probabilistic Model

Given a new measurement zm we would like to update our mean and covariance (updates
our distribution). To do this, we create the distribution of the current state given this new
measurement distribution.

Figure 1.1: How the joint, marginal, and conditional distributions
are related. Image credit statisticalengineering.com.

Now we can look at the distribution of the state given the new measurement coming in. We

5

can expand using Bayes Rule and then substitute a Gaussian distribution function since we
assume that the random vectors follow a Gaussian distribution. We do this as follows:

p(xk|z0..i−1, zm) =
p(xk, zm|z0..i−1)

p(zm|z0..i−1)
(1.38)

where we know that the measurement zm is noise is independent but the measurement itself is
defined as a function of our state, which we know is dependent on the previous measurements
(i.e., we will see that p(zm|z0..i−1) will have a distribution in respect to the state). Now we
would like to, in closed form, calculate the new Gaussian distribution that the new state
(given the measurement zm) follows. To do so, we solve for the top and bottom Gaussian
distributions4 and then combine:

p(xk, zm|z0..i−1) =
1√

(2π)n+m|Pyy|
e−

1
2

(y−ŷ)>P−1
yy (y−ŷ) (1.39)

p(zm) =
1√

(2π)m|Pzz|
e−

1
2

(zm−ẑm)>P−1
zz (zm−ẑm) (1.40)

where n and m are the size of the state and measurement vectors, respectively, and the
following:

Pyy =

[
Pxx Pxz

Pzx Pzz

]
(1.41)

y =

[
xk
zk

]
(1.42)

Combining the two in Bayes Rule, we get the following:

p(xk|z0..i−1, zm) =
p(xk, zm|z0..i−1)

p(zm)
(1.43)

=
1√

(2π)n|Pyy|/|Pzz|
×

exp

(
−1

2

[
(y − ŷ)>P−1

yy (y − ŷ)− (zm − ẑm)>P−1
zz (zm − ẑm)

])
(1.44)

First we can simplify the denominator term |Pyy|/|Pzz| to find what our covariance is for the
new distribution.

|Pyy| =
∣∣∣∣[Pxx Pxz

Pzx Pzz

]∣∣∣∣ = |Pxx −PxzP
−1
zz Pzx||Pzz| (1.45)

This was derived in [1] proof (3.1) and is only valid when Pzz is invertible. From here we can
now divide by |Pzz| to get the final value for our new distribution covariance.

|Pyy|
|Pzz|

=
|Pxx −PxzP

−1
zz Pzx||Pzz|

|Pzz|
= |Pxx −PxzP

−1
zz Pzx| (1.46)

Next we can look at combining the values in the exponential to convert it into a recognizable

4Note that we are using a multivariate Gaussian distribution not a 1D Gaussian distribution.

6

Gaussian distribution form. We write the exponential as follows using the residuals rx,rz,ry
and the inverse of a block matrix (see [1] inverse matrix property section):

= (y − ŷ)>P−1
yy (y − ŷ)− (zm − ẑm)>P−1

zz (zm − ẑm) (1.47)

= r>y P−1
yy ry − r>z P−1

zz rz (1.48)

=

[
rx
rz

]> [
Pxx Pxz

Pzx Pzz

]−1 [
rx
rz

]
− r>z P−1

zz rz (1.49)

=

[
rx
rz

]> [
Q −QPxzP

−1
zz

−P−1
zz PzxQ P−1

zz + P−1
zz PzxQPxzP

−1
zz

] [
rx
rz

]
− r>z P−1

zz rz (1.50)

where Q = (Pxx −PxzP
−1
zz Pzx)−1

= r>x Qrx − r>x QPxzP
−1
zz rz − r>z P−1

zz PzxQrx

+ r>z (P−1
zz + P−1

zz PzxQPxzP
−1
zz)rz − r>z P−1

zz rz (1.51)

= r>x Qrx − r>x Q[PxzP
−1
zz rx]− [PxzP

−1
zz rz]

>Qrx + [PxzP
−1
zz rz]

>Q[PxzP
−1
zz rz] (1.52)

= (rx −PxzP
−1
zz rz)

>Q(rx −PxzP
−1
zz rz) (1.53)

= (rx −PxzP
−1
zz rz)

>(Pxx −PxzP
−1
zz Pzx)−1(rx −PxzP

−1
zz rz) (1.54)

where (P−1
zz)> = P−1

zz since all square covariance matrices are symmetric. Not losing sight of
the original goal, we can now construct the new Gaussian distribution as follows:

p(xk|z0..i−1, zm) =
p(xk, zm|z0..i−1)

p(zm)
(1.55)

=
1√

(2π)n
∣∣Pxx −PxzP

−1
zz Pzx

∣∣×
exp

(
−1

2

[
(rx −PxzP

−1
zz rz)

>(Pxx −PxzP
−1
zz Pzx)−1(rx −PxzP

−1
zz rz)

])
This gets us the following new mean and covariance:

x̂k|z = x̂k + PxzP
−1
zz (zm − ẑm) (1.56)

Pxx|z = Pxx −PxzP
−1
zz Pzx (1.57)

1.6 Update Covariance Values

Now that we have our update equations we need to find the covariance values that can be
used in the update. We know what the state covariance is since this is the covariance used

7

for the last update and has been propagated using the wheel odometry.

Pxx = Pk (1.58)

Now we can calculate the covariance of the incoming measurement using the measurement
equation (1.36) to get the following:

Pzz = E
[
(zm − ẑm)(zm − ẑm)>

]
(1.59)

= E
[
(Hxk + nk −Hx̂k)(Hxk + nk −Hx̂k)

>
]

(1.60)

= E
[
(H(xk − x̂k) + nk)(H(xk − x̂k) + nk)

>
]

(1.61)

= E
[
H(xk − x̂k)(xk − x̂k)

>H> + H(xk − x̂k)n
>
k

+ nk(xk − x̂k)
>H> + nkn

>
k

]
(1.62)

= E
[
H(xk − x̂k)(xk − x̂k)

>H> + nkn
>
k

]
(1.63)

= H E
[
(xk − x̂k)(xk − x̂k)

>
]

H> + E
[
nkn

>
k

]
(1.64)

= HPxxH
> + Rd (1.65)

where Rd is the discrete measurement noise matrix, H is the measurement Jacobian mapping
the state into the measurement domain, and Pxx is the current state covariance. Note that
terms with only a single noise value go to zero after taking the expectation.

Pxz = E
[
(xk − x̂k)(zm − ẑm)>

]
(1.66)

= E
[
(xk − x̂k)(Hxk + wk −Hx̂k)

>
]

(1.67)

= E
[
(xk − x̂k)(H(xk − x̂k) + wk)

>
]

(1.68)

= E
[
(xk − x̂k)(xk − x̂k)

>H> + (xk − x̂k)w
>
k

]
(1.69)

= E
[
(xk − x̂k)(xk − x̂k)

>
]

H> + E
[
(xk − x̂k)w

>
k

]
(1.70)

= PxxH
> (1.71)

This gives the following equations that can be used for the update step:

8

x̂k|z = x̂k + PkH
>(HPkH

> + Rd)
−1(zm − ẑm) (1.72)

= x̂k + PkH
>(HPkH

> + Rd)
−1(zm −Hx̂k) (1.73)

= x̂k + Krz (1.74)

Pxx|z = Pk −PkH
>(HPkH

> + Rd)
−1(PkH

>)> (1.75)

= Pk −PkH
>(HPkH

> + Rd)
−1HP>k (1.76)

9

Chapter 2

Discrete Nonlinear Filtering

2.1 Propagation of State with Noise

Figure 2.1: Pictorial view of a robot with some local angular velocity, and
velocity along its local x-axis. The robot is defined by its angle and x,y position

in the global frame of reference.

We start with an simple 2D example of filter that tracks the current pose of a robot. In this
case we have a state that contains a orientation and position at a given time k.

xk =
[
k
Gθ

Gp>k
]>

(2.1)

We have two types of measurements, wheel encoders that provides a local angular and linear
velocity at a given time, and a camera that gives bearing measurements to known landmarks.
Our equations are nonlinear in nature, thus special care needs to be taken to allow for their
incorporation into the Kalman filter framework. In general, a Gaussian distribution passed
through a nonlinear function is not Gaussian but can be approximated with one (assuming
small errors).

10

We define our wheel odometry measurements as follows:

uk = zm =

[
Lωm
Lvm

]
=

[
Lωk + nwk
Lvk + nvk

]
3×1

= zk + nk (2.2)

nwk ∼ N (0, σ2
w) and nvk ∼ N (0, σ2

v) and nk ∼ N (0,Qd) (2.3)

Qd =

[
σ2
w 0
0 σ2

v

]
2×2

(2.4)

We start by defining our propagation as a function of the current state and some noise.

xk+1 = f(xk,uk,nk) (2.5)

We can then define our state propagation equations as follows:

f(xk,uk,nk) =

k
Gθ + (Lωm)∆t

Gpxk + cos(kGθ)(
Lvm)∆t

Gpyk + sin(kGθ)(
Lvm)∆t

−
 (nwk)∆t

cos(kGθ)(nvk)∆t

sin(kGθ)(nvk)∆t

 (2.6)

We can try to take the expectation of this state, but we can see from the definition of a
matrix exponential this is extremely hard. We would need to integrate the nonlinear equation
multiplied against the equation of a Gaussian distribution (where p(x) is the probability
density function of f(x)).

E[f(x)] =

∫ ∞
−∞

f(x)p(x)dx (2.7)

=

∫ ∞
−∞

f(xk,uk,nk)p(xk,uk,nk)dxdudn (2.8)

So to allow us to take the expectation, we linearize using a first order Taylor series expan-
sion. This is an example of a Extended Kalman Filter where we linearize at each timestep.
Linearization causes a loss of accuracy, normally called linearization errors. We linearize our
function as follows:

xk+1 = f(xk,uk,nk) (2.9)

= f(x̂k,uk, n̂k) +
∂f

∂xk

∣∣∣
x̂k,uk,n̂k

(xk − x̂k) +
∂f

∂nk

∣∣∣
x̂k,uk,n̂k

(nk − n̂k) + H.O.T (2.10)

≈ f(x̂k,uk, n̂k) + Hx(xk − x̂k) + Hn(nk − n̂k) (2.11)

≈ f(x̂k,uk, 0) + Hx(xk − x̂k) + Hnnk (2.12)

where H.O.T stands for the higher order terms that we drop and are known as our linearization

11

error. We can then take the expectation of this linearized system to get our propagated state:

E [xk+1] = E [f(x̂k,uk, 0) + Hx(xk − x̂k) + Hnnk] (2.13)

= f(x̂k,uk, 0) + 0 + 0 (2.14)

x̂k+1 =

k
Gθ̂ + Lωm∆t

Gp̂xm + cos(kGθ̂)
Lvm∆t

Gp̂ym + sin(kGθ̂)
Lvm∆t

 (2.15)

Where in our example using a wheel encoder, we can compute the following Jacobians:

Hx =
∂f

∂xk

∣∣∣
x̂k,uk,n̂k

(2.16)

=

∂f1
∂kGθ

∂f1
∂Gpxk

∂f1
∂Gpyk

∂f2
∂kGθ

∂f2
∂Gpxk

∂f2
∂Gpyk

∂f3
∂kGθ

∂f3
∂Gpxk

∂f3
∂Gpyk

3×3

(2.17)

=

1 0 0

−sin(kGθ̂)(
Lvm)∆t 1 0

cos(kGθ̂)(
Lvm)∆t 0 1

3×3

(2.18)

Hn =
∂f

∂nk

∣∣∣
x̂k,uk,n̂k

(2.19)

=

∂f1
∂nwk

∂f1
∂nvk

∂f2
∂nwk

∂f2
∂nvk

∂f3
∂nwk

∂f3
∂nvk

3×2

(2.20)

=

∆t 0

0 cos(kGθ̂)∆t

0 sin(kGθ̂)∆t

3×2

(2.21)

2.2 Propagation of Covariance Matrix

We can use our approximated mean value to compute the covariance.

xk+1 ≈ f(x̂k,uk, 0) + Hx(xk − x̂k) + Hnnk (2.22)

≈ x̂k+1 + Hx(xk − x̂k) + Hnnk (2.23)

From this linearization we can now rearrange to get the our desired residual:

xk+1 − x̂k+1 ≈ Hx(xk − x̂k) + Hnnk (2.24)

12

Thus we have the following for the covariance calculation:

Pk+1 = E
[
(xk+1 − x̂k+1)(xk+1 − x̂k+1)>

]
(2.25)

≈ E
[(

Hx(xk − x̂k) + Hnnk
)(

Hx(xk − x̂k) + Hnnk
)>]

(2.26)

≈ E
[
Hx(xk − x̂k)(xk − x̂k)

>H>x + Hx(xk − x̂k)n
>
k H>n

+ Hnnk(xk − x̂k)
>H>x + Hnnkn

>
k H>n

]
(2.27)

≈ HxE
[
(xk − x̂k)(xk − x̂k)

>
]
H>x + HnE

[
nkn

>
k

]
H>n (2.28)

≈ Hx PkH
>
x + Hn QdH

>
n (2.29)

Where Qd is the discrete noise covariance matrix, and our Jacobians Hx,Hn are from the
Taylor series expansion. Thus we now know how to propagate our covariance matrix. We
have the following final equations:

x̂k+1 =

k
Gθ̂ + Lωm∆t

Gp̂xm + cos(kGθ̂)
Lvm∆t

Gp̂ym + sin(kGθ̂)
Lvm∆t

 (2.30)

Pk+1 ≈ Hx PkH
>
x + Hn QdH

>
n (2.31)

2.3 Notes about Comparing to Linear Filter

One of the more interesting observations is that the final form for the covariance propagation
is very similar to the linear propagation.

Linear : Pk+1 = Φk PkΦ
>
k + GkQdG

>
k (2.32)

Nonlinear : Pk+1 ≈ Hx PkH
>
x + HnQdH

>
n (2.33)

We can define the following to make them symmetric:

Φk = Hx (2.34)

Gk = Hn (2.35)

13

2.4 State Update with Measurement

Figure 2.2: Pictorial view of a bearing measurement to a known feature. The
position of the landmark is known in the global frame of reference. The robot

has measured a θ “bearing” of the feature relative to its own frame. The
location and orientation of the robot is also known.

To correct our state, we have a camera that is able to detect known landmarks in the en-
vironment. This provides a bearing measurement that can be used to correct our current
estimated state. Following the logic of the discrete linear filter, we will first define what is the
measurement we get:

zm = Rθm = Rθk + nk = zk + nk (2.36)

where nk ∼ N (0, σ2
θ) (2.37)

14

Figure 2.3: Pictorial view of a bearing measurement angles. Both L
Gθ and k

Gθ are
known from the prior map and current true state.

From here we need to define how this measurement is a function of the state. Unlike the a
linear mapping, this measurement is nonlinear thus we define it as the following:

zm = h(xk,
GpL,nk) (2.38)

where GpL is the known position of the feature in the global frame, and we have:

h(xk,
GpL,nk) = zk + nk (2.39)

= L
Gθ − k

Gθ + nk (2.40)

= atan2[(GpyL − GpyR), (GpxL − GpxR)]− k
Gθ + nk (2.41)

Similar to the propagation procedure, if we wanted to calculate the expectation of this we
would be unable to (ẑm = E[h(xk, nk)] =??). Thus we approximate using a Taylor’s series
expansion to linearize about the current estimate mean.

zm = h(xk,
GpL,nk) (2.42)

= h(x̂k,
GpL, n̂k) +

∂h

∂xk

∣∣∣
x̂k,GpL,n̂k

(xk − x̂k) +
∂h

∂nk

∣∣∣
x̂k,GpL,n̂k

(nk − n̂k) + H.O.T (2.43)

≈ h(x̂k,
GpL, n̂k) + Hx(xk − x̂k) + Hn(nk − n̂k) (2.44)

≈ h(x̂k,
GpL, 0) + Hx(xk − x̂k) + Hnnk (2.45)

where H.O.T stands for the higher order terms that we drop and are known as our lineariza-
tion error. We can then take the expectation of this linearized system to get our expected

15

measurement:

E [zm] ≈ E
[
h(x̂k,

GpL, 0) + Hx(xk − x̂k) + Hnnk
]

(2.46)

≈ h(x̂k,
GpL, 0) + 0 + 0 (2.47)

ẑm ≈ atan2[(GpyL − Gp̂yR), (GpxL − Gp̂xR)]− k
Gθ̂ (2.48)

In the example of a bearing measurement to a known landmark we can calculate the following
Jacobians:

Hx =
∂h

∂xk

∣∣∣
x̂k,GpL,n̂k

(2.49)

=

[
∂h

∂kGθ

∂h

∂Gpxk

∂h

∂Gpyk

]
1×3

(2.50)

=

[
−1

Gp̂yR − GpyL
(GpxL − Gp̂xR)2 + (GpyL − Gp̂yR)2

GpxL − Gp̂xR
(GpxL − Gp̂xR)2 + (GpyL − Gp̂yR)2

]
1×3

Hn =
∂h

∂nk

∣∣∣
x̂k,GpL,n̂k

(2.51)

=

[
∂h

∂nk

]
1×1

(2.52)

=
[
1
]
1×1

(2.53)

16

2.5 Update Covariance Values

Now we have the full measurement model linearized so we can use that in a standard update.
As seen in section 1.5 we just need to define three covariance matrices: Pxx, Pzz, and Pxz.

Pxx = Pk (2.54)

Pzz = E
[
(zm − ẑm)(zm − ẑm)>

]
(2.55)

= E
[
(Hx(xk − x̂k) + Hnnk)(Hx(xk − x̂k) + Hnnk)

>
]

(2.56)

= E
[
Hx(xk − x̂k)(xk − x̂k)

>H>x + Hx(xk − x̂k)n
>
k H>n

+ Hnnk(xk − x̂k)
>H>x + Hnnkn

>
k H>n

]
(2.57)

= HxE
[
(xk − x̂k)(xk − x̂k)

>
]
H>x + HnE

[
nkn

>
k

]
H>n (2.58)

= HxPxxH
>
x + HnRdH

>
n (2.59)

Pxz = E
[
(xk − x̂k)(zm − ẑm)>

]
(2.60)

= E
[
(xk − x̂k)(Hx(xk − x̂k) + Hnnk)

>
]

(2.61)

= E
[
(xk − x̂k)(xk − x̂k)

>H>x + (xk − x̂k)n
>
k H>n

]
(2.62)

= E
[
(xk − x̂k)(xk − x̂k)

>
]

H>x + E
[
(xk − x̂k)n

>
k H>n

]
(2.63)

= PxxH
>
x (2.64)

This gives the following equations that can be used for the update step:

x̂k|z = x̂k + PkH
>
x (HxPkH

>
x + HnRdH

>
n)−1(zm − ẑm) (2.65)

Pxx|z = Pk −PkH
>
x (HxPkH

>
x + HnRdH

>
n)−1HxP

>
k (2.66)

17

Chapter 3

Quaternion Example

3.1 Propagation of State with Noise

Following our example in the last problem we describe our state as a single orientation and
position (pose). We move to a 3D case that uses a quaternion as our angle representation.
Quaternions provide stability and convenience for integration and derivatives. We define our
state and measurement equation as follows:

xk =
[
I
Gq̄
> Gp>k

]>
(3.1)

In our system we get a local global velocity. It is important to note that we are not using
wheel encoders as this causes problems when performing estimation in 3D (for those interested
please look at [3]). An example sensor that will give us a 3D velocity is a Doppler Velocity
Log (DVL) which is used in underwater applications.

uk = zm =

[
Lωm
Lvm

]
=

[
Lωk + nwk
Lvk + nvk

]
6×1

= zk + nk (3.2)

nwk ∼ N (0,Qw) and nvk ∼ N (0,Qv) and nk ∼ N (0,Qd) (3.3)

Qw =

σ2
w 0 0
0 σ2

w 0
0 0 σ2

w

3×3

Qv =

σ2
v 0 0

0 σ2
v 0

0 0 σ2
v

3×3

Qd =

[
Qw 03×3

03×3 Qv

]
6×6

(3.4)

18

Next we define our “second order” dynamics for the system. These differential equations
define how our state evolves over time in the continuous time domain:

I
G

˙̄q =
1

2
Ω(Lωk) · IGq̄ (3.5)

=
1

2
Ω
(
Lωm − nwk

)
· IGq̄ (3.6)

Gṗk = R(kGq̄)
> · Lvk (3.7)

= R(kGq̄)
> ·
(
Lvm − nvk

)
(3.8)

where the Ω(·) operator is defined below and R(·) is the rotation matrix of the specified
quaternion.

Ω(ω) =

[
−bω×c ω
−ω> 0

]
4×4

(3.9)

3.2 Integration of Governing Equations

To use our equations we would like to integrate them so that we can find how the state changes
over our time interval. Generally, this can be written as:

xk+1 = f(xk,uk,nk,∆t) (3.10)

=

∫ ∆t

0
f ′(xk,uk,nk, τ) dτ (3.11)

=

∫ k+1

k
f ′(xk,uk,nk, τ) dτ (3.12)

To obtain this we take the expectation of our governing equations. We take the expectation
since we are interested in the new mean of the system which we will calculate by integrating
the differential equations. We could do the expectation later, but there is no definition of an
integral over Gaussian noise.

E
[
I
G

˙̄q
]

= I
G

˙̄̂q =
1

2
Ω
(
Lωm) · IG ˆ̄q (3.13)

E
[
Gṗk

]
= G ˙̂pk = R(kG ˆ̄q)> ·

(
Lvm

)
(3.14)

We first integrate the orientation using the closed form zero-th order quaternion integrator
(see [2], eq. 122).

Φ(k + 1, k) = exp

(
1

2
Ω
(
Lωm)∆t

)
(3.15)

= cos
(1

2

∣∣Lωm∣∣∆t) · I4×4 +
1

|Lωm|
sin
(1

2

∣∣Lωm∣∣∆t) ·Ω(Lωm) (3.16)

19

Giving us the following propagation:

k+1
G q̄ = Θ(∆t) · kGq̄ (3.17)

=

(
cos
(1

2

∣∣Lωm∣∣∆t) · I4×4 +
1

|Lωm|
sin
(1

2

∣∣Lωm∣∣∆t) ·Ω(Lωm)

)
· kGq̄ (3.18)

=

[
Lωm

|Lωm| sin
(

1
2

∣∣Lωm∣∣∆t)
cos
(

1
2

∣∣Lωm∣∣∆t)
]
⊗ k
Gq̄ (3.19)

From here we can integrate our position, note that it does not depend on any other elements
in the state (as compared to a normal MSCKF filter):

Gpk+1 = Gpk +

∫ k+1

k
R(τGq̄)

>Lvmdτ (3.20)

= Gpk + R(kGq̄)
>
[∫ k+1

k
R(τk q̄)

>dτ

]
Lvm (3.21)

To go forward we need to integrate a quaternion inside of a rotation matrix. We note that
velocity does not depend on τ thus only the quaternion needs to be integrated.

= Gpk + R(kGq̄)
>

∫ k+1

k
R

([
Lωm

|Lωm| sin
(

1
2

∣∣Lωm∣∣(τ − tk))
cos
(

1
2

∣∣Lωm∣∣(τ − tk))
])>

dτ

 Lvm (3.22)

= Gpk + R(kGq̄)
>

[∫ k+1

k
R

([
− Lωm

|Lωm| sin
(

1
2

∣∣Lωm∣∣(τ − tk))
cos
(

1
2

∣∣Lωm∣∣(τ − tk))
])

dτ

]
Lvm (3.23)

Using the property of a quaternion in a rotation matrix (see [2], eq. 93) R(q̄) = I3×3 −
2q4 bq×c+ 2 bq×c2 we get the following:

= Gpk + R(kGq̄)
>
[∫ k+1

k

(
I3×3

− 2 cos
(1

2

∣∣Lωm∣∣(τ − tk)) ⌊− Lωm
|Lωm|

sin
(1

2

∣∣Lωm∣∣(τ − tk))×⌋
+ 2

⌊
−

Lωm
|Lωm|

sin
(1

2

∣∣Lωm∣∣(τ − tk))×⌋2)
dτ

]
Lvm (3.24)

= Gpk + R(kGq̄)
>
[∫ k+1

k

(
I3×3

+
2

|Lωm|
cos
(1

2

∣∣Lωm∣∣(τ − tk)) sin
(1

2

∣∣Lωm∣∣(τ − tk)) ⌊Lωm×⌋
+

2

|Lωm|2
sin2

(1

2

∣∣Lωm∣∣(τ − tk)) ⌊Lωm×⌋2
)
dτ

]
Lvm (3.25)

20

Using a double-angle trig identity 2 sin(x) cos(x) = sin(2x) and half-angle identity sin2(x) =
1/2[1− cos(2x)] we get the following:

= Gpk + R(kGq̄)
>
[∫ k+1

k

(
I3×3

+
1

|Lωm|
sin
(∣∣Lωm∣∣(τ − tk)) ⌊Lωm×⌋

+
1

|Lωm|2
[
1− cos

(∣∣Lωm∣∣(τ − tk))] ⌊Lωm×⌋2
)
dτ

]
Lvm (3.26)

= Gpk + R(kGq̄)
>
[∫ k+1

k

(
I3×3

+
1

|Lωm|
sin
(∣∣Lωm∣∣(τ − tk)) ⌊Lωm×⌋

+

⌊
Lωm×

⌋2

|Lωm|2

− 1

|Lωm|2
cos
(∣∣Lωm∣∣(τ − tk)) ⌊Lωm×⌋2

)
dτ

]
Lvm (3.27)

= Gpk + R(kGq̄)
>
[
I3×3∆t

− 1

|Lωm|2

[
cos
(∣∣Lωm∣∣∆t)− cos

(
0
)] ⌊

Lωm×
⌋

+

⌊
Lωm×

⌋2

|Lωm|2
∆t

− 1

|Lωm|3

[
sin
(∣∣Lωm∣∣∆t)− sin

(
0
)] ⌊

Lωm×
⌋2
]
Lvm (3.28)

= Gpk + R(kGq̄)
>
[
I3×3∆t

+
1

|Lωm|2

[
1− cos

(∣∣Lωm∣∣∆t)] ⌊Lωm×⌋
+

⌊
Lωm×

⌋2

|Lωm|2
∆t−

⌊
Lωm×

⌋2

|Lωm|3
sin
(∣∣Lωm∣∣∆t)]Lvm (3.29)

Thus we get the following two equations for propagating our state:

21

k+1
G q̄ =

[
Lωm

|Lωm| sin
(

1
2

∣∣Lωm∣∣∆t)
cos
(

1
2

∣∣Lωm∣∣∆t)
]
⊗ k
Gq̄ (3.30)

Gpk+1 = Gpk + R(kGq̄)
>
[
I3×3∆t

+
1

|Lωm|2

[
1− cos

(∣∣Lωm∣∣∆t)] ⌊Lωm×⌋
+

⌊
Lωm×

⌋2

|Lωm|2
∆t−

⌊
Lωm×

⌋2

|Lωm|3
sin
(∣∣Lωm∣∣∆t)]Lvm (3.31)

3.3 Covariance Propagation

todo...lol..

22

Chapter 4

MSCKF Discussion

4.1 MSCKF Camera Cloning

Figure 4.1: Pictorial view of the a series of camera clones. The current IMU
frame is seen in red, while the sliding window of active camera clones can be

seen inside the square.

When we want to augment our state with a new camera clone we can use the following two
equations:

C
Gq̄ = I

C q̄
−1 ⊗ I

Gq̄ (4.1)

GpC = GpI + R(IGq̄)
> IpC (4.2)

To augment our covariance matrix we can construct a Jacobian for covariance propagation
which will map there current state values into the new state.

todo..add the derivations here...

23

∂CG ˜̄q

∂IG ˜̄q
= R(CI q̄) (4.3)

∂CG ˜̄q

∂Gp̃I
= 03×3 (4.4)

∂Gp̃C
∂IG ˜̄q

= −R(IGq̄)
> ⌊IpC×⌋ (4.5)

∂CG ˜̄q

∂Gp̃I
= I3×3 (4.6)

We can then use these to augment our covariance as follows:

P(15+6c+6)×(15+6c+6) =

[
I(15+6c)×(15+6c)

J

]
P(15+6c)×(15+6c)

[
I(15+6c)×(15+6c)

J

]>
(4.7)

J =

[
R(CI q̄) 03×9 03×3 03×6c

−R(IGq̄)
> ⌊IpC×⌋ 03×9 I3×3 03×6c

]
(4.8)

4.2 MSCKF Update with Measurement

MSCKF uses visual features tracked over a window for an update. These features that have
been tracked are used to first triangulate a point in 3D and then its position is optimized to
refine the feature’s 3D position. We can define a single feature measurement as follows:

uk = zm (4.9)

=

[
Cum
Cvm

]
2×1

(4.10)

=

[
Cuf + npix
Cvf + npix

]
2×1

(4.11)

= zk + nk (4.12)

where nk ∼ N (0,Rd) (4.13)

Rd =

[
σ2
pix 0

0 σ2
pix

]
2×2

(4.14)

where the frame {C} is the camera clone frame that the feature is seen from. We want to
“correct” the state with this measurement, so first we can see how incorrect the state is when
compared to this measurement. To do this we need to make sure that we have a mapping

24

from the state to the measurement (this is called our measurement function).

zm = zk + nk (4.15)

= h(xk,
Gpf) + nk (4.16)

= f(g(xk,
Gpf)) + nk (4.17)

where the nested functions are defined as the following:

g(xk,
Gpf) = R(CGq̄) · (Gpf − GpC) (4.18)

=

CpxfCpyf
Cpzf

 (4.19)

f(Cpf) =
1

Cpzf

[
Cpxf
Cpyf

]
2×1

(4.20)

It is difficult to take calculate the Jacobians of the full state. These would require derivatives of
quaternions which are messy and painful. A cleaner way is to look at our error state/residuals:

z̃m = zm − ẑm (4.21)

= rz (4.22)

x̃k = xk � x̂k (4.23)

= rx (4.24)

We can then define the state as a function of our error state:

xk = x̂k � x̃k (4.25)

We can now linearize in respect to our error state by first subsituting in, and then performing
a Taylor series expansion:

zm = h(xk,
Gpf) (4.26)

= h(x̂k � x̃k,
Gpf) (4.27)

= f(g(x̂k � x̃k,
Gpf)) + nk (4.28)

≈ f(g(x̂k � ˆ̃xk,
Gp̂f)) +

∂f

∂g

∣∣∣
g(x̂k�ˆ̃xk,Gp̂f)

∂g

∂x̃k

∣∣∣
ˆ̃xk,Gp̂f

(x̃k − ˆ̃xk)

+
∂f

∂g

∣∣∣
g(x̂k�ˆ̃xk,Gp̂f)

∂g

∂Gpf

∣∣∣
ˆ̃xk,Gp̂f

(Gpf − Gp̂f) + nk (4.29)

≈ f(g(x̂k � 0,Gp̂f)) +
∂f

∂g

∣∣∣
g(x̂k�0,Gp̂f)

∂g

∂x̃k

∣∣∣
0,Gp̂f

(x̃k − 0)

+
∂f

∂g

∣∣∣
g(x̂k�0,Gp̂f)

∂g

∂Gpf

∣∣∣
0,Gp̂f

(Gpf − Gp̂f) + nk (4.30)

25

≈ f(g(x̂k,
Gp̂f)) + HfgHgx(x̃k) + HfgHgp(

Gpf − Gp̂f) + nk (4.31)

≈ f(g(x̂k,
Gp̂f)) + Hx(x̃k) + Hf (p̃f) + nk (4.32)

It is important to note here that the estimated state x̂k is a constant, and thus does not need
to be expanded about. We can then take the expectation of this linearized system to get our
expected measurement:

E [zm] ≈ E
[
f(g(x̂k,

Gp̂f)) + Hx(x̃k) + Hf (p̃f) + nk
]

(4.33)

ẑm ≈ f(g(x̂k,
Gp̂f)) + 0 + 0 + 0 (4.34)

From here the error state can be computed, so we can calculate the needed covariance matrices
needed for a Kalman filter update.

zm − ẑm ≈ Hx(x̃k) + Hf (p̃f) + nk (4.35)

z̃m ≈ Hxx̃k + Hf
Gp̃f + nk (4.36)

4.3 Update Jacobian Derivation

We performed the Taylor series expansion in respect to the error state so that we are able
to calculate our Jacobians easily. Specifically, the use of an error quaternion allows for easier
calculation of a derivative in respect to an quaternion angle.

todo..add the derivations here...

Hfg =

1 0 −
pxf
pz2
f

0 1 −
pyf
pz2
f

2×3

(4.37)

Hgx =
[
03×15 · · ·

⌊
R(CGq̄)(

Gpf − GpC)×
⌋
−R(CGq̄) · · ·

]
3×(15+6c)

(4.38)

Hgp =
[
R(CGq̄)

]
3×3

(4.39)

26

4.4 MSCKF Update with Nullspace Operation

As is, we can try to calculate the covariance matrices needed for the Kalman filter update.
We proceed as follows:

Pzz = E
[
(zm − ẑm)(zm − ẑm)>

]
(4.40)

= E
[
(Hxx̃k + Hf

Gp̃f + nk)(Hxx̃k + Hf
Gp̃f + nk)

>
]

(4.41)

= E
[
Hxx̃kx̃

>
k H>x + Hxx̃k

Gp̃>f H>f + Hxx̃kn
>
k

+ Hf
Gp̃f x̃

>
k H>x + Hf

Gp̃f
Gp̃>f H>f + Hf

Gp̃fn
>
k

+ nkx̃
>
k H>x + nk

Gp̃>f H>f + nkn
>
k

]
(4.42)

= HxE
[
x̃kx̃

>
k

]
H>x + HxE

[
x̃k

Gp̃>f

]
H>f + HfE

[
Gp̃f x̃

>
k

]
H>x + HfE

[
Gp̃f

Gp̃>f

]
H>f

+ HfE
[
Gp̃fn

>
k

]
+ E

[
nk

Gp̃>f

]
H>f + E

[
nkn

>
k

]
(4.43)

= HxPxxH
>
x + HxPxfH

>
f + HfPfxH

>
x + HfPffH

>
f

+ HfPfn + PnfH
>
f + Rd (4.44)

The problem here is that we do not know what the prior feature covariance and it is coupled
with both the state, itself, and the state noise (Pxf ,Pff , and Pnf). We are only estimating
the state covariance, thus do not have any records of this. This motivates the need for a
method to remove the feature location Gp̃f from our measurement equation (thus removing
the correlation between the measurement and its error).

We start with our measurement residual function and to remove the “sensivity” to feature
error we compute and apply the left nullspace of the Jacobian Hf . We can compute it using
QR decomposition as follows:

Hf =
[
Q1 Q2

] [R1

0

]
= Q1R1 (4.45)

1 ColPivHouseholderQR<Eigen::MatrixXd> qr(H_f.rows(), H_f.cols());

2 qr.compute(H_f);

3 Eigen::MatrixXd Q = qr.householderQ();

4 Eigen::MatrixXd Q1 = Q.block(0,0,3,3);

5 Eigen::MatrixXd Q2 = Q.block(0,3,Q.rows(),Q.cols()-3);

27

This means we can do the following:

z̃m ≈ Hxx̃k + Hf
Gp̃f + nk (4.46)

z̃m ≈ Hxx̃k + Q1R1
Gp̃f + nk (4.47)

Q2
>z̃m ≈ Q2

>Hxx̃k + Q2
>Q1R1

Gp̃f + Q2
>nk (4.48)

Q2
>z̃m ≈ Q2

>Hxx̃k + Q2
>nk (4.49)

z̃o ≈ Hox̃k + no (4.50)

We can compute the new size of these covariances by looking at the properties of the nullspace.

size(Hf) = 2n× 3 where n is the number of features (4.51)

size(Gp̃f) = 3× 1 (4.52)

size(Hx) = 2n× 15 + 6c where c is the number of clones (4.53)

size(x̃k) = 15 + 6c× 1 where c is the number of clones (4.54)

Looking at the left nullspace we have the following:

x>Hf = 0> (4.55)

(1× 2n)(2n× 3) = (1× 3) (4.56)

rank(Hf) ≤ min(2n, 3) = 3 where equality holds in most cases (4.57)

nullity(Hf) = size(x)− rank(Hf) (4.58)

= 2n− 3 assuming we have full rank (4.59)

Thus we can say the following about our sizes when the nullspace is applied:

Q2
>z̃m ≈ Q2

>Hxx̃k + Q2
>nk (4.60)

(2n− 3× 2n)(2n× 1) = (2n− 3× 2n)(2n× 15 + 6c)(15 + 6c× 1) + (2n− 3× 2n)(2n× 1)

z̃o ≈ Hox̃k + no (4.61)

(2n− 3× 1) = (2n− 3× 15 + 6c)(15 + 6c× 1) + (2n− 3× 1) (4.62)

x̂k|z = x̂k + PkH
>
o (HoPkH

>
o + Ro)

−1(zm − ẑm) (4.63)

Pxx|z = Pk −PkH
>
o (HoPkH

>
o + Ro)

−1HoP
>
k (4.64)

28

4.5 MSCKF Measurement Compression

One of the most costly elements in a state update is the matrix multiplication. The idea of
measurement compression is to reduce the size of the measurement Jacobian and residual.
We can perform the following QR decomposition:

Ho =
[
Q1 Q2

] [R1

0

]
(4.65)

We can then apply it as follows:

z̃o ≈ Hox̃k + no (4.66)

z̃o ≈
[
Q1 Q2

] [R1

0

]
x̃k + no (4.67)

[
Q1
>

Q2
>

]
z̃o ≈

[
Q1
>

Q2
>

] [
Q1 Q2

] [R1

0

]
x̃k +

[
Q1
>

Q2
>

]
no (4.68)

[
Q1
>z̃o

Q2
>z̃o

]
≈
[
R1

0

]
x̃k +

[
Q1
>no

Q2
>no

]
(4.69)

We can see that nothing on the bottom is dependent on the state, thus is not useful to either
compute, nor needed in the update. This means we get the following final equations:

Q1
>z̃o ≈ R1x̃k + Q1

>no (4.70)

z̃n ≈ Hnx̃k + nn (4.71)

We can see that the final size (in worst case) will be the size of the state. Thus we can use
the above equation as our Jacobian in our update step.

x̂k|z = x̂k + PkH
>
n (HnPkH

>
n + Rn)−1(zm − ẑm) (4.72)

Pxx|z = Pk −PkH
>
n (HnPkH

>
n + Rn)−1HnP

>
k (4.73)

29

Bibliography

[1] Mike Brookes. “The matrix reference manual”. In: Imperial College London (2005).
url: http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html.

[2] Nikolas Trawny and Stergios I Roumeliotis. “Indirect Kalman filter for 3D attitude
estimation”. In: University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep 2
(2005), p. 2005.

[3] Kejian J Wu et al. “VINS on Wheels”. In: Robotics and Automation (ICRA), 2017
IEEE International Conference on. IEEE. 2017, pp. 5155–5162.

30

