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Growth of necrotic cores in atherosclerotic plaque
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Plaquesare fatty deposits that grow mainly in arteries and develop as a result of a chronic inflammatory
response. Plaques are characterized as ‘vulnerable’ when they have large internal regions of necrosis
and are heavily infiltrated by macrophages. The particular composition of a vulnerable plaque renders it
susceptible to rupture, which releases thrombogenic agents into the bloodstream and can result in myocar-
dial infarction. In this paper, we propose a mathematical model to predict the development of a plaque’s
necrotic core. By solving coupled reaction-diffusion equations for macrophages and dead cells, we fo-
cus on the joint effects of hypoxic cell death and chemoattraction to oxidized low-density lipoprotein
(Ox-LDL), a molecule that is strongly linked to atherosclerosis. We do not model the mechanical prop-
erties of the plaque, its growth or rupture. Our model predicts cores that have approximately the right
size and shape when compared to ultrasound images. Because our model is linear and autonomous, nor-
mal mode analysis and subsequent calculation of the smallest eigenvalue allow us to compute the times
taken for the necrotic core to form. We find that the spatial distribution of Ox-LDL within the plaque
determines not only the placement and size of cores, but their time of formation. Although plaques are
biochemically complex, our study shows that certain aspects of their composition can be predicted and
are, in fact, governed by simple physical models.

Keywords: plaque; atherosclerosis; necrosis.

1. Introduction

According to the American Heart Association, cardiovascular disease (CVD) affected about 80 million
Americans in 2006 and was responsible for 800,000 deaths. About 35% of all deaths in that year were
caused by CVD. The treatment of heart disease is a critically important issue and an outstanding problem
in health and medicine.

One common form of CVD is atherosclerosis which is a ‘furring’ of the artery walls leading to a
narrowing of the vessel lumen. It was originally thought that plaque build-up would make patients more
susceptible to myocardial infarction (MI) or heart attacks. However, doctors now think that the ‘rupture’
of certain plaques called thin-capped fibroatheromas (TCFAs) or ‘vulnerable plaques’ are responsible
for most fatalities. In one study (Davies, 1992), 73% of all deaths from MI were caused by plaque
rupture. This has led to the definition and characterization of vulnerable plaque (Virmani et al., 2007),
which is thought to be the major culprit behind MIs. Their study is the focus of this paper.

Vulnerable plaques are characterized by a thin fibrous cap and a necrotic core consisting of lipids,
dead cells and calcification. Plaques grow as a result of the body’s inflammatory response. Specifically,
high concentrations of low-density lipoprotein (LDL) are found in the blood of people who engage
in a high-fat diet. LDL is absorbed by endothelial tissue that lines the interior surface of all blood
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FIG. 1. Important biochemical processes in plaque growth. The plaque is shown as a swelling in the intimal region of the artery.
MCP1, macrophage chemotactic protein 1.

vessels and diffuses into the intima. There they can then be oxidized by free radicals to form a family
of compounds called Ox-LDL. When macrophages phagocytose Ox-LDL, they turn into the foam cell
phenotype (Shiffmanet al.,2000; Fig.1). Smooth muscle cells (SMCs) can also migrate into the plaque
from the underlying media. The death of SMCs, foam cells and macrophages all contribute to a necrotic
core, one of the defining characteristics of a vulnerable plaque.

The other defining characteristic is a thin fibrous cap which is typically<65 μm (Virmani et al.,
2000,2007;Vengrenyuket al.,2006). The major constituent of the cap is extracellular matrix (ECM).
Excretion of certain compounds called matrix metalloproteinases (MMPs) by macrophages and foam
cells degrade the ECM in the cap (Shah,2003), causing it to thin. A vulnerable plaque is more sus-
ceptible to rupture due to its thin cap and necrotic core. Upon rupture, tissue factor is released into the
bloodstream causing thrombosis and, in many cases, MI. This complicated sequence of events raises
some simple — but important — questions. Can we predict how plaques grow? What are the main
biological processes that determine the growth rate? Can their growth be suppressed? Can the formation
time for vulnerable plaque be predicted?

In this paper, we propose a biochemical model to describe the growth of a vulnerable plaque’s
necrotic core. We ignore blood flow, mechanical stresses within the plaque and remodelling in the artery
walls (treating them as static). Because our focus is on the biochemistry that occurs inside a plaque, we
do not consider plaque rupture. The model consists of a system of partial differential equations (PDEs)
that accounts for the effects of cell diffusion, death and chemotaxis. Although our equations make some
simplifications about the underlying processes that govern plaque growth, they nevertheless predict core
shapes and sizes that are consistent with photographs from the medical literature. Our main findings
are that (i) Ox-LDL chemotaxis can drive core growth, (ii) the spatial distribution of Ox-LDL within
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the plaque determines how rapidly cores develop and (iii) regions of the artery that are oxygen deficient
help to ‘suppress’ core growth.

2. Background

2.1 Plaque rupture and composition models

The mechanisms behind plaque rupture are only just beginning to be understood. In plaques, a fibrous
‘cap’ physically separates the the plaque’s contents (lipids, necrotic material, etc.) from the blood-
stream. The propensity for a plaque to rupture depends largely on the properties of the cap: vulnera-
ble plaques have thin caps which are more likely to tear than thick ones. Also, vulnerable plaques are
highly calcified, resulting in increased cap stiffness and stress. Because necrotic cores cannot sustain
large mechanical stresses, which must be born by the cap, the composition of a vulnerable plaque is
crucial in determining its overall mechanical integrity.

Although biomechanical models of the artery are important, it is also imperative that models of
plaque composition are studied and developed. These should explicitly account for the time evolution of
different plaque components and should be able to predict the organization within a plaque.Ibragimov
et al. (2005) propose a system of PDEs for SMCs, macrophages, debris, LDL, Ox-LDL and chemoat-
tractant. This model was solved in an annulus and was able to capture some aspects of plaque formation
such as the isolation of a lesion by SMCs.Ougrinovskaiaet al. (2010) neglect spatial structure within
the plaque and use an ordinary differential equation system to describe lipid and macrophage dynam-
ics. They find that their model either yields stable steady states or unbounded solutions for long times.
Calvezet al. (2010) propose a very detailed PDE model that couples blood flow to LDL/Ox-LDL con-
centration and immune cells. One novelty in their model is the introduction of LDL fluxes that depend on
the wall shear stress. In comparison with these existing studies, the main strength of our model is that we
have found numerical values for most of our parameters and therefore can make concrete predictions for
cell numbers, time for plaque formation and so on. Our model is also simple enough that we can generate
results in a reasonable amount of time and compare predictions with images from arterial cross sections.

2.2 Biochemistry and the role of oxidized lipids

The formation of plaque is a complex process, involving inflammation, leucocyte transport and fluid–
structure interactions (see Fig.1 for a summary of the main biological processes). Plaque thickness is
usually on the order of millimetres but plaques can also extend along an artery for centimetres. It is
thought that TCFAs take decades to fully form. However, innocuous precursors to a TCFA such as the
‘intimal thickening’ have actually been found in embryos, and it is unclear whether the transition to a
full-fledged TCFA occurs over many decades or whether intimal thickenings lie dormant during that
time and metastasize later on. Increase of plaque mass is mainly attributed to a flux of monocytes from
the bloodstream and SMCs from the media. Macrophages can transform into foam cells upon consuming
oxidized lipoproteins such as Ox-LDL.In vitro evidence (Henriksonet al.,1981) suggests that Ox-LDL
can be produced by endothelial cells when they are incubated with its native form, LDL. However,
when antioxidant levels are low, Ox-LDL can also be produced when LDL reacts with reactive oxygen
species. At the same time, SMCs migrate into the intima, attracted by inflammation and associated
growth factors such as macrophage colony-stimulating factor (MCSF), elaborate ECM and are mainly
responsible for producing calcium deposits within the plaque. In turn, macrophages secrete a suite of
MMPs that degrade the ECM. Finally, cells within the plaque can die due to lack of oxygen. After the
cells die, their bodies form the necrotic core, one of the defining characteristics of vulnerable plaque.
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In 1815, Joseph Hodgson (Acierno,1994) claimed that atherosclerosis was an inflammatory disease
occurring in the intima. However, later experiments byAnitschkow & Chalatow(1913) showed that
the arteries of rabbits that were fed a high cholesterol diet contained lipid deposits. As a result, the
inflammation theory was temporarily laid to rest until the late 1900s whenRoss(1986) unified both
theories by explaining the role of oxidized lipids in the context of inflammation. It is now generally
agreed (Virmaniet al., 2007) that plaque growth is the result of chronic inflammation within blood
vessels. Macrophages play a key role in the body’s immune response by seeking out and engulfing
foreign bodies and pathogens. However, macrophages also play an important role in metabolizing lipids.
The highly complex response of monocytes and macrophages in the presence of oxidized lipoproteins
such as Ox-LDL is particularly important and an area of active research (Shiffmanet al., 2000). For
example, Ox-LDL is known to be both cytotoxic and a potent chemoattractant (Tsimikas & Witzum,
2000).

‘Ox-LDL’ refers to a family of different molecules including free cholesterol, cholesterol esters and
phospholipids. These molecules could be in various states of oxidation and have different chemical
properties. Minimally modified and native LDL are generally not recognized by macrophage receptors
and are not consumed in large amounts. However, ‘heavily oxidized’ LDL is recognized by scavenger
receptors (Tsimikas & Witzum, 2000) and is preferentially endocytosed. Upon consuming large quan-
tities of Ox-LDL, macrophages transform into foam cells, so-called because of their appearance: it is
possible to see the foamy lipid droplets inside the cell under a light microscope. Conversion to the foam
cell phenotype is probably a continuous process reflecting a gradual accumulation of Ox-LDL. Foam
cells appear to be less mobile than normal macrophages.Shiffmanet al. (2000) showed that certain
integrins, responsible for adhesion to ECM, are upregulated in foam cells.

2.3 Blood flow

Although we do not include fluid mechanics in our model, blood flow does affect the rate at which
macrophages penetrate the endothelium. Here, we review some of the current literature on the influence
of fluid mechanics on atherogenesis.

Many theoretical studies and detailed simulations (Zohdi et al., 2004;Korn & Schwarz,2008;Ma
et al., 2010;Bailey et al., 2007) have focused on how shear stress affects components of the leuco-
cyte adhesion cascade (LAC). At a basic level, the LAC involves four steps. First, monocytes are cap-
tured by selectin molecules expressed on the surface of the endothelium. Second, the monocytes roll
along the surface detaching from selectins on the trailing edge while adhering to them at the leading
one. Third, monocytes become firmly attached onto the endothelium through integrins. Finally, trans-
migration through the endothelium occurs in the presence of a chemoattractant. The third step of the
LAC is mediated by vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1
(ICAM1) (Walpolaet al.,1995). Monocytes mature into macrophages once they are in the intima.

Atherosclerotic lesions do not develop uniformly within the coronary tree. Instead, they tend to form
at specific locations, e.g. at branch points or in other regions where the flow is far from laminar. Un-
derstanding how haemodynamics affects atherogenesis is an area of active study and there are many
theories for how blood flow alters general properties of endothelial cells (ECs). For exampleChatzizi-
siset al. (2007) argued that pulsatile blood flows with a low time-averaged wall shear stress (. 10–12
dynes/cm2) — referred to as ‘low endothelial shear stress’ or low ESS — are responsible for many
atherogenic processes including attenuation of nitric oxide production and promotion of LDL uptake.
Hsiai et al. (2001) focused on the effects of the slew rate (the time rate of change of shear stress)
for ECs that were treated with Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
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(Ox-PAPC), a component of minimally modified LDL. They considered three different conditions: high
slew rate flows, low slew rate flows and oscillatory flows. Both slew flows were set to have the same
(positive) time-averaged shear stress, while the oscillatory flow had, by definition, a zero time-averaged
shear stress. Compared to no-flow conditions, the authors found that a low slew rate slightly decreased
the number of bound monocytes and a high slew rate greatly decreased the number. However, oscilla-
tory flows actually increased the number of bound monocytes: the implication is that oscillatory flows
promote inflammation and atherogenesis.Walpolaet al. (1995) performedin vivoexperiments to inves-
tigate how the adhesion molecules VCAM1 and ICAM1 are regulated in response to different levels of
(time averaged) shear stress. By surgically altering carotid arteries in rabbits, they were able to increase
the shear stress in some vessels and decrease the shear stress in others (compared to control rabbits).
They observed that low shear stress downregulated ICAM1 expression but high shear stress upregu-
lated it. For VCAM1, high shear slightly increased the molecule expression but low shear stress greatly
increased it. This survey of some representative studies suggests that although mixed results arise due
to differences in experimental procedures, their common, ultimate goal is to understand the coupling
between mechanical stress and gene expression in ECs.

3. Model for core growth

Necrotic cores may develop as coherent masses at the centre of the plaque because of hypoxia: cells
that are far from the lumen (and hence from the bloodstream) die due to lack of oxygen; a similar
process occurs in large tumours (Greenspan,1972;Byrne,2010). Cell death1 andnecrosis are different
phenomena. Liver cells that are deprived of oxygen undergo cell death after about 150 min (Majno
& Joris, 1995) but only become ‘necrotic’ after 12–24 h: at this stage irreversible changes —such as
chromatin breakdown and cytoplasm condensation —have occurred in the cell; these changes are visible
under a light microscope long after cell death. As discussed in Section2, many complex processes occur
as plaque develops. To formulate our model, we make a number of simplifications.

First, there are modelling assumptions relating to the geometry of the problem. We assume that the
plaque’s axial length is much larger than its transverse length (see Fig.2(a)). We also assume that differ-
ent cross sections of the plaque are similar to each other in composition and therefore use a 2D model
to simplify our analysis. Furthermore, the blood vessel has already undergone ‘intimal thickening’, a
condition corresponding to the ‘normal accumulation of SMCs in the intima in the absence of lipid or
macrophage foam cells’ (Virmani et al., 2000). A blood vessel with intimal thickening appears to be
fairly asymmetric with some stenosis causing the lumen to be slightly displaced relative to the basement
membrane (Fig.2(b)). The change from a normal concentric vessel geometry to an eccentric one, typi-
fied by intimal thickening, involves an expansion and contraction of the intima and lumen, respectively.
This early developmental stage is not treated in our model. Instead, our focus is on the later changes that
occur in composition when an already-thickened artery transforms to a TCFA. Any changes in vessel
geometry that occur during this process are assumed to be negligible.

Second, there are assumptions that concern the plaque biochemistry: specifically those concerning
cell motion and those concerning the dynamics of Ox-LDL. We assume that the flux of monocytes
through the endothelial layer is simply proportional to the difference in monocyte concentration across
the layer (Fig.2(c)). Once monocytes are in the intima, they quickly mature into macrophages and
climb up gradients in Ox-LDL. If deprived of oxygen, these cells die of hypoxia and nucleate a necrotic
core (see Fig.2(d)). We make no distinction between dead cells and necrotic cells since the time to

1Cell death is used here to mean accidental, non-apoptotic cell death.
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FIG. 2. (a) An artery with intimal thickening. (b) Cross section of an artery with intimal thickening.ã andb̃ are the radii of the
lumen and intima. (c) Monocytes penetrate the endothelium, mature into macrophages and die of hypoxia to nucleate the necrotic
core. (d) Cross section of a TCFA or ‘vulnerable plaque’, reproduced with permission from Renu Virmani, Frank D. Kolodgie,
Allen P. Burke, Andrew Farb, Stephen M. Schwartz. Lessons From Sudden Coronary Death: A Comprehensive Morphologi-
cal Classification Scheme for Atherosclerotic Lesions.Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–1275. FC,
fibrous cap; NC, necrotic core.

cell necrosis is short compared to the time scale of plaque growth. By assuming that all macrophages
immediately convert to foam cells upon entering the plaque, we do not need to distinguish between
macrophages and foam cells. Our model for Ox-LDL is very simple: we assume it is the dominant
chemoattractant in the system and the effect of other chemotactic agents is relatively small. Although
Ox-LDL induces a wide range of responses from many cell types, to delineate its effects, we restrict our
attention to the case where Ox-LDL acts only as a chemoattractant and does not directly contribute to
cell death. In our model, the Ox-LDL distribution within a plaque is time independent. This is mainly
because there is very little data on how Ox-LDL levels within a plaque vary over time (potentially,
factors such as exercise and diet could affect levels of oxidized lipids within a plaque). In light of our
assumptions, the main components in our model are macrophages, dead/necrotic cells, Ox-LDL and
oxygen.

In our system, we introduce an Ox-LDL signal deep within the intima and investigate the subsequent
inflammatory response and core development. Such a signal could arise (e.g.) when there are elevated
levels of free radicals in the vicinity of the plaque. Macrophages are chemotactic to Ox-LDL and respond
by moving into the intima. However, they also die due to hypoxic starvation—the further they move into
the intima, the less oxygen is available and the more likely they are to undergo ischemic death. This
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simple interplay between chemotaxis and cell death is sufficient to produce necrotic cores that have
roughly the right size and shape. Our governing equations are

∂ Q̃

∂ t̃
+ ∇̃ ∙ (μ̃Q̃∇̃ L̃) = ν̃1∇̃

2Q̃ − γ̃ (C̃)Q̃, (3.1)

∂ R̃

∂ t̃
= ν̃2∇̃

2R̃ + γ̃ (C̃)Q̃ − β̃1R̃, (3.2)

∂C̃

∂ t̃
= ν̃3∇̃

2C̃ − β̃2C̃ − β̃3C̃Q̃, (3.3)

where Q̃, R̃, C̃ arethe densities of macrophages, dead cells and concentrations of oxygen inside the
plaque, respectively, and̃ν1, ν̃2 andν̃3 aretheir diffusivities. While dead cells are not actively mobile,
they may still have an effective diffusivity (albeit a small one) due to the motion of neighbouring vital
cells. The constant̃μ is the macrophage chemotactic coefficient (Keener & Sneyd, 2009b;Keller &
Segel, 1971). In our model, we assume that Ox-LDL, represented byL̃ is time independent and its
functional form is prescribed later. Time is represented byt̃ and∇̃ is the spatial gradient operator.

The functionγ̃ (C̃) is a macrophage death rate that depends on the local oxygen concentration.
Oxygen consumption within the plaque is assumed to come from two sources:β̃3 is the oxygen con-
sumption rate by macrophages, whileβ̃2 representsthe consumption rate by all other cells (e.g. neu-
trophils and SMCs) whose concentration is assumed to be constant throughout the plaque. It is assumed
that these cells are able to freely enter and leave the plaque and access the blood supply. They do not
die of hypoxia and do not significantly contribute to necrosis. In contrast, once macrophages enter the
plaque, they convert into the foam cell phenotype, become less mobile and are trapped inside. The con-
stantβ̃1 representsa constant removal of dead cells from the plaque (e.g. by neutrophils and/or other
leucocytes).

For the oxygen-dependent death rate, we followOwenet al. (2004) and use a Hill function of the
form

γ̃ (C̃) = γ̃min + (γ̃max − γ̃min)

(
C̃m

crit

C̃m
crit + C̃m

)

, (3.4)

whereγ̃min and γ̃max arethe minimum and maximum death rates,m is a constant Hill coefficient and
C̃crit is the oxygen concentration such that the death rate is(γmin + γmax)/2.

Globally high levels of LDL in the bloodstream and the presence of free radicals could result in a
localized concentration of Ox-LDL within the intima. We take the Ox-LDL distribution as

L̃ = L̃0 exp

[

−
(

| x̃ − x̃0|

δ̃

)2
]

, (3.5)

where L̃0 = 0.7 mg/cm3 is a typical Ox-LDL concentration within the plaque (Van Hoydoncket al.,
2003;Nishi et al., 2002). The shape of̃L is controlled by parameters̃δ andx̃0, which specify the width
of the signal and the position of its maximum, respectively.

The boundary conditions for the macrophages are

(μ̃Q̃∇̃ L̃ − ν̃1∇̃ Q̃) ∙ n̂1 = k̃(Q̃ − Q̃0), onΓint, (3.6)

(μ̃Q̃∇̃ L̃ − ν̃1∇̃ Q̃) ∙ n̂2 = 0, onΓext, (3.7)
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wheren̂1 andn̂2 arethe outward normals with respect to the domain (Fig.2(b)). In (3.6), we use a linear
kinetic law to relate the flux of macrophages to the difference in concentrations on either side of the
endothelium. On the bloodstream side, the concentration is fixed for all time atQ̃0; a typical value for
Q̃0 is 4 × 105/ cm3 (Keener & Sneyd, 2009b). In (3.7), we assume that the internal elastic lamina acts
as an impenetrable barrier.

Similarly, the boundary conditions for oxygen (C) and dead cells (R) at the inner and outer
boundaries are

C̃ = C0, onΓint, (3.8)

n̂2 ∙ ∇̃C̃ = 0, onΓext, (3.9)

n̂1 ∙ ∇̃ R̃= 0, onΓint, (3.10)

n̂2 ∙ ∇̃ R̃= 0, onΓext. (3.11)

In (3.8), the oxygen concentration at the endothelium is held fixed atC̃0 = 5.6×10−5 mol/L (Keener &
Sneyd, 2009b). Since the media surrounding the intima in Fig.2(b) consists of a dense layer of smooth
muscle cells, the diffusion coefficient of oxygen in this layer would probably be much smaller than in
the intima: equation (3.9) results from imposing flux continuitỹν3∇̃C̃ ∙ n̂2 = ν̃media∇̃C̃media∙ n̂2 at the
intima–media interface (wherẽνmediaandC̃mediaarethe diffusion coefficient of oxygen and the oxygen
concentration in the media) and takingν̃media/ν̃3 → 0.Equations (3.10) and (3.11) imply that dead cells
cannot leave the plaque.

Let ã be the radius of the vessel lumen. Using this length scale, the rate constantβ̃1 andconcentra-
tions Q̃0, C̃0 andL̃0, we introduce dimensionless variables

x = x̃/ã, t = β̃1t̃, (3.12)

Q = Q̃/Q̃0, C = C̃/C̃0, R = R̃/Q̃0, L = L̃/L̃0, (3.13)

resultingin the dimensionless equations

∂Q

∂t
+ μ∇ ∙ (Q∇L) = ν1∇

2Q − γ (C)Q, (3.14)

∂ R

∂t
= ν2∇

2R + γ (C)Q − R, (3.15)

∂C

∂t
= ν3∇

2C − β2C − β3CQ, (3.16)

γ (C) = γmin + (γmax − γmin)

(
Cm

crit

Cm
crit + Cm

)
, (3.17)

L = exp

[

−
(

| x − x0|

δ

)2
]

, (3.18)
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whereCcrit = C̃crit/C̃0, δ = δ̃/ã, γmin = γ̃min/β̃1, γmax = γ̃max/β̃1, μ = μ̃L̃0

β̃1ã2 , ν1 = ν̃1

β̃1ã2 , β2 = β̃2

β̃1
,

ν2 = ν̃2

β̃1ã2 , β3 = β̃3Q̃0

β̃1
, ν3 = ν̃3

β̃1ã2 andx0 = x̃0/ã. On the inner boundary, the conditions onΓint are

n1 ∙ (−ν1∇Q + μQ∇L) = k(Q − 1), (3.19)

C = 1, (3.20)

n1 ∙ ∇ R= 0, (3.21)

and on the outer boundary, the conditions onΓext are

n2 ∙ (−ν1∇Q + μQ∇L) = 0, (3.22)

n2 ∙ ∇C = 0, (3.23)

n2 ∙ ∇ R= 0, (3.24)

where k = k̃/(β̃1ã). The initial conditions for (3.14–3.16) areQ(x, 0) ≡ 0, R(x, 0) ≡ 0 and
C(x, 0) ≡ 1. All dimensional and dimensionless parameters in this paper are summarized in Tables
1 and2.

3.1 Bipolar coordinates

The transformation to Cartesian coordinates(x, y) from bipolar coordinates(τ, σ ) is defined by

x =
d sinhτ

coshτ − cosσ
, y =

d sinσ

coshτ − cosσ
, (3.25)

TABLE 1 Dimensionalconstants in(3.1–3.11).

Symbol Meaning Units Value Reference
μ̃ MΦ chemotacticcoefficient L2/T/M/conc. variable —
k̃ Monocyte attachment rate L/T 20 cm/day Tegoulia & Cooper(2000)
ν̃1 Diffusivity of macrophages L2/T 9 × 10−3 cm2/day Keener & Sneyd(2009b)
ν̃2 Diffusivity of dead cells L2/T 9 × 10−5 cm2/day Owenetal. (2004)
ν̃3 Diffusivity of oxygen L2/T 9 × 10−1 cm2/day Keener & Sneyd(2009a)
β̃1 Deadcell removal rate 1/T 0.1 day−1 Estimated
β̃2 BackgroundO2 consumption1/T 1.2 × 105 day−1 Keener & Sneyd(2009a)
β̃3 O2 consumptionrate by MΦ 1/T/conc. 4× 10−4 cm3/day Hlatky et al. (1988)
ã Lumenradius L 0.2 cm —
b̃ Intima radius L variable —
γ̃min NormalMΦ death rate 1/T 0.03 day−1 Estimated
γ̃max HypoxicMΦ death rate 1/T 12 day−1 Estimated
L̃0 Ox-LDL level in plaque M× conc. 0.7 mg/cm3 Nishi etal. (2002)
C̃0 O2 concentrationin blood conc. 5.6 × 10−5 mol/L Keener & Sneyd(2009b)
Q̃0 Monocyte conc. in blood conc. 4× 105/cm3 Albertsetal. (2008)
C̃crit HypoxicO2 concentration conc. 0.2 × C̃0 Owenetal. (2004)

MΦ, macrophage;L, length; T, time; M, mass; conc., concentration. Values were either estimated or
taken from the literature: see Appendix5.
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TABLE 2 Approximate value of dimen-
sionless constants in(3.14–3.17)and
(3.30).

Symbol Definition Value
μ μ̃L̃0/(β̃1ã2) Variable
k k̃/(β̃1ã) 1000
ν1 ν̃1/(β̃1ã2) 2
ν2 ν̃2/(β̃1ã2) 0.02
ν3 ν̃3/(β̃1ã2) 200
β2 β̃2/β̃1 1.2 × 106

β3 Q̃0β̃3/β̃1 1600
γmin γ̃min/β̃1 0.3
γmax γ̃max/β̃1 120
Ccrit C̃crit/C̃0 0.2

r
√

β2/ν3 80

FIG. 3. (a) A 20× 20 bipolar grid;(x, y) are dimensionless, defined by (3.25). Theτ = constant level curves of a bipolar
coordinate system are non-intersecting eccentric circles of the form(x − d cothτ)2 + y2 = d2/ sinh2 τint, approximated here
with line segments. (b) The (dimensionless) Ox-LDL signalL(x, y) follows (3.18). Here,δ = 1, χ = 0.5 andd = 2.

whered controls the eccentricity of the constant-τ level curves (Fig.3(a))

(x − d cothτ)2 + y2 =
d2

sinh2 τ
. (3.26)

The mesh width becomes larger asτ approachesτext and when the angleσ approaches 0. Our domain
of solution is−π 6 σ < π andτext 6 τ 6 τint. The dimensionless inner radius is scaled to 1 so
that sinhτint = d. The outer radiusb = b̃/ã satisfiesb = d/ sinhτext. The centres of the two circular
boundaries are located at(0,d cothτint) and(0,d cothτext).
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We introduce the Ox-LDL signal in the thickened part of the intima (Fig.3(b)). Specifically, the
position of the maximum inL is set at(x0, 0), wherex0 liesbetween the inner and outer boundaries, i.e.

x0 = P1 + χ(P2 − P1), 06 χ 6 1, (3.27)

P1 = d cothτint + 1 =
√

1 + d2 + 1, (3.28)

P2 = d (cothτext + cosechτext) =
√

b2 + d2 + b. (3.29)

3.2 Approximation for oxygen concentration

Sinceβ3 � β2 in Table2, the presence of macrophages does not significantly affect the oxygen dis-
tribution within the plaque. Also, sinceβ2 is so large, the oxygen concentration finds its steady-state
distribution extremely quickly. Therefore, we can approximate (3.16) with

∇2C − r 2C = 0, (3.30)

wherer =
√

β2/ν3 � 1. Analytic solutions can now be found using singular perturbation. Specifically,
we seek solutions to

C =
(coshτ − cosσ)2

r 2d2

(
∂2C

∂σ 2
+

∂2C

∂τ2

)

, (3.31)

C = 1, on τ = τint, (3.32)

∂C

∂τ
= 0, on τ = τext, (3.33)

andobtain

C(τ, σ ) ∼ exp

(
−

rd(τint − τ )

coshτint − cosσ

)
, r � 1. (3.34)

In Table2, we estimater = 80 with the result that the oxygen concentration rapidly decays away from
the vessel lumen. Our final set of equations is

∂ Q

∂t
+ μ∇ ∙ (Q∇L) = ν1∇

2Q − γ (C)Q, (3.35)

∂ R

∂t
= ν2∇

2R + γ (C)Q − R, (3.36)

C = exp

(
−

rd(τint − τ )

coshτint − cosσ

)
, (3.37)

L = exp

[

−
(x − x0)

2 + y2

δ2

]

, (3.38)
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with γ (C) defined in (3.17) andx0 defined in (3.27). The boundary conditions are

− ν1
∂Q

∂τ
+ μQ

∂L

∂τ
= k(Q − 1), on τ = τint, (3.39)

−ν1
∂Q

∂τ
+ μQ

∂L

∂τ
= 0, on τ = τext, (3.40)

∂ R

∂τ
= 0, on τ = τint, τext (3.41)

and the initial conditions are

Q(τ, σ, t = 0)= 0, (3.42)

R(τ, σ, t = 0)= 0. (3.43)

4. Results and Discussion

We solved (3.35–3.41) numerically using finite differences; details of our method can be found in
Appendix 5. In our equations, the characteristic crescent-shaped cores often observed in vulnerable
plaques arise quite commonly (see Fig.4 for a qualitative comparison).

Figure5 shows three snapshots in time of a developing plaque. We see that the macrophage dis-
tribution quickly finds its steady state compared to the dead cells. In (a), (c) and (e), the region in
the vicinity of the lumen is inflamed with a greater concentration of cells on the thickened side of the

FIG. 4. (a) Typical distribution of necrotic cells generated by our model. Red (Green) represents a larger (smaller) concentra-
tion of dead cells. (b) Cross section of artery obtained by intravascular ultrasound (IVUS), reproduced with permission from
Sameer K. Mehta, Justin R. McCrary, Andrew D. Frutkin, William J.S. Dolla, Steven P. Marso. (2007). Intravascular ultrasound
radiofrequency analysis of coronary atherosclerosis: an emerging technology for the assessment of vulnerable plaque.European
Heart Journal, 28, 1283–1288, by permission of the European Society of Cardiology. Colors represent necrotic cells (red), fibrous
material (green), fibro-fatty material (yellow) and calcium deposits (white).
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GROWTH OF NECROTIC CORES 13 of 27

FIG. 5. Growth of necrotic region over time: parameters used wereμ = 20, ν1 = 1, ν2 = 0.01, k = 103, r = 50, m = 4,
γmin = 0.3, γmax = 10,Ccrit = 0.1, δ = 3, b = 2, d = 4 andχ = 0.7.

intima. This is due to chemoattraction to Ox-LDL. In this simulation, the Ox-LDL concentration peaks
at (x0, y0) ≈ (6.1,0). Over time, macrophages climb up the gradient in Ox-LDL and attempt to localize
at this point. However, a scarcity of oxygen deep within the intima ensures that the macrophages are
actually confined near the lumen. In (f), we see the fully developed crescent-shaped core, characteristic
of many vulnerable plaques; its precursor is clearly seen in (d). The positions of the cores in (d) and
(f) follow regions of high inflammation in (c) and (e), where the macrophages are highly concentrated.
The growth of the core results from a persistent macrophage presence coupled with a high death rate:
bothγ and Q must be large in (3.36) for R to grow. The crescent core shape arises because the death
rate is modulated by the oxygen concentration, which in turn decays radially outward with respect to
the lumen. In this simulation, for timest > 3, there is no significant change in either the macrophage or
dead cell populations and the distributions have reached their steady state to within numerical accuracy.

In Fig. 6, we plot the maximum concentration of dead cells at steady state as a function of relative
Ox-LDL locationχ and chemotactic parameterμ. Recall from (3.27) that 06 χ 6 1 is a dimensionless
parameter that controls the position of the maximum inL: χ = 0 corresponds to the inner boundary
and χ = 1 to the outer one. We find that, for sufficiently large domains ((b) and (c)), there is an
intermediate value ofχ that gives the most concentrated necrotic cores. The reason is that for small
χ , macrophages localize near the lumen where the oxygen concentration is high. Therefore, the death
rate is small and necrotic cores are also small and less concentrated. Ifχ is large, high concentrations
of Ox-LDL are too far away and will fail to attract many macrophages. Again, the macrophages will
localize near the lumen and the cores will contain few dead cells. For intermediate values ofχ , Ox-LDL
is sufficiently far away to draw macrophages away from the lumen, but close enough that macrophages
still ‘see’ a sufficiently large gradient. Our results suggest that although the presence of Ox-LDL can
nucleate necrotic cores, its location within the intima is important in determining their size, shape and
concentration.

Figure7 shows the steady state of macrophages and dead cells when the chemotactic parameterμ is
changed. In Fig.7(a), the macrophages remain symmetrically confined around the lumen whenμ = 0.
As μ is increased, they penetrate further into the intima and there is a concomitant production of dead
cells (Fig.7(d) and (f)). We found that decreasingγmax has the same qualitative effect as increasingμ:
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FIG. 6. Maximum dead cell density, (at steady state) as a function of Ox-LDL locationχ and chemotactic parameterμ. The
parameterb controls the size of the intimal region. (a)b = 2, (b)b = 3, (c)b = 4. Common parameters wereν1 = 1, ν2 = 0.02,
k = 103, r = 50,m = 4, γmin = 0.3, γmax = 20,Ccrit = 0.1, δ = 2 andd = 4.

FIG. 7. Core size and shape as a function of macrophage chemotaxisμ. (a, b)μ = 0, (c, d)μ = 10, (e, f)μ = 20. Macrophage
densities are represented in the top row, while dead cell densities are shown in the bottom. Common parameters wereν1 = 1,
ν2 = 0.02, k = 103, r = 50, m = 4, γmin = 0.3, γmax = 10, Ccrit = 0.1, δ = 2, b = 2.5, d = 4 andχ = 0.7. Final time of
integration wasT = 5.

largerγmax produces larger necrotic cores with a higher dead cell density. Generally for small values
of μ (or largeγmax), our simulations predict that necrosis will be present only in very thin regions
surrounding the lumen. However, in many photographs of arterial cross sections, we see large necrotic
cores that effectively fill the entire intima. This observation suggests that the chemotactic parameter
μ � γmax which could be realized in (at least) two ways. One possibility is that the death rate is large
far away from the lumen, but macrophages are so strongly attracted to Ox-LDL that they nevertheless
fill the entire intima. Another possibility is that they can be moderately attracted to Ox-LDL butγmax is
artificially lowered within the intima so thatO(1) = μ � γmax. This second mechanism is discussed in
further detail near the end of this section.

Figure8 shows the effect of increasing the macrophage diffusivityν1 on the final steady-state distri-
butions. Whenν = 0.1, inflammation and necrosis are both localized to a thin region in the thickened
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FIG. 8. Core size and shape as a function of macrophage diffusionν1. (a,b)ν1 = 0.1, (c,d)ν1 = 1, (e,f)ν1 = 10. Macrophage
densities are represented in the top row while dead cell densities are shown in the bottom. Common parameters wereμ = 20,
ν2 = 0.02, k = 103, r = 50, m = 4, γmin = 0.3, γmax = 30, Ccrit = 0.1, δ = 2, b = 2, d = 4 andχ = 0.7. Final time of
integration wasT = 5.

part of the intima. However, asν1 is increased, macrophages become more mobile and one observes a
region of inflammation that surrounds the entire lumen. A concentrated crescent-shaped necrotic core
can also be seen in the thickened part of the intima. Whenν1 = 10, although macrophages effectively
fill the entire domain, they are more concentrated near the oxygen supply. The crescent-shaped necrotic
core in (d) has now been replaced with a ‘ring’ of necrosis. Throughout the rest of the plaque, one sees
moderate concentrations of dead cells and detritus.

We now discuss the timescales required for our equations to reach steady state. Because (3.35–3.41)
are linear and autonomous, their evolution to steady state is completely determined by their eigenvalues
and eigenfunctions. Consider the eigenvalue problem associated with (3.35),

S[Qn] = λnQn, (4.1)

−ν1n1 ∙ ∇Qn + (μn1 ∙ ∇L − k)Qn = 0, on τ = τint, (4.2)

−ν1n2 ∙ ∇Qn + μ (n2 ∙ ∇L) Qn = 0, on τ = τext, (4.3)

where the operator

S[Q] ≡ −ν1∇
2Q + μ∇ ∙ (Q∇L) + γ (τ, σ )Q, (4.4)

λ0 6 λ1 6 . . . 6 λn 6 . . . are the eigenvalues andQn are the associated eigenfunctions. We have re-
placed the inhomogeneous boundary condition (3.39) with (4.2) since eigenvalue problems are defined
with homogeneous conditions. A simple substitution in (3.35) converts the homogeneous PDE with in-
homogeneous boundary conditions to an inhomogeneous PDE with homogeneous boundary conditions.
In (4.4), we use the shorthandγ (τ, σ ) ≡ γ (C(τ, σ )). The first four even eigenfunctions (eigenfunc-
tions that are symmetric with respect toσ ) are shown in Fig.9. We only consider even eigenfunctions
because the solution to (3.35–3.43) is always even. The eigenfunction corresponding toλ0 is almost
constant everywhere but has a single maximum that coincides with the peak inL. The eigenfunctions
for n > 0, as expected, show more spatial structure but all feature a maximum or minimum near(x0, y0).
All eigenfunctionsQn(τ, σ ) were normalized so that

∫∫
Q2

nd A = 1.
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FIG. 9. First four even eigenfunctions of (4.1–4.3) with corresponding eigenvalues (eigenfunctions corresponding toλ2 andλ3
are odd). Parameters wereμ = 1, ν1 = 1, k = 103, r = 50,m = 2, γmin = 0.01,γmax = 20,Ccrit = 0.1, δ = 1, b = 3, d = 2
andχ = 0.5. A 30× 300 grid was used in the calculation. Details of the numerical method can be found in AppendixB.2.

If all the eigenvaluesλn are positive, then (3.35) and (3.36) have steady states. Any negative eigen-
valuesλn < 0 correspond to solutions that are unbounded in time, growing like exp(−λnt). This insta-
bility must be caused by chemotaxis because whenμ = 0, the system always has a stable steady state
(AppendixB.2). Our model equations can be viewed as a linear approximation of a more complicated,
nonlinear model for plaque evolution. When solutions grow exponentially, we expect nonlinear terms
of the full model to eventually become important. For example since macrophages have a finite volume,
the cell density cannot become arbitrarily large. Finite size effects would come into effect at larget to
prevent an explosion in cell density (seePainter & Hillen,2002for further details).

Whenλn > 0 for all n, the solution is a superposition of exponentially decaying modes. The smallest
eigenvalue,λ0, corresponds to the slowest decaying mode and 1/λ0 gives the time scale for this decay,
while at the same time providing a convenient estimate for the time taken for (3.35) to reach steady state.
(This estimate was also confirmed by solving the full model (3.35–3.38) for a wide range of parameter
values.) In summary, the smallest eigenvalueλ0 can be used to estimateTc, the time for the macrophage
density to reach steady state:

Tc =
1

λ0
. (4.5)
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FIG. 10. Dependence of smallest eigenvalueλ0 in (4.1–4.3) on chemotaxis, domain size and oxygen consumption rate. (a)λ0 as
a function of the macrophage chemotactic parameterμ for Ox-LDL distributions centred at(x0, y0) = P1 + χ(P2 − P1) (see
equation (3.27)). Parameters wereν1 = 5, k = 103, r = 50, m = 4, γmin = 0.01, γmax = 1, Ccrit = 0.1, δ = 2 b = 2 and
d = 2. (b) λ0 as a function of the intima width1P ≡ P2 − P1 (controlled by the intima radiusb) for different hypoxic death
ratesγmax. Parameters wereμ = 0, ν1 = 1, k = 103, r = 50, m = 4, γmin = 0.1, Ccrit = 0.1, δ = 1, d = 2 andχ = 0.5.
(c) λ0 as a function of oxygen consumption rater for critical oxygen levelsCcrit. Parameters wereμ = 0, ν1 = 1, k = 103,
m = 4, γmin = 0.1, γmax = 10,δ = 1, b = 2, d = 1, χ = 0.5. A M × N = 30× 300 grid was used in all computations.

In Fig. 10, we explore the dependence ofλ0 on system parameters. In Fig.10(a), we plotλ0 as a
function of chemotactic coefficientμ for different values of 06 χ 6 1, which controls the location
of the maximum inL. The dependence is linear for a large range ofμ. When Ox-LDL is concentrated
near the lumen (χ ∼ 0), the system reaches steady state more quickly asμ increases. However, when
Ox-LDL is more concentrated deep within the intima (χ ∼ 1), steady state is reached more slowly. Our
results suggest that the spatial distribution of Ox-LDL within the plaque is important in determiningTc

and hence how quickly necrotic cores form.
The dependence ofλ0(μ) on χ can be understood by examining the eigenvalue problem in a 1D

model of plaque growth

− ν1Q′′ + μ(QL′)′ + γmaxQ = λQ, for τint < τ < τext, (4.6)

Q = 0, on τ = τint, (4.7)

−ν1Q′ + μQL′ = 0, on τ = τext. (4.8)

In this model, we fix the death rate to beγmax, a reasonable approximation given thatγ ≈ γmax through-
out most of the intima. We also take a homogeneous dirichlet condition forQ since the full condition
(3.39) reduces toQ(τint) = 1, whenk � 1. In all other aspects, the two models are identical. The main
difference is that for the 1D model, we can calculate eigenvalues analytically and the results guide our
numerical results and physical understanding in the 2D model.

An asymptotic analysis of the 1D model forμ � 1 yields

λ0(μ) = λ0(0) + μλ′
0(0) + O(μ2), (4.9)
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where

λ0(0)= γmax + ν1

( π

21τ

)2
, (4.10)

λ′
0(0)=

2

1τ
L ′(τext) (4.11)

+
π

δ2

∫ 1

0
(X − X0) exp

[

−
1τ2

δ2
(X − X0)

2

]

sin(πX) dX.

In (4.10) and (4.11), the intima width is1τ = τext − τint and X0 = (x0 − τint)/1τ plays the role
of χ . More details of this calculation can be found in AppendixB.2. We can now understand why the
position of the Ox-LDL signal is important in determining the time scales of the problem.λ0(0) is
always positive in (4.10). In the second term on the right-hand side of (4.11), the exponential and sine
functions are always positive: it is clear that the integral will be negative ifX0 is sufficiently close to
1. Providing the boundary term 2L ′(τext)/1τ is sufficiently small,λ0(μ) will be a decreasing function
of μ if μ � 1; in general, Fig.10(a) suggests that this is also true forμ = O(1). Sufficiently large
values ofμ could cause the system to be unstable, resulting in exponentially growing solutions. For this
to happen,μ must be taken large enough so thatλ0 < 0. In this case, cell death is not quick enough
to compensate for the large numbers of new cells entering the plaque and in the absence of finite size
effects, the macrophage density is predicted to rapidly increase, leading to a concomitant increase of
debris through (3.36). High concentrations of debris weaken the overall integrity of the plaque and
could quickly result in a rupture and heart attack. Finally, note that in Fig.10(a), we takeγmax = 1.
With the approximationγ ≈ γmax, the eigenvalues given by (4.9–4.11) are simply shifted whenγmax
changes.In particular,λ0 → λ0 + 1γmax whenγmax → γmax + 1γmax. Hence, the eigenvalues for
larger, more realisticγmax canbe easily inferred from Fig.10(a).

Fig. 10(b) illustrates howλ0 dependson the domain size, characterized by the intima width1P ≡
P2 − P1 (with P1 andP2 definedin (3.28) and (3.29)) and hypoxic death rateγmax. For thicker arteries,
the inflammation time scaleTc becomeslarger. However, this effect rapidly saturates for very thick
arteries(1P � 1) with the saturation value being well approximated byγmax—see(4.9) and (4.10)
with μ = 0. The time to reach steady state is shorter when cells die rapidly of hypoxia. The functional
dependence on domain size and death rate is well approximated by our 1D model through (4.9–4.11).

Finally, in Fig.10(c), we see the dependence ofλ0 on the oxygen consumption rater and onCcrit,
which controls the resistance of macrophages to hypoxia (a smallerCcrit correspondsto stronger resis-
tance to a low O2 environment). We see that for realistic values ofr , the inflammation timeTc is, again,
well approximated by 1/γmax. If cells are more resistant to hypoxia or if plaques are better oxygenated,
thenTc increasesand necrosis slows down.

So far, we have only discussed the time required forQ to reach its steady state. How doesTc affect
the time for necrotic cores to form? In (3.35) and (3.36),Q evolves independently andR is coupled to
Q via theγ Q term. Let us study two limiting cases for the evolution. First, consider 0< λ0 � 1. Then,
Q finds its steady state very slowly. Because the density of dead cellsR is slaved to a slowly varyingQ
and evolves on the same (slow) time scale, we also expect necrotic cores to form after a timeTc = 1/λ0.
Whenλ = 0.01for example the physical time for core formation would be(β̃1λ0)

−1 ≈ 3 years. Bearing
in mind thatγmax ≈ 120in most situations (see Table2), canλ0 really attain such small values? From
Fig. 10(a), we see thatλ0 can be small and positive providingμ � γmax and Ox-LDL is present
sufficiently deep within the intima(χ ∼ 1). However,μ must not be so large thatλ0 < 0, otherwise
plaque rupture quickly ensues. In our linear model, slow necrosis appears to be a very special case. Now,
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considerλ0 � 1 which is the case wheneverγmax is large and chemotaxis is relatively unimportant.
From (4.10), the time scale for macrophages to find their steady state is thenTc ≈ 1/γmax � 1. In
(3.36), the time scale of evolution for the dead cell density is nowO(1) and cores form after about
1/β̃1 ≈ 10days: a gross underestimate given that vulnerable plaques typically take decades to develop.

There are several reasons for the discrepancy between our simulations and real plaques. First, it is
possible that conditions inside a plaque are not as hypoxic as presumed. Many plaques in their later
stages develop vasa vasorum: smaller blood vessels that provide oxygen for the cells of larger blood
vessels. An intima that contains a dense network of vasa vasorum could therefore have a smaller effective
γmax and therefore largerTc. The necrotic core would also develop on this new, slower time scale.
Second, our value for̃β1 in Table 1 was estimated to be 0.1 per day. If the dead cell removal rate
was much slower than our estimated value, the time scale of the plaque growth would become much
larger. Third, in our model, we assumed a time-independent Ox-LDL concentrationL. In reality, diet
and exercise could affect the levels of Ox-LDL within the plaque. When a plaque has low levels of
Ox-LDL, the transformation from macrophage to foam cell should be suppressed. Since foam cells are
less able to access the oxygen supply than macrophages, they are primarily responsible for nucleating
the necrotic core. Therefore, necrotic matter within the core should dissipate at a rateβ̃1 whenthere is
no Ox-LDL present. If there are many Ox-LDL free periods distributed throughout the lifetime of the
plaque, necrosis could take much longer to develop than our model predicts. Finally, although vulnerable
plaques are usually found in people aged 50 and over, the transition from a fatty streak or intimal
thickening to a TCFA does not necessarily have to take decades. Recall that our original aim was to
explore the change from an innocuous plaque to a vulnerable one. It is certainly possible for fatty streaks
or intimal thickenings to remain dormant for long periods of time with the transition to TCFA occurring
over several years as opposed to decades—this time span could probably be predicted by our model with
minor modifications to account for (say) the presence of vasa vasorum and time-dependent Ox-LDL.

5. Conclusions

In this paper, we explored a linear model for necrotic core growth in a vulnerable plaque with a focus on
changes in composition. Our model included the effects of macrophage diffusion, death and chemotaxis:
monocytes adhere to the endothelium (Fig.2(c)) and enter the intima where they become macrophages.
The macrophages move by a combination of random motion and chemotaxis towards the source of Ox-
LDL, die due to lack of oxygen and nucleate the necrotic core (Fig.2(d)). We studied our equations in
2D arterial cross sections and neglected changes in the plaque in the direction along the blood vessel.
We did not account for the effects of remodelling or mechanical stress.

Our model predicts the development of crescent-shaped necrotic cores, which are commonly ob-
served in ultrasound images and stained cross sections (see Fig.2(d)). It also confirms some clinical
observations, e.g. (i) regions of inflammation are closely correlated with regions of necrosis, (ii) plaques
are heavily infiltrated with macrophages before necrotic cores form and (iii) over the course of plaque
growth, macrophages are mainly confined near the lumen, within a plaque ‘cap’. We also found that
since the macrophage death rate is high far from the lumen, it is difficult for regions deep in the intima
to become inflamed for any significant amount of time. Hence, in the absence of vasa vasorum and other
oxygen sources, arteries with large cross-sectional areas (i.e. those that have undergone extensive out-
ward remodelling) should have relatively small necrotic fractions, whereas in blood vessels with smaller
areas, the necrotic core could — according to our calculations — easily occupy most of the artery.

Because our model is linear and autonomous, its evolution to steady state can be found exactly
in terms of its eigenfunctions and eigenvalues. The time scale for core development is estimated by
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examining the smallest eigenvalue. We calculated the eigenvalues for macrophage evolution and deter-
mined their dependence on system parameters such as chemotactic coefficient, death rate and oxygen
levels. We found that for the estimated plaque parameters and a constant-in-time Ox-LDL distribution,
the evolution to steady state occurs very rapidly, on the order of a few weeks. This is a weakness of
our model because plaques are thought to develop over the course of many years or even decades. One
possible way to improve our model in this respect is to explicitly include the effect of vessel expansion
(remodelling). A healthy artery is usually concentric with a thin intimal region. As the vessel becomes
more diseased, the intima becomes thicker as cells accumulate. Necrotic cores form once the thickness
exceeds the diffusion length of oxygen. Since remodelling occurs very slowly (possibly over decades),
cores would also only nucleate on this same time scale.

In the context of existing modelling efforts of plaques, we see our work as being complementary to
studies of mechanical stress distributions (e.g. seeVengrenyuket al., 2006;Baldewsinget al., 2004). In
these papers, inhomogeneities in the plaque (e.g. lipid pools, micro-calcifications) yield stress profiles
that are computed using the finite element method or analytic methods. Usually the inhomogeneities
are static. In contrast, the main concern in our model is with how cores develop over time and how
long these time scales are. How would the inclusion of mechanics into our model affect the predictions?
There is evidence to suggest that the flux of LDL into the intima is increased when arterial wall stress is
increased (Thubrikar,2007). This could, in turn, increase the concentration of Ox-LDL in the intima and
speed up cell death and necrosis. Excessive stresses within the artery could also cause tissue damage,
which would illicit a proliferative response from SMCs. The eventual result would probably be a greater
number of cells within the intima, more cell death and therefore larger necrotic cores.

Another extension is to add more detailed biochemistry. In Fig.1, we see many processes that in-
fluence plaque growth. Two important factors that we have neglected in our model are the production
of mineral deposits by SMCs and the creation of lipid pools from the macrophages’ metabolism. In
principle, it should not be difficult to supplement our existing PDEs with equations for the infiltration of
SMCs and their creation of calcification, and to include the effects of lipid production by macrophages.
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Appendix A. Parameter values

Here we explain how the parameter values in Table1 were calculated. In many cases, values that are
specific to plaques could not be found and were estimated from other systems (e.g. the oxygen consump-
tion rate for macrophages is taken as the one for tumour cells in necrosis experiments). The resulting
dimensionless constants in Table2 were used as guidelines for the simulations.

1. Macrophage attachment rate,k̃: This value is for neutrophil attachment onto carboxyl-terminated
gold monolayers. Figure 4 ofTegoulia & Cooper(2000) reports a cell flux of 150 cells/
mm2 in 10 min for a shear rate of 100/s. Since the neutrophil concentration was 105 cells/mL,
theattachment ratẽk is calculated as 2.5× 10−4 cm/sor about 20 cm/day.

2. Macrophage Diffusivity within a plaque,̃ν1: This value, taken fromKeener & Sneyd(2009b)
chapter 13.4.2., represents the typical diffusivity of leucocytes in tissue during an infection.

3. Oxygen diffusivity within a plaque,̃ν3: This value, taken fromKeener & Sneyd(2009a) chapter
2.3.1, is the diffusion constant for molecular O2 in muscle.

4. Dead cell removal ratẽβ1: If we assume that dead cells in the plaque are turned over about once
every 10 days, we have a removal rate of about 0.1 cells/day.

5. Background oxygen consumption rateβ̃2: Oxygen consumption in muscle tissue that is at rest
occurs at about 5× 10−8mol/cm3/s and a typical concentration of O2 in muscle is about 3.5 ×
10−8mol/cm3. Both of these values are taken fromKeener & Sneyd(2009a) chapter 2.3.1.
Therefore, we calculate the consumption rate to be 1.4/s. This value is probably an upper bound
for β̃2.

6. Oxygen consumption rate of macrophages,β̃3: In necrosis experiments on cancer cells (Hlatky
et al., 1988), the authors use equation (3.3) with β̃2 = 0 and write the mass-action oxygen
consumption term as− N

Z Q0, where N is the number of tumour cells per unit area andZ is
width of a channel occupied by the cells. Hence,N/Z is the cancer cell density corresponding
to Q̃ in (3.3). Q0 is the per-cell consumption rate of O2, which they take as a Hill form: see
(5) in the appendix ofHlatky et al. (1988). However when consumption is oxygen limited, we
can takeQ0 ∼ bO/(κ B) whereO is the oxygen concentration,b ≈ 1.5 × 10−13 moles/cell-
hour, B = 0.19 mM andκ = 0.05. Therefore, we identifỹβ3 with the quantityb/(κ B) ≈
3.8 × 10−4cm3/cell/day.This value is probably a lower bound forβ̃3.
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7. ‘Natural’ macrophage death rateγ̃min: If we assume that the normal lifespan of macrophages is
about 30 days, the macrophage death rate is 0.03 cells/day.

8. Hypoxic macrophage death rateγ̃max: If we assume that macrophages can survive for about 2
h in ischemic conditions before undergoing (non-apoptotic) cell death, the corresponding death
rate is 12 cells/day.

9. Typical Ox-LDL concentration in plaque,L̃0: Nishi et al. (2002) found that Ox-LDL concentra-
tions inside a plaque were typically 10–14 ng of Ox-LDL per microgram of apolipoprotein B,
about 70× greater than in blood plasma.Van Hoydoncket al. (2003) find the Ox-LDL concen-
tration in blood to be 10 mg/L. Therefore, we takeL̃0 = 0.7 mg/cm3.

10. Oxygen concentration in blood,̃C0: The solubility of molecular O2 in blood plasma is 1.4 ×
10−6 M/mm Hg (Keener & Sneyd, 2009b, table 13.2, chapter 13.1). Assuming an arterial partial
pressure of 40 mm Hg, the concentration of dissolved oxygen is 5.6 × 10−5 mol/L.

11. Monocyte concentration in blood,̃Q0: This value is taken fromAlbertset al. (2008, table 23-1,
Chapter 23).

12. Hypoxic oxygen concentration,̃Ccrit: In Figure 2 ofOwenet al. (2004), simulations of tumour
growth were compared toin vitro tumours and a similar Hill form for the death rate in (3.4) was
used. The authors found that whenCcrit = 0.2, the simulated growth of necrotic regions matched
experiments.

Appendix B. Numerical methods

With bipolar coordinates

x =
d sinhτ

(coshτ − cosσ)
, y =

d sinσ

(coshτ − cosσ)
, (B.1)

our domain of solution is−π 6 σ < π andτext 6 τ 6 τint, corresponding to the region between
eccentric circles with interior and exterior radiia = 1 andb = d/ sinhτext, respectively. We solve the
governing equations on a logically rectangular grid:(τi , σ j ), i = 1,2, . . . M , j = 1,2, . . . N are defined
by

τi = τext + (i − 1)1τ, (B.2)

σ j = −π + ( j − 1)1σ, (B.3)

1τ = (τint − τext)/(M − 1), (B.4)

1σ = 2π/N. (B.5)

Since solutions are periodic inσ , values atσ = π are not directly calculated. We write the numerical
approximation toQ(τi , σ j ), R(τi , σ j ) asQi, j , Ri, j , and for brevity of notation, arithmetic for the indexj
is done moduloN, e.g.,Qi,N+1 = Qi,1, (∇R)i,0 = (∇R)i,N . The scale factor in our bipolar coordinate
system is

hi, j = d/(coshτi − cosσ j ). (B.6)
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B.1 Evolutionin time

For i = 2, . . . , M − 1, j = 1,2, . . . , N, (3.35) and (3.36) are discretized in space as

Q̇i, j = −μ(∇Q ∙ ∇L)i, j − Qi, j (∇
2L)i, j + ν1(∇

2Q)i, j − γi, j Qi, j , (B.7)

Ṙi, j = −ν2(∇
2R)i, j + γi, j Qi, j − Ri, j , (B.8)

whereγi, j = γ (Ci, j ) andCi, j is calculated from (3.37). For a grid functionHi, j , its Laplacian and
gradient are approximated by

(∇2H)i, j =
1

h2
i, j

(
Hi, j +1 − 2Hi, j + Hi, j −1

(1σ)2
+

Hi +1, j − 2Hi, j + Hi −1, j

(1τ)2

)
,

(B.9)

(∇H)i, j =
1

hi, j

[
Hi +1, j − Hi −1, j

21τ
,

Hi, j +1 − Hi, j −1

21σ

]
, (B.10)

for i = 2, . . . , M − 1, j = 1, . . . , N. The PDEs forQ at the inner and outer boundariesτ = τint, τext
arediscretized as

Q̇1, j = −
1

h1, j




−3F (τ )

1, j + 4F (τ )
2, j − F (τ )

3, j

21τ
+

F (σ )
1, j +1 − F (σ )

1, j −1

21σ



− γ1, j Q1, j , (B.11)

Q̇M, j = −
1

hM, j




3F (τ )

M, j − 4F (τ )
M−1, j + F (τ )

M−2, j

21τ
+

F (σ )
M, j +1 − F (σ )

M, j −1

21σ



− γM, j QM, j ,

(B.12)

for j = 1, . . . , N, where the flux in theτ direction,F (τ ), is calculated using

F(τ )
i, j =






0, if i = 1,

−ν1

(
Qi +1, j − Qi −1, j

2hi, j 1τ

)
+ μQi, j

(
Li +1, j − Li −1, j

2hi, j 1τ

)
, if i = 2,3, M − 2 or M − 1,

k(Qi, j − 1), if i = M,

(B.13)

for j = 1, . . . N. The flux in theσ direction,F (σ ), is calculated using

F (σ )
i, j = −ν1

(
Qi, j +1 − Qi, j −1

2hi, j 1σ

)
+ μQi, j

(
Li, j +1 − Li, j −1

2hi, j 1σ

)
, (B.14)

for i = 1, M and j = 1, . . . N. The PDEs that governR at the boundaries are discretized in a similar
way. Equations (B.7), (B.11), (B.12) and the corresponding equations forR form a system of coupled
ordinary differential equations. They were solved numerically using Matlab’s ode15s routine on aM ×
N = 30 × 30 grid with absolute tolerance 10−4 and relative tolerance 10−2. We then used spline
interpolation to a(300× 300)grid to plot the results.
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B.2 Eigenvalue problem

The time evolution of the solution into its steady-state form is governed by the solution to the homoge-
neous system

Q̇(τ, σ, t) + S[Q(τ, σ, t)] = 0, (B.15)

with boundary conditions

− ν1
∂Q

∂τ
+ μQ

∂L

∂τ
= kQ, on τ = τint, (B.16)

−ν1
∂Q

∂τ
+ μQ

∂L

∂τ
= 0, on τ = τext, (B.17)

and2π periodicity inσ . The operatorS is

S[u] = −ν1∇
2u + μ∇ ∙ (u∇L) + γ (τ, σ )u. (B.18)

The solution to (B.15–B.18) isQ(τ, σ, t) =
∑∞

n=0 An exp(−λnt)Qn(τ, σ ) for some constantsAn,
wherethe eigenfunctionsQm andeigenvaluesλm satisfy

S[Qm] = λmQm. (B.19)

To solve forQm andλm numerically, Sand the boundary conditions were discretized in a similar fashion
to Section (B.1) and Matlab’s eigs routine was used to find the first few eigenvalues and eigenfunctions.
A typical mesh size was(M, N) = (30,300). Eigenfunctions were interpolated onto a 500× 300 mesh
in Fig. 9.

Appendix C. Necessary condition for unbounded solutions

Given thatμ > 0, we show that the origin of unbounded solutions stems from chemotaxis. If we multiply
(3.35) byQ, integrate over the whole domain and use boundary conditions (3.39) and (3.40), we obtain

d

dt

∫∫
Q2

2
dA = −k

∮

τ=τint

Q(Q − 1)ds−
∫∫ [

ν1|∇Q|2 − μQ∇L ∙ ∇Q + γ (τ, σ )Q2
]

dA.

Onthe right-hand side, the first term represents the kinetic contribution from macrophage attachment at
the inner boundary. This term is negative for sufficiently largeQ and is therefore stabilizing. The first
term in the integral that stems from diffusion is stabilizing. The third term is also stabilizing since the
death rateγ is always positive. The second term is the only one that can destabilize the system. Hence,
if solutions become unbounded, we must haveμ > 0.

Appendix D. Perturbed eigenvalues for 1D model

We approximate (4.1) with the simpler 1D problem

− ν1
d2Q

dτ2
+ (γmax − λ)Q = −μ

d(Qg(τ ))

dτ
, (D.1)

g(τ ) = −
2(τ − τ0)

δ2
exp

[
−(τ − τ0)

2/δ2
]
, (D.2)
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whereτint < τ < τext, g(τ ) ≡ L ′(τ ) and we have dropped the spatial dependence in the death rate. We
also takek → ∞ so that the boundary conditions simplify to

Q = 0, on τ = τint, (D.3)

−ν1
dQ

dτ
+ μQg = 0, on τ = τext. (D.4)

Assumingμ � 1, we carry out an asymptotic analysis to understand the effect of a small amount of
chemotaxis on the eigenvalues, and hence on the time scales of the problem. We expandQ andλ using
regular perturbation series

Q = Q(0) + μQ(1) + O(μ2), (D.5)

λ = λ(0) + μλ(1) + O(μ2). (D.6)

At O(1), Q0 andλ0 satisfy

− ν1d2Q(0)/dτ2 + (γmax − λ(0)) Q(0) = 0, (D.7)

Q(0)(τint) = 0, (D.8)

dQ(0)(τext)/dτ = 0, (D.9)

sothat

Q(0)(τ ) = Q(0)
n (τ ) = sin

(
(n + 1/2)π

1τ
(τ − τint)

)
, (D.10)

λ(0) = λ(0)
n = γmax + ν1

(
(n + 1/2)π

1τ

)2

, (D.11)

for n = 0,1,2, . . ., where1τ = τext − τint. At O(μ), Q(1) satisfies

− ν1d2Q(1)/dτ2 +
(
γmax − λ(0)

n

)
Q(1) = λ(1)Q(0)

n − (Q(0)
n g)′. (D.12)

ExpandingQ(1) in terms of the eigenfunctions of theO(1)problem, we takeQ(1)(τ ) =
∑∞

m=0 cmQ(0)
m (τ)

so that
∞∑

m=1

cm

(
λ(0)

m − λ(0)
n

)
Q(0)

m (τ ) = λ(1)Q(0)
n − (Q(0)

n g)′. (D.13)

Multiplying both sides byQ(0)
n (τ ) and integrating fromτint to τext, we obtain

λ(1) = λ(1)
n =

2

1τ

∫ τext

τint

Q(0)
n

(
Q(0)

n g
)′

dτ. (D.14)

Our final expression for the nth perturbedeigenvalue whenμ � 1 is

λn = λ(0)
n + μλ(1)

n + O(μ2), (D.15)
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where

λ(0)
n = γmax + ν1

(
(n + 1/2)π

1τ

)2

, (D.16)

λ(1)
n =

2

1τ
L ′(τext) (D.17)

+
(2n + 1)π

δ2

∫ 1

0
(X − X0) exp

[

−
1τ2

δ2
(X − X0)

2

]

sin[(2n + 1)πX] dX,

andX0 = (τ0 − τint)/1τ .
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