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Abstract

In this paper we generalize Vasicek’s Asymptotic Single Risk Factor (ASRF) solu-
tion to multiple factors organized with a particular hierarchical structure. We use this
model to investigate credit portfolio loss. In this hierarchical factor model, asset returns
of a company depend on a global factor, a sector factor, and an idiosyncratic risk factor.
All companies share the same global factor and all companies within a sector share the
same sector factor. Using the central limit theorem, we derive closed form solutions for
the Value-at-Risk (VaR) and expected shortfall (ES) under the assumptions that the
number of sectors in the portfolio is large, and the exposures scale as the reciprocal of
the number of sectors. Our results for the VaR agree well with Monte-Carlo simulations
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providing the sector factor loadings and variance of systematic risk are not too large.

Keywords: Vasicek Model; Asymptotic Single Risk Factor; Factor Models; Correlated
Default; Credit Portfolio

1 Introduction

Credit portfolios are portfolios of fixed-income investment products such as bonds, loans,
and credit derivatives. Fixed-income investment products provide the investor with a steady
stream of cash inflow (e.g. in form of interest payments) during the lifetime of the product.
The trade-off is limited upward potential for gain of the portfolio. Banks, insurance compa-
nies and other financial institutions regularly maintain and manage large numbers of credit
portfolios. The main risk associated with such portfolios is when a debtor defaults on its obli-
gation. Although such an event is rare, a single default often means that the entire portfolio
goes to loss. Therefore, investors in credit portfolios need systematic methods to analyze the
associated risk and to create financial instruments to insure against losses, should they arise.
The management of credit risk is a vital area of research within quantitative finance; see for
example Bohn and Stein (2009); Denault (2001); McNeil et al. (2010); Servigny and Renault
(2004).

It is well-known that companies do not default independently from each other (Lucas,
1995). One common way of modeling correlated company defaults is through factor models,
(Bluhm et al., 2010; Schönbucher, 2001; Burtschell et al., 2009). In these models, a represen-
tation for the asset return of a company is specified in terms of random variables. When the
asset return drops below a given threshold, the company defaults. Correlation in company
default is included by allowing the random variables to share common factors. Factor models
are studied and commonly employed by companies such as Moody’s KMV (Crouhy et al.,
2000) and the RiskMetrics group (Gordy, 2003).

The Vasicek credit model (Vasicek, 1987) provides a simple analytic solution for a portfolio
containing identical companies that are coupled to a single global factor. While Vasicek’s
Asymptotic Single Risk Factor (ASRF) solution is simple to derive, it also can be easily
extended to the heterogeneous case and importantly, forms the foundation of the Basel
accords for bank capital requirements (Basel Committee on Banking Supervision, 2006).
Other authors have extended the ASRF model to account for uncertainty over loss given
default (Kupiec, 2008) and multiple global risk factors (Schönbucher, 2001; Pykhtin, 2004).

In this paper, we propose and validate an analytic formula for the loss distribution of a
credit portfolio, assuming a hierarchical multi-factor model. In such a model, all companies
have exposure to a global risk factor; in addition, companies in a given sector are subject to
a local risk factor. Thus it may be regarded as a simple extension of the ASRF model to
an economically intuitive multi-factor case. Since our loss formula can be written entirely in
terms of elementary and special functions, it is much quicker to evaluate than Monte-Carlo
simulations which are often time consuming and computationally expensive. Our derivation
involves analyzing the sector loss and then applying the central limit theorem to all the
sectors. It is similar to saddle point methods (Huang et al., 2007; Jensen, 1995; Lugannani
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Figure 1: Hierarchical factor model of company asset returns within a global economy with
N = 3 sectors and n = 3 companies per sector. Every company participates in a global
economy and belongs to exactly one sector. Each company’s asset return zij is affected by a
global factor ε̂, a sector factor εi and an idiosyncratic factor ζij (not shown). See eq. (1).

and Rice, 1980) in the sense that both methods approximate sums of random variables
through asymptotic formulas.

The layout of this paper is as follows. In section 2, we introduce the hierarchical factor
model for a firm’s value and set up the portfolio in terms of individual companies and their
default probabilities. In section 3, we derive the value-at-risk (VaR) for a portfolio coupled
to a hierarchical factor model. In section 4 we compare our solutions for the VaR with Monte
Carlo simulations. We conclude the paper in section 5.

2 Portfolio Pricing in a Localized 1-Factor Model

One critical issue that determines the value of credit portfolios is the default correlation
among companies (Schönbucher, 2001). Although the default probability of a company may
be very small, defaults between companies are often correlated. Factor models incorporate
the correlation among asset returns explicitly by assuming that they are driven byM shared
“factors” which are modeled as independent random variables. For example, in an M =
2 factor model, these shared factors could represent the state of a country’s economy (a
recession negatively impacts all companies in that country), or the price of a resource (a
lower price would lower the expenses of all companies that use the resource). All asset
returns in an M = 2 factor model would be influenced by the country’s economy and the
price of the resource.

In this paper we restrict our attention to hierarchical (or ‘localized’) factor models which
have the advantage of being simple, yet economically intuitive. In such models, the asset
return for a company depends on a global factor that is shared by all companies and exactly
one of N other sector factors: see Fig. 1. Hence, all companies are correlated through the
global factor and all companies in the same sector are further correlated. Although in this
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paper our model partitions a portfolio into different industrial sectors, our approach can also
be applied to partitions of geography and size buckets.

Specifically, using a Merton model for a firm’s value (Merton, 1974), we consider a special
case of a N +1 factor model where the normalized asset return of the jth company in sector
i is given by

zij =
√
ρij(β̂ij ε̂+ βijεi) +

√
1− ρijζij, i = 1, . . . , N, j = 1, . . . , n, (1)

and 0 < ρij < 1, 0 < βij, β̂ij < 1. In this model, the asset returns are normalized so that

Var(zij) = 1, i.e. β̂2
ij + β2

ij = 1. The β̂ij and βij are the global and sector factor loadings ;

knowledge of βij determines β̂ij and vice-versa. Since
√
ρij(β̂ij ε̂+βijεi) is the systematic risk,

ρij is the variance of systematic risk, ε̂ ∼ N (0, 1) is the global risk factor, {εi} ∼ N (0, 1)
are the N independent sector risk factors and {ζij} ∼ N (0, 1) are the N × n independent
idiosyncratic risk factors.

Although there are N +1 factors altogether, each company only depends on two of them.
Any two companies are always correlated at the global level, and possibly also at the sector
level. Specifically, we have

Corr(zij, zkl) =

{ √
ρijρklβ̂ijβ̂kl, if i ̸= k,

√
ρijρil(β̂ijβ̂il + βijβil), if i = k.

(2)

In other words, the asset returns of any two companies are always correlated through their
global factor loadings. If the companies also happen to be in the same sector, they are further
correlated through their sector factors.

We point out that the hierarchical factor model for the company’s asset return (1) is a
special case of a multi-factor model where all companies are influenced (in various degrees)
by multiple systematic risk factors. This general case has been studied by Pykhtin (2004);
his approach is to optimally approximate the multifactor model by carefully choosing the
factor loadings in the single factor model. In our approach, we assume a simpler structure
for the company’s asset return from the very beginning. In return, we obtain an analytic
solution which is simple to evaluate, and is exact in the limit as N → ∞.

We assume that a company defaults if its asset return zij drops below a threshold value
θij. In principle all companies within the global economy could have different thresholds and
details of how to determine them can be found in Crosbie and Bohn (1999). Over a fixed
time horizon, we may write the loss on the portfolio as

Rπ =
N∑
i=1

n∑
j=1

wijRij(zij), (3)

where the exposures wij > 0 satisfy
∑N

i=1

∑n
j=1wij = 1. More dynamic evolution models

that explicitly account for the Brownian nature of a firm’s value are studied in Huh and
Kolkiewicz (2008); Hurd (2009); Li (2000). We model the portfolio loss as a mixture of
Bernoulli random variables (Joe, 1997) by assuming a constant percentage loss given default
(LGD):

Rij(zij) =

{
0, if zij > θij,
c, if zij ≤ θij,

(4)
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where 0 < c ≤ 1. As a consequence, 0 ≤ Rπ ≤ c. Because the idiosyncratic factor is
unit-normally distributed, the conditional probability of default for company j in sector i is

Prob(zij < θij| ε̂, εi) = pij(εi, ε̂) = Φ

[
θij −

√
ρij(β̂ij ε̂+ βijεi)√
1− ρij

]
, (5)

where Φ(z) = 1
2

[
1 + erf

(
z√
2

)]
. Throughout this paper, we use ϕ(z) = Φ′(z) = exp[−z2/2]/

√
2π.

As a simple corollary to (5), since
∫∞
−∞ Φ(a+ bε)ϕ(ε)dε = Φ(a/

√
1 + b2) for constants a and

b, the (unconditional) default probability of the jth company in sector i is

PDij = Prob(zij < θij) =

∫ ∞

−∞

∫ ∞

−∞
Φ

[
θij −

√
ρij(β̂ij ε̂+ βijεi)√
1− ρij

]
ϕ(ε̂)ϕ(εi)dε̂dε̂i,

= Φ(θij). (6)

Hence, the default probability is uniquely determined by specifying the threshold value θij.
Implementation of the factor model now requires knowledge of the numerical values of βij,

β̂ij, ρij and θij. The exposures wij can be chosen by the user of the model, or taken from the
call reports of banks which can be found from the website of the Federal Deposit Insurance
Corporation (FDIC). The θij are related to the default probabilty through eq. (6) and the
default probabilities can be inferred from the credit rating of a firm (Crouhy et al., 2000).
The correlation terms β̂ij, β̂ij and ρij are more difficult to obtain, but correlation matrices
can usually be found empirically through historical data. See Andersen et al. (2003) for more
details.

3 Loss Distribution for the Portfolio

The main result in this section is a derivation for the Value-at-Risk (VaR) for Rπ in (3). In
our analysis we assume that the number of sectors is large: N ≫ 1 and the positive exposures
wij = O(N−1) as N → ∞. Although the N ≫ 1 assumption may be somewhat unrealistic,
the value of N does depend on how the loans are grouped together. If historical data and
economic intuition can allow a different grouping with a larger N , this would be lead to a
more accurate model, according to the analysis in this paper. The number of companies per
sector n is typically very large (perhaps n & 1000), but this is not a necessary requirement
for our approximations to hold.

We first provide some preliminary results for the moments of Rπ before proving the main
theorem.

Lemma 1. Let Rπ =
∑N

i=1

∑n
j=1wijRij(zij) where Rij(·) satisfies eq. (4). Furthermore, let

Yi =
∑n

j=1wijRij(zij), i = 1, . . . , N be the sector losses so that Rπ =
∑N

i=1 Yi and let the
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exposures wij = O(N−1) as N → ∞. Define the conditional moments

µi(ε̂, εi) = E[Yi|ε̂, εi], (7)

σ2
i (ε̂, εi) = V [Yi|ε̂, εi], (8)

mi(ε̂) = E[Yi|ε̂], (9)

s2i (ε̂) = V [Yi|ε̂], (10)

m(ε̂) = E[Rπ|ε̂], (11)

s2(ε̂) = V [Rπ|ε̂]. (12)

Then, as N → ∞, the conditional means satisfy

µi(ε̂, εi) = c
n∑
j=1

wijΦ

[
Φ−1(PDij)−

√
ρij(ε̂β̂ij + εiβij)√

1− ρij

]
= O(N−1), (13)

mi(ε̂) = c

n∑
j=1

wijΦ

Φ−1(PDij)−
√
ρij ε̂β̂ij√

1− ρij + β2
ijρij

 = O(N−1), (14)

m(ε̂) = c
N∑
i=1

n∑
j=1

wijΦ

Φ−1(PDij)−
√
ρij ε̂β̂ij√

1− ρij + β2
ijρij

 = O(1), (15)

while the conditional variances scale as

σ2
i (εi, ε̂) = O(N−2), (16)

s2i (ε̂) = O(N−2), (17)

s2(ε̂) = O(N−1). (18)

Proof. Conditioned on ε̂ and εi, the Rij(zij) are independent (scaled) Bernoulli random
variables, so eq. (13) follows from

µi(ε̂, εi) =
n∑
j=1

wijE[Rij(zij)] = c

n∑
j=1

wijpij,

= c
n∑
j=1

wijΦ

[
Φ−1(PDij)−

√
ρij(ε̂β̂ij + εiβij)√

1− ρij

]
= O(N−1),

using eqs. (5) and (6). Eq. (14) follows from mi(ε̂) =
∫∞
−∞ µi(ε̂, εi)ϕ(εi)dεi and eq. (15)

follows from m(ε̂) =
∑N

i=1mi(ε̂). Now we prove eqs. (16)-(18). Conditioned on ε̂ and εi,
the Rij(zij) are again independent (scaled) Bernoulli random variables. With the shorthand

pij(ε̂, εi) = Φ

[
θij−

√
ρij(β̂ij ε̂+βijεi)√

1−ρij

]
, eq. (16) follows from σ2

i (ε̂, εi) = c2
∑n

j=1w
2
ijpij(ε̂, εi)[1 −
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pij(ε̂, εi)] = O(N−2), eq. (17) follows from

s2i (ε̂) = E[Y 2
i |ε̂]− E[Yi|ε̂]2,

=

∫ ∞

−∞
E[Y 2

i |ε̂, εi]ϕ(εi)dεi −
(∫ ∞

−∞
E[Yi|ε̂, εi]ϕ(εi)dεi

)2

,

= c2
n∑
k=1

n∑
j=1

wijwik

∫ ∞

−∞
pij(ε̂, εi)pik(ε̂, εi)ϕ(εi)dεi −

{
c

n∑
j=1

wij

∫ ∞

−∞
pij(ε̂, εi)ϕ(εi)dεi

}2

,

= O(N−2),

and therefore eq. (18) immediately follows since s2(ε̂) =
∑N

i=1 s
2
i (ε̂).

Theorem 1. Let the normalized asset return of the jth company in sector i follow a hierar-
chical multi-factor model so that the correlated random variables zij satisfy

zij =
√
ρij(β̂ij ε̂+ βijεi) +

√
1− ρijζij, i = 1, . . . , N, j = 1, . . . , n, (19)

where 0 < ρij < 1, 0 < βij, β̂ij < 1, β2
ij + β̂2

ij = 1 and εi, ε̂ ∼ N (0, 1). Consider a portfolio

Rπ =
N∑
i=1

n∑
j=1

wijRij(zij), (20)

with exposures wij such that
∑N

i=1

∑n
j=1wij = 1 and wij = O(N−1) as N → ∞, where

Rij(zij) follows eq. (4): i.e. for some −∞ < θij < ∞, the company whose asset return
follows eq. (19) defaults when zij < θij, incurring a loss c. Then the Value-at-Risk (VaRq)
of the portfolio Rπ at risk level 0 ≤ q ≤ 1 satisfies the asymptotic relation

VaRq ∼ c
N∑
i=1

n∑
j=1

wijΦ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q)√
1− ρij + β2

ijρij

 . (21)

as N → ∞, where
VaRq = inf {x : q ≤ FRπ(x)} , (22)

and FRπ(·) is the cumulative density function of Rπ.

Proof. We write the loss of the portfolio as

Rπ =
N∑
i=1

Yi, Yi =
n∑
j=1

wijRij(zij), (23)

so that Yi is the total loss of all companies in sector i and Rπ is the loss summed over all
sectors. Conditioned on the global risk ε̂, the Yi, i = 1, . . . , N are independent random
variables and from the central limit theorem, their sum follows a normal distribution when
N ≫ 1: Rπ ≡

∑N
i=1 Yi ∼ N [m(ε̂), s2(ε̂)], where m(·) is given by eq. (15) and s2 obeys the
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scaling (18) (its explicit form is not required to derive (21)). The density for the loss of the
entire portfolio is given by the law of total probability:

fRπ(L) ∼
√
N

∫ ∞

−∞

ϕ(ε̂)√
2πŝ2(ε̂)

exp

{
−N [L−m(ε̂)]2

2ŝ2(ε̂)

}
dε̂, (24)

as N → ∞, where we have set s2 = ŝ2/N in light of eq. (18).
We now apply Laplace’s method to the integral in (24). Laplace’s method provides a way

to approximate integrals that contain a large parameter by analyzing the stationary point of
the integrand, and an overview of the method is given in the appendix. In particular we refer
to eq. (44) which approximates integrals of the form

∫ b
a
g(t) exp[−kψ(t)]dt for functions g and

ψ, with a, b ∈ R and k ≫ 1. Taking ψ(ε̂) = (L−m(ε̂))2/(2s2(ε̂)) and g(ε̂) = ϕ(ε̂)/
√

2πs2(ε̂),

the stationary point ε̂∗ satisfies ε̂∗ = m−1(L) and ψ′′(ε̂∗) = [m′(ε̂∗)/ŝ(ε̂∗)]2, so that

fRπ(L) ∼ ϕ(ε̂∗)

|m′(ε̂∗)|
, N → ∞. (25)

The cumulative density is

FRπ(L) ∼
∫ L

0

ϕ[ε̂∗(L′)]

−m′[ε̂∗(L′)]
dL′ = Φ[−m−1(L)]. (26)

From eq. (22), VaRq is just the inverse of the cumulative density function, i.e. for a given
confidence level 0 ≤ q ≤ 1, the Value-at-Risk, VaRq, is found by setting FRπ(L) = q and
solving for L:

L = m[−Φ−1(q)], (27)

⇒ VaRq ∼ c
N∑
i=1

n∑
j=1

wijΦ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q)√
1− ρij + β2

ijρij

 , (28)

as N → ∞.

Equation (28) is our main contribution for this paper. What are the errors associated
with this asymptotic approximation? There are actually two contributions. One is associated
with approximating the density of Rπ, conditioned on ε̂, with a Gaussian through the central
limit theorem. The other is associated with applying Laplace’s method to the integral in
(24): see the higher order term in eq. (44). The first error appears as an extra term under
the integral in (24): for large but finite N , fRπ |ε̂ would actually take the form of a Gaussian
plus a small correction (Berry, 1941; Esseen, 1942). The second gives rise to an additive
O(N−1) term in all of eqs. (25)-(28). By comparing our results for VaR with Monte Carlo
simulations in Fig. 2, we find that the dominant error term is in fact O(N−1):

VaRq = c

N∑
i=1

n∑
j=1

wijΦ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q)√
1− ρij + β2

ijρij

+O(N−1), (29)
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Figure 2: Error of analytic approximation (28), as defined by (30), scales as O(N−1) when
compared with Monte Carlo simulation and is independent of the number of companies
per sector n. Solid line has slope −1 in (a) and 0 in (b). Parameters used were c = 2,
wij = 1/(Nn), βij = 0.8, θij = −1.3, ρij = 0.7. Monte Carlo VaRs are found from 20,000
realizations.

asN → ∞. Therefore, either the two contributions are of the same order or the error incurred
by using Laplace’s method is dominant. Eq. (29) is confirmed numerically by comparing the
double sum with Monte Carlo simulations of the Value-at-Risk, VaR(num)

q . The error was
measured using the infinity norm over 0 ≤ q ≤ 0.99:

error = max
0≤q≤0.99

∣∣∣∣∣∣c
N∑
i=1

n∑
j=1

wijΦ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q)√
1− ρij + β2

ijρij

− VaR(num)
q

∣∣∣∣∣∣ . (30)

The compared portfolios in Fig. 2 are completely homogeneous (and therefore somewhat
artificial), but their purpose is to provide a benchmark result to deduce the scaling of the
error. Note there is no scaling with n – the errors in Fig. 2(b) arise from N being finite.

Once the approximation to the VaR has been obtained, related quantities such as the
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expected shortfall and expected shortfall contribution are easily approximated as

ESq =
1

1− q

∫ 1

q

VaRq′dq
′, (31)

∼
N∑
i=1

n∑
j=1

cwij
1− q

∫ 1

q

Φ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q′)√
1− ρij + β2

ijρij

 dq′, (32)

ESq,ij = wij
∂ESq
∂wij

, (33)

∼ cwij
1− q

∫ 1

q

Φ

Φ−1(PDij) +
√
ρijβ̂ijΦ

−1(q′)√
1− ρij + β2

ijρij

 dq′, (34)

as N → ∞.
Now consider the case where the parameters βij, ρij and θij are only sector dependent:

βij = βi, ρij = ρi and θij = θi for the sector index i. Then all companies within a sector are
statistically identical and one can consider a distribution of exposures that only depends on
the sector. Defining ŵi =

∑n
j=1wij, eq. (29) reduces to

VaRq = c
N∑
i=1

ŵiΦ

Φ−1(PDi) +
√
ρiβ̂iΦ

−1(q)√
1− ρiβ̂2

i

+O(N−1), (35)

where
∑N

i=1 ŵi = 1 and PDi = Φ(θi); compare with eq. (6). It is easy to show that when
n = 1 (recall that n does not have to be large for our approximations to be valid), eq. (35)
is identical to the VaR for N firms coupled to a single factor, with rescaled systematic and
idiosyncratic risks. In fact, eq. (1) implies that the asset return of each firm is given by

zi1 =
√
riε̂+

√
1− riηi, ri = ρi1β̂

2
i1, i = 1, . . . , N, (36)

with
√
1− riηi ≡

√
ρi1βi1ε1 +

√
1− ρi1ζi1 and ηi ∼ N(0, 1). Application of Vasicek’s formula

to (36) then yields (35). The general case with n identical companies in each sector also
collapses to the single-factor case because the first firm is representative of all firms in that
sector, and its asset return is described by eq. (36). When the sectors are homogeneous, the
hierarchical multi-factor model can in fact be treated as a single-factor model.

4 Results and Discussion

To validate our analytic approximation (28), we construct a proxy portfolio using exposure
data taken from the call report of a large bank (JPM, 2014) with N = 17 “sectors” (see Table
1). In this example, the sectors correspond to different types of institution that borrow from
the bank. For each of the sectors, we estimate sector default probabilities PDi and variances
of systematic risk ρ̄i. In this example, we also assume that the factor loadings are constant for
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every company. The PDi are estimated by assuming that large government institutions and
corporations are less likely to default than small companies and consumers. More accurate
values could come from the credit rating of these entities (Crouhy et al., 2000).

From the sector parameters ρ̄i, PDi and w̄i, we generate firm-level parameters by

ρij = ρ̄i + δρij, (37)

θij = Φ−1(PDi) + δθij, (38)

βij = constant, (39)

wij = w̄i/n, (40)

for i = 1, . . . , N , j = 1, . . . , n with δρij ∼ N(0, 10−4) and δθij ∼ N(0, 10−4). Therefore, each
of the 17 loans in Table 1 is subdivided equally into n = 1000 subloans, with corresponding
exposure w̄i/n. At the sector level, this portfolio is quite typical in the sense that the
distribution of exposures is “lumpy,” with the portfolio being dominated by a few large
loans, in this case to residential real estate (32%), US commercial and industrial companies
(14%) and non-depository/other institutions (16%).

i Loan Sector Exposure ($) w̄i (%) PDi ρ̄i

1 construction, land development 3,815 0.60 10−2 0.23
2 farmland 211 0.03 10−2 0.22
3 1-4 residential properties 203,246 32.17 10−2 0.25
4 5+ residential properties 45,090 7.14 10−2 0.21
5 nonfarm, non-residential 27,153 4.30 10−2 0.27
6 commercial US banks 3,157 0.50 10−3 0.15
7 banks in foreign countries 18,933 3.00 10−3 0.13
8 agricultural loans 788 0.12 10−2 0.12
9 US commercial/industrial 90,879 14.39 10−2 0.18
10 non-US commericial/industrial 33,624 5.32 10−2 0.28
11 credit cards 26,189 4.15 0.05 0.15
12 other revolving credit plans 2,584 0.41 0.05 0.17
13 automobile loans 41,517 6.57 0.05 0.21
14 other consumer loans 19,837 3.14 0.05 0.16
15 foreign governments 1,031 0.16 10−4 0.12
16 US states and subdivisions 12,680 2.01 10−4 0.17
17 non-depository and other inst. 101,000 15.99 10−2 0.15

Total 631,734 100.00

Table 1: Proxy credit portfolio motivated by exposures taken from a JP Morgan call report.
The three largest obligors are highlighted in bold face. Exposure dollar amounts are in
millions.

Because the firm-level parameters are small perturbations of the sector-level parameters
through eqs. (37)-(40), the correlation between two companies in sector i is approximately
given by ρ̄i and the correlation between companies in sector i and j (i ̸= j) is approximately
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√
ρ̄iρ̄jβ̂iβ̂j. The loading factors β̂i essentially control cross-sector correlations. For the pa-

rameters in Table 1, when β̂i = 0.95, firms in different sectors are correlated at about 11 –
25%, when β̂i = 0.87, they are correlated at about 9 – 21% and when β̂i = 0.6, they are
correlated at about 4 – 10%.

We now compare the Values-at-Risk predicted by eq. (28) with portfolio losses generated
by drawing random variables defined by (1). Our Monte Carlo (MC) simulations use n = 1000
companies per sector and 1000 trials to simulate the value of the portfolio at some risk level
q. In Figure 3, we see that the agreement is good providing the βij are not too large. As βij
increases from 0.3 to 0.5 to 0.8, our analytic approximation (28) becomes worse, particularly
for smaller values of q. The error bars for the Monte Carlo (MC) simulated VaR represent
99% confidence intervals. We see that for βij ≡ 0.3 and 0.5, the analytic solution is within the
intervals for q = 0.2, 0.4, 0.6 and 0.8. For large factor loading βij ≡ 0.8, there is a significant
departure from the MC simulations especially when q . 0.6.

The portfolio in Table 1 is fairly homogeneous in in terms of the systematic risk variance
ρi. Many portfolios of interest are more inhomogeneous in that they contain a few companies
or sectors whose defaults are very strongly correlated while the default of the majority of
the companies is only weakly correlated. In Table 2, we sharply increase the value of ρ̄i for
large institutions in the portfolio. Again, we test the analytic VaR of eq. (28) against MC
simulations when βij = 0.3, 0.5 and 0.8: see Figure 4 (note the βij in Table 2 are not used
for these results; they are used in the next set of simulations described below). As in the
first portfolio, the agreeement is good when βij = 0.3 or 0.5. In this portfolio, the firm-firm
correlations have a wide range, spanning about 14% - 97% when βij = 0.3, 12% – 97% when
βij = 0.5 and 6% – 97% when βij = 0.8. The strongest correlations are, of course, between
companies in the same sector and obligors belonging to US states and subdivisions are the
most strongly correlated in this portfolio. These institutions are responsible for the upper
bound of ≈ 97% in the correlation matrix since ρ16 = 0.97 in Table 2.

In Fig. 5(a), we plot the VaR for the portfolio in Table 2, relax the constant βij assumption
and instead generate them at the firm level through

βij = β̄i + δβij, (41)

where β̄i are taken from Table 2 and δβij ∼ N (0, 10−4). We choose the loading factors β̄i
to be closer to 0 for loans with larger exposures. Hence the three largest loans are assigned
β̄i = 0.05, loans with exposures between about 2% and 7% are assigned β̄i = 0.1 and the
remaining loans are assigned values from 0.8 to 0.9. The rationale is that we wish to mimic a
portfolio containing a few large loans whose defaults may be highly correlated with respect to
global risk. Therefore we choose the loading factors so that the corresponding firms are more
tightly coupled to ε̂. Now, with βij stochastically generated through (41), the agreement with
the MC simulated VaR is excellent for a large range of q values. The reason could be that
even though there are 6 sectors (construction, farmland, commercial US banks, agriculture,
revolving credit plans, foreign governments) that have large β̄i, the average factor loading
across all companies in the entire portfolio is small and we have seen from Figs. 3 and 4 that
our analytic solution performs better when firm factor loadings βij are small.

So far, our results have concentrated on a portfolio with N = 17 sectors. As discussed
before, the value of N depends on how loans are classified. Is the approximation (28) still
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Figure 3: Comparison of Values-at-Risk (VaR) generated through Monte Carlo (MC) simu-
lation (dashed red) and analytic approximation (solid blue) as determined by eq. (28). Error
bars for the MC simulations are 99% confidence intervals derived through 50,000 Bootstrap
samples. Parameters are taken from Table 1 with intra-sector correlations given by ρ̄i. Cross
sector correlations are 11 – 25% for (a), 9 – 21% for (b) and 4 – 10% for (c). (d-f): Distri-
bution of sector exposures, systematic risk variances and default probabilities.
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i Loan Sector Exposure ($) w̄i (%) PDi ρ̄i β̄i

1 construction, land development 3,815 0.60 10−2 0.33 0.8
2 farmland 211 0.03 10−2 0.32 0.9
3 1-4 residential properties 203,246 32.17 10−2 0.35 0.05
4 5+ residential properties 45,090 7.14 10−2 0.31 0.1
5 nonfarm, non-residential 27,153 4.30 10−2 0.37 0.1
6 commercial US banks 3,157 0.50 10−3 0.95 0.9
7 banks in foreign countries 18,933 3.00 10−3 0.93 0.1
8 agricultural loans 788 0.12 10−2 0.52 0.7
9 US commercial/industrial 90,879 14.39 10−2 0.48 0.05
10 non-US commericial/industrial 33,624 5.32 10−2 0.5 0.1
11 credit cards 26,189 4.15 0.05 0.15 0.1
12 other revolving credit plans 2,584 0.41 0.05 0.17 0.8
13 automobile loans 41,517 6.57 0.05 0.21 0.1
14 other consumer loans 19,837 3.14 0.05 0.16 0.1
15 foreign governments 1,031 0.16 10−4 0.92 0.8
16 US states and subdivisions 12,680 2.01 10−4 0.97 0.1
17 non-depository and other inst. 101,000 15.99 10−2 0.85 0.05

Total 631,734 100.00

Table 2: A more strongly correlated proxy credit portfolio motivated by exposures taken from
a JP Morgan call report. The three largest obligors are highlighted in bold face. Exposure
dollar amounts are in millions.

i Loan Sector w̄i (%) PDi ρ̄i β̄i

1 Real Estate 44.25 10−2 0.33 0.39
2 Depository Institutions and Banks 3.5 10−3 0.94 0.5
3 Agricultural Loans 0.12 10−2 0.52 0.7
4 Commercial/Industrial Loans 19.71 10−2 0.49 0.075
5 Consumer Loans 14.27 0.05 0.32 0.45
6 Foreign Governments 0.16 10−4 0.92 0.8
7 US States and Subdivisions 2.00 10−4 0.97 0.1
8 Non-depository and other institutions 15.99 10−2 0.85 0.05

Total 100.00

Table 3: Portfolio containing N = 8 sectors, based on a grouping together loans from Table
2.
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Figure 4: Comparison of Values-at-Risk (VaR) generated through Monte Carlo (MC) simu-
lation (dashed red) and analytic approximation (solid blue) as determined by eq. (28). Error
bars for the MC simulations are 99% confidence intervals derived through 50,000 Bootstrap
samples. Parameters are taken from Table 2 with intra-sector correlations given by ρ̄i. Cross
sector correlations are 14 – 87% for (a), 12 – 72% for (b) and 8 – 49% for (c). (d-f): Distri-
bution of sector exposures, systematic risk variances and default probabilities.
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accurate when N is reduced? In Table 3, we reduce N by grouping together loans that
are economically similar. For example, we group commericial US bank loans and loans to
foreign banks into a single “Depository Institutions and Banks” sector. This results in a new
portfolio with N = 8 sectors, with some of the new sectors encompassing several of the old
sectors in the N = 17 portfolio. The new sector exposures w̄i are sums of the exposures
in the old portfolio and the new PDi, ρ̄i and β̄i are averages of the parameters in the old
portfolio. In Fig. 5(b), we see that although the analytic approximation (28) becomes worse
for smaller values of q, it is still lies within the 99% confidence intervals for q & 0.4. In
particular, even though N = 8 is not “large,” the agreement between the analytic solution
and simulation results is still excellent for values of q close to 1.
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Figure 5: VaR for portfolios containing (a) N = 17 and (b) N = 8 sectors, corresponding to
Tables 2 and 3. Solid blue curve indicates analytic solution (28), dashed red curve indicates
Monte Carlo simulated values and error bars are 95% confidence intervals generated using
50,000 Bootstrap samples. Blue solid curve indicates analytic solution eq. (28).

We now compare the expected shortfall for MC simulated portfolios and the analytic ap-
proximation eq. (32). The analytic approximation is computed using a compound trapezoid
rule with 2501, 5001 and 10001 abscissae for q = 0.95, 0.90 and 0.80 respectively. The MC
expected shortfall ESq is computed by finding the mean loss conditioned on the loss being
larger than VaRq:

ESq = E[Rπ|Rπ > VaRq]. (42)

From Table 4, we see that our analytic approximation generally does a reasonable job in
predicting the expected shortfall for portfolios with small βij. For portfolios 1 and 2 and 4,
the relative error in ES is about 5-10%. When βij = 0.8, the ES disagree by up to 25%.

Finally, we try to formulate some guidelines for when our analytic approximation (28) is
valid: see Table 5. This table provides a range of factor loadings βij and risk variances ρij
within which the agreement between the analytic solution (28) and Monte Carlo simulated
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Portfolio 1: βij = 0.3 q = 0.95 q = 0.90 q = 0.80

ESq (analytic) 0.1172 0.0795 0.0519
ESq (MC) 0.1237 0.0848 0.0545
Portfolio 2: βij = 0.5

ESq (analytic) 0.1019 0.0720 0.0487
ESq (MC) 0.1123 0.0800 0.0527
Portfolio 3: βij = 0.8

ESq (analytic) 0.0631 0.0497 0.0377
ESq (MC) 0.0841 0.0611 0.0433
Portfolio 4: random βij

ESq (analytic) 0.1241 0.0825 0.0531
ESq (MC) 0.1396 0.0934 0.0591

Table 4: Comparison of Expected Shortfall (ES) at level q (average loss in the worst 100(1−
q)% of cases). Portfolios 1,2,3 have βij ≡ 0.3, 0.5, 0.8 respectively and other firm parameters
are generated through eqs. (37), (38) and (40). Portfolio 4 has βij generated through eq.
(41). All values are correct to 4 decimal places.

VaR is good. Specifically, a checkmark in the Table indicates that the analytic solution
lies within the 99% confidence intervals of the Monte Carlo solution at q = 0.1, 0.3, 0.5
and 0.7. The parameter values were generated using eqs. (37)-(40) with ρ̄i = ρ̄0 + 0.05Zi
where Zi ∼ N (0, 1). We set βij to be constant across all companies and sectors and the sector
default probabilities PDi = 0.0102 for all i. The sector exposures w̄i in eq. (40) are randomly
generated and there are n = 1000 companies per sector. We find that for portfolios with 17
sectors or more, our analytic approximation agrees with the MC simulations providing the
asset returns are not larger than about 0.3 and the loading factors βij are not larger than
about 0.7.

5 Conclusions

In this paper, we computed the Values-at-Risk (VaR) and Expected Shortfalls (ES) for a
bond portfolio under a hierarchical multi-factor model for the asset returns. Our main
results are eqs. (28) and (32) which are analytic approximations to the portfolio’s VaR and
ES, given a risk level 0 ≤ q ≤ 1. Our approximation to the VaR is written entirely in terms
of easy-to-compute special and elementary functions and represent an economically intuitive
extension of Vasicek’s ASRF result to multiple sectors. It is much quicker to compute than
predicting the VaRq through many trials of a Monte Carlo (MC) simulation. Our formulas
for the VaRq give good approximations to the loss as predicted by Monte Carlo simulations
when the sector factor loadings and systematic risk variances are not too close to 1. When
the sector factor loadings are increased, we find that our approximations deviate from MC
simulated VaRq for small values of risk level q.

Our approximations are able to account for asset-return correlations among companies
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βij 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρ̄0 = 0.1 X X X X
ρ̄0 = 0.2 X X X X
ρ̄0 = 0.3 X X X
ρ̄0 = 0.4 X
ρ̄0 = 0.5

βij 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρ̄0 = 0.1 X X X X X X X
ρ̄0 = 0.2 X X X X X X
ρ̄0 = 0.3 X X X X X
ρ̄0 = 0.4 X
ρ̄0 = 0.5

βij 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρ̄0 = 0.1 X X X X X X
ρ̄0 = 0.2 X X X X X X
ρ̄0 = 0.3 X X X X X
ρ̄0 = 0.4

Table 5: Comparison of analytic solution with Monte Carlo simulated VaR for N = 13 (top
rows), N = 17 (middle rows) and N = 23 (bottom rows) sector portfolios. A check mark
indicates that the analytic solution falls within the 99% confidence intervals for the simulated
VaR at q = 0.1, 0.3, 0.5, 0.7.

at a global and sector level. We derived the formulas by using the central limit theorem and
Laplace’s method to approximate the loss distribution conditioned on the global risk when
the number of sectors N is large, and then integrating over the global risk. The final analytic
approximations have a similar mathematical structure to the ASRF but explicitly feature
local and global factor loadings.

Although we have given some guidelines, in terms of model parameters, for when the
analytic solution (28) may be accurate, quantifying and understanding its accuracy in terms
of the correlation among firms is still an open question (the correlation matrix is easily found
from eq. (1)). Certainly, our result is exact in the limit as N → ∞, but for finite values
of N , we do not know which correlation matrices give good agreement between (28) and
simulation results, and which do not. We have found instances where the agreement is good
and there is a wide range of correlation among firms, and instances where the agreement is
poor and there is a narrow range of correlation among firms.

In summary, our work builds on current research in developing analytic and numerical
tools to study credit portfolios. We hope that it will motivate further studies to build analytic
approximations which could be accurate even for a very small number of sectors (say N = 3
or 4) and extreme parameter values.
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A Laplace’s method for evaluating integrals

In our calculation, we will employ Laplace’s method to approximate integrals. Here we briefly
review this method. Laplace’s method is a technique for asymptotically evaluating integrals
of the form

I(k) =

∫ b

a

g(t) exp[−kψ(t)]dt, (43)

when k ≫ 1. The method relies on the important fact that when k is large, most of the mass
of the integrand will be located around a stationary point t∗ where exp[−kψ(t)] is maximal,
or equivalently where ψ(t) is minimal: ψ′(t∗) = 0, ψ′′(t∗) > 0. When t∗ ∈ (a, b), we make the
approximations g(t) ≈ g(t∗) + g′(t∗)(t − t∗) + . . . and ψ(t) ≈ ψ(t∗) + ψ′′(t∗)(t − t∗)2/2 + . . .
to find that

I(k) ∼ e−kψ(t
∗)

√
2π

kψ′′(t∗)

{
g(t∗) +O

(
1

k

)}
, k → ∞. (44)

The first term on the right hand side of (44) is Laplace’s approximation to I(k). The second
term in the series can be used to give an error estimate of the first term. A full account
of Laplace’s method and smoothness conditions required for g and ψ can be found in many
texts such as Ablowitz and Fokas (1997); Olver (1997); Erdelyi (1956). An explicit form for
the O(k−1) term in (44) can be found in Bender and Orszag (2010).

B Matlab codes for Value-at-Risk evaluation

The Matlab code GenerateMatrices.m generates the model parameters wij, βij, θij and ρij
for the hierarchical multi-factor portfolios in this paper. The code MCsimulatedVaR.m is used
to simulate the Values-at-Risk using Monte Carlo simulation after calling GenerateMatrices.m
at the command prompt. Finally, AnalyticVaR.m is used to compute the analytic solu-
tion as given by eq. (28). The codes can also be found on the primary author’s website
http://udel.edu/~pakwing/MATLAB_codes/JCRcodes.txt.

function [w,beta,theta,rho,wvec,betavec,thetavec,rhovec] = GenerateMatrices(n)

% generate "reasonable" model parameters w_{ij}, \beta_{ij}, theta_{ij}, \rho_{ij}

% for a large bank like JP Morgan for N=17 sectors and

% specified n (# companies per sector). The w_{ij} are based on call report

% data

% N Loan type/sector

% 1 construction and land development

% 2 farmland

% 3 1-4 residential properties

% 4 5+ residential properties

% 5 nonfarm, non-residential

% 6 commercial US banks
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% 7 banks in foreign countries

% 8 agricultural loans

% 9 US commercial/industrial loans

% 10 non-US commercial/industrial loans

% 11 Credit Cards

% 12 Other revolving credit plans

% 13 automobile loans

% 14 other consumer loans

% 15 foreign governments

% 16 US states and subdivisions

% 17 non-depository financial institutions & other

wvec = [

0.006038934108343

0.000334001336005

0.321727182643328

0.071374977443038

0.042981697993143

0.004997356482317

0.029969892391418

0.001247360439679

0.143856433245638

0.053224933278880

0.041455739282673

0.004090329157525

0.065719115957033

0.031400874418664

0.001632016006737

0.020071739054729

0.159877416760852];

rhovec = [

0.3300

0.3200

0.3500

0.3100

0.3700

0.9500

0.9300

0.5200

0.4800

0.5000

0.1500

0.1700
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0.2100

0.1600

0.9200

0.9700

0.8500];

% rhovec = [

% 0.23

% 0.22

% 0.25

% 0.21

% 0.27

% 0.15

% 0.13

% 0.12

% 0.18

% 0.28

% 0.15

% 0.17

% 0.21

% 0.16

% 0.12

% 0.17

% 0.15

% ];

thetavec = [

-2.326347874040841

-2.326347874040841

-2.326347874040841

-2.326347874040841

-2.326347874040841

-3.090232306167814

-3.090232306167814

-2.326347874040841

-2.326347874040841

-2.326347874040841

-1.644853626951473

-1.644853626951473

-1.644853626951473

-1.644853626951473

-3.719016485455709

-3.719016485455709

-2.326347874040841];
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betavec = [

0.8000

0.9000

0.0500

0.1000

0.1000

0.9000

0.1000

0.7000

0.0500

0.1000

0.1000

0.8000

0.1000

0.1000

0.8000

0.1000

0.0500];

N=length(wvec);

w = zeros(N,n);

rho = zeros(N,n);

theta = zeros(N,n);

for i=1:N

w(i,:) = wvec(i)/n;

rho(i,:) = rhovec(i) + 0.01*randn(1,n);

theta(i,:) = thetavec(i) + 0.01*randn(1,n);

beta(i,:) = betavec(i) + 0.01*rand(1,n);

end

function [VaR,VaR_upper,VaR_lower,R_pi] = MCsimulatedVaR(rho,beta,theta,w,...

c,q,num_trials,confidence,qs)

%

% This function produces a Monte Carlo simulated VaR_q plot for the

% hierarchical multi-factor credit

% portfolio problem and generates error bars at values of q specified

% in the qs vector

%

% rho: matrix of asset return variances

% beta: matrix of factor loadings

% theta: matrix of threshold default values s.t. prob default =

% Phi(theta_{ij})

% w: matrix of exposures
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% c: loss given default (LGD). It’s a scalar e.g. c=1.

% q: vector of risk-values at which to evaluate VaR. Must be between

% 0 and 1 e.g. q = linspace(0,1,50)

%

% num_trials: number of portfolios to generate e.g. num_trials = 5000

% confidence: confidence values to create error bars. It’s a

% number between 0 (no confidence) and 1 (complete confidence).

% VaR: Values-at-Risk corresponding to q

% [VaR_upper,VaR_lower]: The upper and lower error bars for VaR,

% calculated using the bootstrap method

% qs: Values of q at which to calculate error bars e.g.

% qs = [0.2 0.4 0.6 0.8]

% R_pi: Portfolio loss for each of the num_trials trials

NNN = 50000; % number of bootstrap samples

beta_hat = sqrt(1-beta.^2);

% parameter values

[N,n] = size(rho); % N: number of sectors, n: number of companies per sector

R_pi = zeros(1,num_trials);

for i=1:num_trials

R_pi(i) = one_draw(rho,beta,beta_hat,theta,w,c,N,n);

end

P = zeros(NNN,length(qs));

for i=1:NNN

if mod(i,2000) == 0

sprintf(’Generating bootstrap samples: %d/%d’,i,NNN)

end

% generate num_trials random integers from [1:num_trials]

k = randi(num_trials,1,num_trials);

bootstrap_sample = R_pi(k);

P(i,:) = quantile(bootstrap_sample,qs);

end

alpha = (1-confidence)/2; % e.g. alpha = 0.05 for confidence_percentage = 0.9

VaR_lower = quantile(P,alpha);

VaR_upper = quantile(P,1-alpha);

VaR = quantile(R_pi,q); VaR(end) = 1;

semilogy(q,VaR,’r--’,’LineWidth’,2);

hold on;

for i=1:length(qs)

val(i) = (VaR_lower(i) + VaR_upper(i))/2;

errorbar(qs(i),val(i),val(i)-VaR_lower(i),VaR_upper(i)-val(i),’r-’,’LineWidth’,2);
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end

axis([0 1 1e-3 1e-1]);

h=gca;

set(h,’FontSize’,14,’FontName’,’Times’);

end

function R_pi = one_draw(rho,beta,beta_hat,theta,w,c,N,n)

% different rows of rho, beta etc. correspond to different sectors,

% following the convention in the paper

epsilon_hat = randn(1,1);

epsilon = kron(randn(N,1),ones(1,n));

Z1 = sqrt(rho) .* beta_hat*epsilon_hat;

Z2 = sqrt(rho) .* beta .* epsilon;

Z3 = sqrt(1-rho) .* randn(N,n);

Z = Z1+Z2+Z3;

LOSSES = c*(Z <= theta);

R_pi = sum(sum( w.*LOSSES ));

end

function VaR = AnalyticVaR(rho,beta,theta,w,c,q)

% provides analytic solution for N sectors and n companies per sector

% rho = A(:,1); beta = A(:,2); theta = A(:,3); w = A(:,4);

beta_hat = sqrt(1-beta.^2);

[N,n] = size(rho);

for i=1:length(q)

arg = ( theta + sqrt(rho).*beta_hat.*invPhi(q(i)) )./ (sqrt(1-rho+beta.^2.*rho));

VaR(i) = c*sum(sum(w.* Phi(arg)));

end

semilogy(q,VaR,’b-’,’LineWidth’,2); hold on;

xlabel(’q’,’FontSize’,14,’FontName’,’Times’,’FontAngle’,’italic’);

ylabel(’VaR_q’,’FontSize’,14,’FontName’,’Times’);

end

function out = Phi(x)

out = 1/2*(1+erf(x/sqrt(2)));

end

function out = invPhi(x)

out = sqrt(2)*erfinv(2*x-1);

end
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