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In 1987, Seymour Glagov observed that arteries went through a two-stage remodeling process as a result
of plaque growth: first, a compensatory phase where the lumen area remains approximately constant and
second, an encroachment phase where the lumen area decreases over time. In this paper we investigate
the effect of growth anisotropy on Glagov remodeling in five different cases: pure radial, pure circum-
ferential, pure axial, isotropic and general anisotropic growth where the elements of the growth tensor
are chosen to minimize the total energy. We suggest that the nature of anisotropy is inclined towards the
growth direction that requires the least amount of energy. Our framework is the theory of morphoelas-
ticity on an axisymmetric arterial domain. For each case we explore their specific effect on the Glagov
curves. For the latter two cases we also provide the changes in collagen fiber orientation and length in the
intimate, media and adventitia. In addition, we compare the total energy produced by growth in radial,
circumferential and axial direction and deduce that using a radially dominant anisotropic growth leads to
lower strain energy than isotropic growth.

Keywords: Glagov remodeling, morphoelasticity, anisotropic growth, arterial biomechanics, atheroscle-
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1. Introduction

Despite the recent advances in preventive methods, cardiovascular disease (CVD) is still the global
leading cause of death. It accounted for about 841,000 deaths (635,260 cardiac) in 2016 with the annual
total cost of $351.2 billion in 2014-2015 in the United States (Benjamin et al. (2019)).

Atherosclerosis is a cardiovascular disease which can cause the narrowing of blood vessels therefore
reducing the blood flow. It can lead to life-threatening problems including heart attack and stroke. A
healthy artery wall consists of three layers: intima, media and adventitia. Intima is the innermost layer
and the media and adventitia are the middle and outermost layers respectively. It is known that the
intima is the main region for plaque buildup and consequently atherosclerotic lesions (Virmani et al.
(2008)).

According to Virmani et al. (2008), the evolution of vascular disease involves a combination of en-
dothelial dysfunction, extensive lipid deposition in the intima, an exacerbated immune response, prolif-
eration of vascular smooth muscle cells and remodeling, resulting in the formation of an atherosclerotic
plaque. High risk atherosclerotic plaques (vulnerable plaques) have a large lipid-rich necrotic core with
an overlying thin fibrous cap infiltrated by inflammatory cells and diffuse calcification. These plaques
are more susceptible to rupture. Plaque rupture occurs in 1% to 6% of patients and accounts for 15% of
in-hospital deaths (Antman (2007)).
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Low shear stress plays an essential role in atherosclerosis (Libby et al. (2002), Mundi et al. (2017),
Channon (2006)). Healthy endothelial cells produce a certain amount of Nitric Oxide (NO) which is
a vasodilator. Decrease in laminar shear stress reduces the production of this chemical which leads to
endothelial dysfunction. This increases the permeability of the endothelium to low density lipoproteins
(LDL) as well as the production of vascular cell adhesion molecule-1 (VCAM-1). These molecules start
an inflammatory process by binding with intracellular adhesion molecule-1 (ICAM-1) on the surface of
leukocytes present in the blood stream. Attached to the endothelium, these leukocytes penetrate the
vessel wall in response to chemoattractant MCP-1 present in the intima. Once inside, macrophage
colony stimulating factor (M-CSF) causes them to turn into macrophages. LDLs absorbed by the intima
go through oxidation and turn into oxidized LDLs. Macrophages consume these oxidized LDLs and
release more MCP-1, turning into foam cells. Smooth muscle cells (SMCs) can also migrate into the
plaque from the underlying media. The death of SMCs, foam cells and macrophages all contribute to
a necrotic core, one of the defining characteristics of a vulnerable plaque (Libby et al. (2002), Virmani
et al. (2008)).

Investigating the mechanical properties of the blood vessels is an essential step towards understand-
ing cardiovascular diseases. Taber & Humphrey (2001) investigated the stress-modulated growth and
residual stress of the arteries using the concept of opening angles. In their research they considered the
artery as a single-layered domain and speculated that the opening angles as a measurement for residual
stresses depend strongly on the heterogeneity of the material properties. The intima was considered to
be mechanically insignificant. Due to its thinness, the other two layers were often considered as the
main ”load bearing” layers (Von Maltzahn et al. (1981), Demiray & Vito (1991)). The significance of
the intima was shown by Holzapfel et al. (2005). They determined the mechanical properties of coronary
artery layers with nonatherosclerotic intimal thickening. In their study, they experimented on thirteen
hearts, from 3 women and 10 men which were harvested within 24 hours of death. Then they created
coronary artery cross sections and cut them along the axial direction to obtain flat rectangular sheets.
Thereafter, by exposing the sheets to tensile stresses, they were able to come up with layer-specific
mechanical parameters later used in their strain energy function. This function is able to capture the
stiffening effect of collagen fibers that exist in each layer. It also turned out that the stiffness parameters
for the intima were significantly larger than the other two layers.

There are many studies that try to understand the cell and chemical dynamics of intimal thickening
and atherosclerosis using reaction-diffusion type models. One can find a comprehensive example in
Hao & Friedman (2014). They have most of the key players including a velocity field which is the
result of movement of macrophages, T-cells and smooth muscle cells into the intima. This procedure
promotes intimal thickening. Their model however, does not consider the mechanical properties of the
intima and neglects the other two layers of the vessel wall. For this reason it qualifies as a reaction-
diffusion type model. Chalmers et al. (2015) use differential equations to purely explore the dynamics
of early atherosclerosis. Their model considers the concentration of LDLs, chemoattractants, embryonic
stem (ES) cytokines, macrophages and foam cells. All of their simulations are done in one dimension
and their result provides qualitative and quantitative insight into the effect of LDL penetration in the
inflammatory response. In Chalmers et al. (2017), the authors investigate the effect of High density
Lipoproteins (HDL) in plaque regression. El Khatib et al. (2007) suggest that inflammation propagates
in the intima as a reaction diffusion wave. They conclude that in the case of intermediate LDL concen-
trations there are two stable equilibria: one corresponding to the disease free state and the other one to
the inflammatory state while the traveling wave connects these two states.

Glagov et al. (1987) studied sections from the left main coronary artery in 136 hearts obtained at
autopsy. He found that arterial remodeling happens in two stages: compensation and encroachment.
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FIG. 1: Remodeling behavior depends on whether stenosis is less than or greater than 30%. With the same data, the authors
were also able to fit a piecewise linear curve with a jump in derivative at about 40% (not shown). In this case, the curve gently
decreased when the stenosis was < 40% and rapidly decreased when the stenosis was > 40%. (b) In Glagov remodeling, initially,
the lumen area increases slightly while the internal elastic lamina (IEL) increases in area. After the plaque reaches about 40% of
the IEL area, the luminal area starts to decrease.

During the compensation phase the area enclosed by the endothelial wall (lumen area) increases. This
compensation will continue until the lesion occupies about 40% of the area enclosed by the internal
elastic lamina. In other words, the vessel compensates for plaque growth until it reaches about 40%
stenosis where

Stenosis =
Intima Area

Intima Area+Lumen Area
(1.1)

and then the decrease in of the lumen area (encroachment) starts (Figure 1). Understanding this phenom-
enon is of great importance. Since coronary angiography can only visualize the lumen the extent of the
plaque burden in the arterial wall might be underestimated during the compensation phase. Therefore,
understanding this property of blood vessels is crucial for devising new methods for determining the
severity of arterial diseases such as atherosclerosis. This phenomenon has been the subject of biological
and mathematical studies ever since (Korshunov & Berk (2004), Mohiaddin et al. (2004), Korshunov
et al. (2007) and Fok (2016)). Fok (2016) explores the growth in a 2D annulus subject to a uniform
isotropic growth tensor. Although these assumptions are not realistic the results seem to follow the
general characteristics of Glagov remodeling.

In this paper we focus on a three dimensional axisymmetric vessel wall with 3 layers. We assume
that the plaque in our problem is homogeneous. This means we neglect the heterogeneities caused in the
plaque such as cholesterol crystals, calcium, cell debris, foam cells that might affect the plaque growth.
We consider a static blood pressure of 120 mmHg as the average of systolic and diastolic pressures.
We neglect long term changes in the blood pressure so that we can focus on understanding how growth
affects remodeling and the Glagov curve. We use a finite element method based on morphoelasticity.
We utilize the layer specific strain energy function proposed in Holzapfel et al. (2005) to account for
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the stiffening effect of the collagen fibers. All of our numerical simulations are carried out in a FEniCS
framework (Langtangen et al. (2016)). Although there are various studies involving the artery growth in
two dimensions, we will see that growth in three dimensions produces interesting results. We provide
results that show for example, anisotropic growth is energetically more favorable than isotropic growth
and at the same time results in a greater stenosis. In addition, anisotropic treatment of the problem
results in more stenosis that is more in line with what Glagov observed in a more energetically favorable
manner (Glagov et al. (1987)).

This paper is laid out in the following way. In section 2 we discuss the morphoelastic modeling of
our problem. In section 3 we provide our results and finally we summarize our conclusions in section 4.

2. The variational formulation

Morphoelasticity is the underlying assumption for our simulations. It interprets the deformation in
hyperelastic materials as a pure growth accompanied by an elastic response (Goriely & Amar (2007),
Rodriguez et al. (1994)). In other words, we can decompose the deformation gradient into a growth
tensor G (which we prescribe) and an elastic tensor Fe (which has to be found):

F = FeG. (2.1)

As mentioned before we consider the artery as a three layered growing domain. This growth is a volu-
metric growth that occurs only inside the intima and can also be accompanied by surface loads. Corre-
sponding to each of the tensors in (2.1) we have

J = det(F), (2.2)
Je = det(Fe), (2.3)
Jg = det(G). (2.4)

Deformation and growth of the artery lead to a change in the strain energy W . This strain energy is
the sum of energy stored due to the isotropic (Ψiso) and the anisotropic (Ψaniso) changes in each of the
layers (?):

Wi =Ψ
i

iso +Ψ
i

aniso

Ψ
i

iso =
µi

2
(I1−3)+

ν

1−2ν
µi(Je−1)2−µi lnJe (2.5)

Ψ
i

aniso =
ηi

βi

{
eβi[ρi(I4−1)2

++(1−ρi)(I1−3)2]−1
}

(2.6)

where i = 1,2,3 corresponds to intima, media and adventitia; µi, ηi are stress-like parameters; and
βi, ρi are dimensionless. Due to the high content of water in each layer we consider them as nearly
incompressible materials and therefore we take the Poisson ratio ν to be close to 0.5 in all the layers.
This will guarantee that the the second term on the right hand side of equation (2.5) will be significant
when minimizing the total strain energy: the minimization will strongly penalize Je 6= 1 which enforces
the near incompressibility of the material. Also define

I1 = Tr(Ce) = Tr(FT
e Fe) (2.7)

I4 = b(R,Z)T Ceb(R,Z) (2.8)
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where Ce = FT
e Fe is the right Cauchy-Green tensor and I1 is its first invariant. To incorporate the

direction for which the collagen fibers are aligned in each of the layers we use b(R,Z) which is a
unit vector. Because of the crimped structure of collagen it is regarded as not being able to support
compressive stresses (Holzapfel et al. (2000)). The role of the collagen fibers is included in the (I4−1)2

+

term in equation (2.6) which will be triggered only if I4 > 1:

(I4−1)2
+ =

{
(I4−1)2 if I4 > 1
0 if I4 6 1

(a)

(b)

(c)

FIG. 2: (a) Mathematical reference domain with subdomains and boundary labels. (b) Mathematical deformed domain with
subdomains and boundary labels. We use lower case letters for the deformed domain. (c) Plan view of the artery and the
orientation of representative fibers. Vector b is defined for each layer by (2.28) and the values of ϕ for each layer are given in
Table 1.
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We are interested in finding a solution to the following boundary value problem

∇ ·σσσ =−f̂, on ω (2.9)

σσσn =−pn, on ∂ω
(1)
1 (2.10)

σσσn = 0, on ∂ω
(2)
3 (2.11)

σσσn|
∂ω

(2)
1

+σσσn|
∂ω

(1)
2

= 0 (2.12)

σσσn|
∂ω

(2)
2

+σσσn|
∂ω

(1)
3

= 0 (2.13)

Where the tensor σσσ is the Cauchy stress tensor, f̂ is the body force, ω =
3⋃

i=1
ωi for i = 1,2,3 is the three

layered domain after deformation and ∂ω
(1)
i is the inner boundary and ∂ω

(2)
i is the outer boundary of

the i-th layer after the deformation. We consider p to be the only boundary load which in our case is the
blood pressure. We denote the outward unit normal vector to the deformed boundary by n. Given that
stenotic coronary arteries generally experience very little axial pre-stretch (Gasser & Holzapfel (2007),
Sanyal & Han (2015)) we add two traction free boundary conditions for the end surfaces

σσσn = 0, on ∂ωL (2.14)
σσσn = 0, on ∂ωR (2.15)

Even though, (2.9)-(2.15) seem like a typical boundary value problem, due to the convenience of
working with the reference domain, Ω we prefer to use a system that utilizes ∂Ω for its boundary con-
dition rather than ∂ω , see Figure 2(a). Therefore, by applying Nanson’s pull back formula (Holzapfel
(2000)) and using the first Piola-Kirchoff stress tensor, (2.9)-(2.15) turn into

∇ ·T =−f, on Ω1, Ω2, Ω3 (2.16)

TN =−pJF−T N, on ∂Ω
(1)
1 (2.17)

TN = 0, on ∂Ω
(2)
3 (2.18)

TN|
∂Ω

(2)
1

+TN|
∂Ω

(1)
2

= 0 (2.19)

TN|
∂Ω

(2)
2

+TN|
∂Ω

(1)
3

= 0 (2.20)

TN = 0, on ∂ΩL (2.21)
TN = 0, on ∂ΩR (2.22)

where the first Piola-Kirchoff stress is

T = Jg
∂W
∂Fe

G−T (2.23)

(Amar & Goriely (2005), Yin et al. (2019)). Also f(X ,Y,Z) = Jf̂ (Gurtin (1981)) and N is the outward
unit normal vector to the reference boundary, see Figure 2(a). Boundary conditions (2.14)-(2.15) or
(2.21)-(2.22) can be recast in terms of displacement. This may be the more convenient type of condition
to use if we have information about the artery’s axial prestretch. For solving this problem we use a weak
form that is equivalent to (2.16)-(2.22).
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2.1 Weak formulation in cylindrical coordinates

We consider an axisymmetric cylindrical domain Ω with three subdomains Ωi for i = 1,2,3 to represent
the artery. Let R, Θ and Z be the radius, polar angle and axial distance of a point in the reference domain
in cylindrical coordinates and r,θ and z be the corresponding quantities in the deformed domain. We
consider (R,Θ ,Z) as a generic point in the reference domain and (r,θ ,z) as the one in the deformed
domain. Suppose u is the displacement field that maps the reference domain into the deformed domain.
The deformation gradient F is related to u via

F = I+∇u (2.24)

Then the deformation gradient (2.24) in cylindrical coordinates will be given by

F =

 ∂ r
∂R

1
R

∂ r
∂Θ

∂ r
∂Z

r ∂θ

∂R
r
R

∂θ

∂Θ
r ∂θ

∂Z
∂ z
∂R

∂ z
∂Θ

∂ z
∂Z

 (2.25)

However, in the axisymmetric case r and z are independent of Θ and θ is independent of R and Z, which
simplifies the deformation gradient into

F =

 ∂ r
∂R 0 ∂ r

∂Z
0 r

R 0
∂ z
∂R 0 ∂ z

∂Z

 (2.26)

hence

J = det(F) =
r
R

(
∂ r
∂R

∂ z
∂Z
− ∂ r

∂Z
∂ z
∂R

)
(2.27)

The fiber direction vectors in each undeformed layer take the form

bi(R,Z) = cos(ϕi)êΘ + sin(ϕi)êZ (2.28)

where i = 1,2,3 corresponds to intima, media and adventitia and ϕi is the angle from Figure 2(c) for
each layer. Also êΘ and êZ are the circumferential and axial basis vectors in the reference configuration.

Furthermore, Ti = Jgi
∂Wi
∂Fei

G−T
i for i = 1,2,3. Using (2.5)-(2.8) and (2.27)-(2.28) we have:

∂Wi

∂Fei

= µiFei +
2µiν(Jei −1)Jei

1−2ν
F−T

ei
−µiF−T

ei

+ 4ηi
{

ρiFeibibT
i (I4−1)++(1−ρi)Fei(I1−3)

}
eβi[ρi(I4−1)2

++(1−ρi)(I1−3)2] (2.29)

As mentioned before the biology of our problem suggests that the growth occurs only inside the intima.
Therefore, Gi = I and Jgi = 1 when i = 2,3. On the other hand we consider G1 = diag(gα(t,Z),gβ (t,Z),
gγ(t,Z)) with

gα(t,Z) = 1+αt exp(−aZ2) (2.30)
gβ (t,Z) = 1+β t exp(−aZ2) (2.31)

gγ(t,Z) = 1+ γt exp(−aZ2) (2.32)
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corresponding to radial, circumferential and axial growth respectively. The variable t is time which is
in years throughout this paper. We include the exponential functions in Z to model the effect of local
growth in the axial direction. Furthermore, we want growth to increase linearly in time but at different
rates and this is the reason for including α ,β and γ . In other words, these parameters α ,β and γ allow
us to explore the effect of anisotropic growth on Glagov remodeling and in the case of isotropic growth
we will have α = β = γ . The parameter a determines the locality of growth. We denote the radii of the
boundaries between the lumen, intima, media, adventitia and the external tissue in the reference domain
by A1,A2,A3 and A4 respectively. Also the value L specifies the half-length of the artery cross section
such that −L < Z < L. See Table 1.

We are now ready to propose a weak form for (2.16)-(2.22).

THEOREM 2.1 Suppose a constant pressure load p is applied to the inner boundary ∂Ω
(1)
1 of a three

layered arterial domain Ω =
3⋃

i=1
Ωi with piecewise smooth boundaries. For simplicity we denote the

outward unit normal vectors N|
∂Ω

(k)
i

, N|∂ΩL and N|∂ΩR by N(k)
i , NL and NR for i = 1,2,3 and k = 1,2,

respectively. Assume that the domain has a finite length 2L and is traction free at both ends and f ∈
L2(Ω) and Gi for i = 1,2,3 are growth tensors defined on the intima, media and adventitia respectively.
Then defining Jgi = det(Gi) the displacement field u ∈ C2(Ω) that solves (2.16)-(2.22) also satisfies

2π

3

∑
i=1

∫ L

−L

∫ Ai+1

Ai

[(
Jgi

∂Wi

∂Fei

G−T
i : ∇v

)
− f ·v

]
R dR dZ

+2π pA1

(∫ L

−L
JF−T N(1)

1 ·v dZ
)
= 0 (2.33)

for every v ∈ C2(Ω), where ∂Wi
∂Fei

is defined in (2.29), J is defined in (2.27) and F is defined by (2.24)
and (2.26).

Proof.
Let v ∈ C2(Ω). By multiplying both sides of (2.16)-(2.22) by v and integrating over their respective

domains we get ∫
Ω

(∇ ·T) ·vdx =−
∫

Ω

f ·vdx, (I)∫
∂Ω

(1)
1

TN(1)
1 ·vds =−

∫
∂Ω

(1)
1

pJF−T N(1)
1 ·vds, (II)∫

∂Ω
(2)
3

TN(2)
3 ·vds = 0, (III)∫

∂Ω
(2)
1

TN(2)
1 ·vds+

∫
∂Ω

(1)
2

TN(1)
2 ·vds = 0, (IV)∫

∂Ω
(2)
2

TN(2)
2 ·vds+

∫
∂Ω

(1)
3

TN(1)
3 ·vds = 0, (V)∫

∂ΩL

TNL ·vds = 0, (VI)∫
∂ΩR

TNR ·vds = 0. (VII)
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Adding equations (I)-(VII) and using Ω =
3⋃

i=1
Ωi gives us

−
3

∑
i=1

[∫
Ωi

(∇ ·Ti) ·vdx
]
−
∫

Ω

f ·vdx+
∫

∂Ω
(1)
1

pJF−T N(1)
1 ·vdx+

∫
∂Ω

(1)
1

TN(1)
1 ·vds

+
∫

∂Ω
(1)
2

TN(1)
2 ·vds+

∫
∂Ω

(1)
3

TN(1)
3 ·vds+

∫
∂Ω

(2)
1

TN(2)
1 ·vds+

∫
∂Ω

(2)
2

TN(2)
2 ·vds

+
∫

∂Ω
(2)
3

TN(2)
3 ·vds+

∫
∂ΩL

TNL ·vds+
∫

∂ΩR

TNR ·vds = 0 (2.34)

Now using the divergence theorem on the sum results in

−
3

∑
i=1

[∫
Ωi

(∇ ·Ti) ·vdx
]
=

3

∑
i=1

[∫
Ωi

(Ti : ∇v)dx
]
−
∫

∂Ω
(1)
1

TN(1)
1 ·vds−

∫
∂Ω

(1)
2

TN(1)
2 ·vds

−
∫

∂Ω
(1)
3

TN(1)
3 ·vds−

∫
∂Ω

(2)
1

TN(2)
1 ·vds−

∫
∂Ω

(2)
2

TN(2)
2 ·vds

−
∫

∂Ω
(2)
3

TN(2)
3 ·vds−

∫
∂ΩL

TNL ·vds−
∫

∂ΩR

TNR ·vds (2.35)

By replacing (2.35) in (2.34) we get

3

∑
i=1

[∫
Ωi

(Ti : ∇v)dx
]
−
∫

Ω

f ·vdx+
∫

∂Ω
(1)
1

pJF−T N ·vds = 0 (2.36)

Switching to cylindrical coordinates we get

2π

3

∑
i=1

[∫ L

−L

∫ Ai+1

Ai

[(Ti : ∇v)− f ·v] R dR dZ
]
+2π

(∫ L

−L
pJF−T N ·v R dZ

)∣∣∣∣
R=A1

= 0

Notice that since there is no dependence on Θ due to axisymmetry we have integrated with respect to Θ

producing the 2π coefficients. Using the definition Ti = Jgi
∂Wi
∂Fei

G−T
i we get (2.33) for every v ∈ C2(Ω).

�
Note: In this paper we assume that the body forces are negligible. Therefore, (2.33) turns into

2π

3

∑
i=1

∫ L

−L

∫ Ai+1

Ai

(
Jgi

∂Wi

∂Fei

G−T
i : ∇v

)
R dR dZ +2π

(
p
∫ L

−L
JF−T N ·v R dZ

)∣∣∣∣
R=A1

= 0 (2.37)

for every v ∈ C∞(Ω). We use the following table for parameter values.
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Symbol Units Value

µ1 kPa 27.9
µ2 kPa 1.27
µ3 kPa 7.56
ν Dimensionless 0.49
η1 kPa 263.66
η2 kPa 21.60
η3 kPa 38.57
β1 Dimensionless 170.88
β2 Dimensionless 8.21
β3 Dimensionless 85.03
ρ1 Dimensionless 0.51
ρ2 Dimensionless 0.25
ρ3 Dimensionless 0.55
ϕ1 Degrees 60.3
ϕ2 Degrees 20.61
ϕ3 Degrees 67
A1 mm 1.26
A2 mm 1.47
A3 mm 1.89
A4 mm 2.31
L cm 3.36

Table 1: List of parameter values used in this paper. All the values are proposed by Holzapfel et al. (2005) as a result of
experimenting on 13 hearts from 3 women and 10 men post mortem.

Ultimately, we need to find a displacement field u that gives us a deformation gradient F in (2.24)
and (2.26) which gives us the elastic tensors Fei = FG−1 for each layer by (2.1) which leads to the first
Piola-Kirchoff stress tensors Ti for each layer that satisfies (2.37) for sufficiently smooth v.

We use FEniCS as our computing platform for solving this problem numerically. FEniCS is a
powerful open source package that can be utilized by languages such as C++ and Python (Langtangen
et al. (2016)). For this problem we use a 2D mesh in (R,Z) with about 11000 triangles, see Fig 3. To
avoid shear locking we use second order elements. This way we approximate the displacement field by
second order Lagrangian elements which leads to a linear approximation for the strain. Also increasing
the number of elements along the thickness of the domain is another common remedy for shear locking
(Zienkiewicz & Taylor (2005)). Although the problem is computationally intensive, the University of
Delaware’s Caviness cluster was able to find solutions in about 12 hours. Thanks to access to a high
performance computing resource we were able to simulate growth for values of t as large as 3 decades
in (2.30)-(2.32).

3. Results and Discussion

For the rest of this paper we consider the blood pressure to be the static average value between systolic
and diastolic blood pressure with p = 16 kPa = 120mmHg and we assume that the artery is in the
pressurized state at t = 0, see Figure 3. To focus on the effect of growth on the arterial remodeling and
Glagov phenomenon, we neglect the dynamic changes in the blood pressure. The blood pressure causes
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the radii A1, A2, A3 and A4 to increase and as a result the length of the artery decreases to conserve the
volume. In the special case where η = 0 in (2.6) for each layer, validation was done by comparing the
results of our Fenics code with a 1D solution (solved using Matlab), see the appendix in Fok & Gou
(2020). Signs of coronary artery disease rarely occur in young adults (age < 40) (Tsai et al. (2017))
and stenosis larger than 50% is often observed in adults older than 60 (Giannoglou et al. (2006))).
Therefore, we assume in our model atherosclerosis starts around age 35 and continues until 65, and we
run our simulations from t = 0 to t = 30 years accordingly.

FIG. 3: Top: The unpressurized reference domain. Middle: The reference domain after applying the blood pressure of 16 kPa.
Bottom: Mesh sample for −0.586 Z 6 0.58. Mesh is denser where growth is larger.

3.1 The effect of pure growth in each direction

First we start with investigating the effect of pure growth in the radial, circumferential and axial direc-
tions. We can roughly see in Figure 4 the effect of such growth. We believe that their different behaviors
will give insight on how each component of the growth tensor contributes to the overall process of re-
modeling. We provide graphs such as lumen area as a function of stenosis and lumen area as a function
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of time given the definition

Stenosis(Z) =
Intima Area(Z)

Intima Area(Z)+Lumen Area(Z)
(3.1)

where Stenosis(Z), Intima Area(Z) and Lumen Area(Z) correspond to the stenosis, intima area and
lumen area at axial position Z respectively. In addition, we explore changes in the fiber angles and total
energy.

(a) (b) (c)

FIG. 4: Evolution of the domain for −0.58 6 Z 6 0.58 subject to (a) pure radial growth with (α,β ,γ) = (1,0,0), (b) pure
circumferential growth with (α,β ,γ) = (0,1,0) and (c) pure axial growth with (α,β ,γ) = (0,0,1). The material point at A
moves to the right under the effect of axial growth. Parameter a in (2.30)-(2.32) is taken to be 14.29.

3.1.1 Pure Radial Growth, Let us assume that the intima grows according to the growth tensor Gα =
diag(gα(t,Z),1,1). This means that the intima grows radially by gα(t,Z) from (2.30) and there is no
growth in the circumferential and radial direction.
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According to Figure 4(a) the radial growth almost exclusively contributes to inward thickening of
the intima. As expected the inward remodeling is greater when closer to the center of growth Z = 0
and consequently the artery undergoes more stenosis there, see Figure 5. We refrained from including
more cross sections since far away from Z = 0 the growth function has little to no effect and therefore
the lumen area stays the same. We will also see that pure radial growth does not greatly affect the total
energy, see section 3.2.

FIG. 5: Left: Lumen area against stenosis. Star denotes the time t = 0. Right: Lumen area in time. With pure radial growth
close to the center of growth Z = 0 the remodeling is strictly inward.

3.1.2 Pure Circumferential Growth, Now we assume that growth is purely in the circumferential
direction. Therefore the growth tensor takes the form Gβ = diag(1,gβ (t,Z),1).

According to Figure 4(b), pure circumferential growth mostly contributes to the outward remodeling
of the vessel. There is a slight intimal thickening and increase in stenosis but compared to the radial
growth it is negligible, see Figure 6. Also one can see that the lumen area plateaus in Figure 6 for large
t which might be due to the effect of stiffening collagen fibers.

FIG. 6: Left: Lumen area against stenosis. Star denotes the time t = 0. Right: Lumen area in time. With pure circumferential
growth close to the center of growth Z = 0 the remodeling is mostly outward.
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3.1.3 Pure Axial Growth, Finally we do the same investigation when growth is purely in the axial
direction. Therefore we take the growth tensor to be Gγ = diag(1,1,gγ(t,Z)).

Pure axial growth mainly contributes to axial elongation, see Figure 4(c). We see a short outward
remodeling followed by a significant inward remodeling for this type of growth, see Figure 7. However,
unlike the pure radial growth remodeling is not exclusively a result of intimal thickening. As one can see
in Figure 4(c), the intima thickness is not significant but we can see a mild inward buckling of the arterial
wall which reduces the lumen area. We have seen the effects of growth in the radial, circumferential and
axial directions. Now we explore the energy change associated with each of these growth modes.

FIG. 7: Left: Lumen area against stenosis. Star denotes the time t = 0. Right: Lumen area in time. With pure axial growth close
to the center of growth Z = 0 the remodeling is mostly outward with no significant increase in stenosis.

3.2 Growth and Energy Change

In this section we are interested in calculating the energy change in the artery due to each growth
direction. We want to see which growth direction is more energetically favorable. The total energy
consists of the bulk energy and the energy produced by the external forces such as the blood pressure.

E = 2π

3

∑
i=1

∫ L

−L

∫ Ai+1

Ai

JgiWi R dR dZ︸ ︷︷ ︸
Energy due to volumetric strain caused by growth

+2πA1
p
3

∫ L

−L
JF−TN(1)

1 ·u dZ︸ ︷︷ ︸
Energy due to blood pressure

, (3.2)

where Wi is defined as Ψ i
iso +Ψ i

aniso from (2.5) and (2.6).

THEOREM 3.1 The displacement field u ∈ C2(Ω) that satisfies the weak equation

2π

3

∑
i=1

∫ L

−L

∫ Ai+1

Ai

(
Jgi

∂Wi

∂Fei

G−T
i : ∇v

)
R dR dZ +2π pA1

(∫ L

−L
JF−T N(1)

1 ·v dZ
)
= 0 (3.3)

for every v ∈ C2(Ω) also makes (3.2) stationary. Note that equation (3.3) is just equation (2.33) in the
special case when f = 0.

Proof. For a proof refer to Fok & Gou (2020). �

Now to observe the change in energy purely imposed by growth in each direction we compute the



IMPACT OF ANISOTROPIC GROWTH ON GLAGOV REMODELING 15 of 26

total energy (3.2) for the three cases in sections 3.1.1, 3.1.2 and 3.1.3. The result is shown in Figure 8.
We extract the energies induced by each growth direction at times t = 5,10,15,20,25,30 from Figure
8, and show them in Table 2. Assuming that intima growth stems from cell division, the amount of
energy needed for the cells to divide in the radial direction is much less than the energy in the circum-
ferential and axial directions. In other words, it takes about 3 years for the axial growth to produce the
same energy as the radial growth does in 30 years. For circumferential growth, it is 5 years. Therefore,
growing in the axial direction is energetically the least favorable while growing in the radial direction
is energetically the most favorable. This observation motivates the need for an anisotropic treatment of
the growth process.

XXXXXXXXXXDirection
Time

t=5 t=10 t=15 t=20 t=25 t=30 Average

Radial 0.3669 0.3670 0.3670 0.3671 0.3671 0.3672 0.3670
Circumferential 0.3671 0.4648 0.7930 1.452 2.435 3.701 1.5355

Axial 0.4075 0.6262 1.1760 2.1140 3.3940 4.9520 2.1116

Table 2: Energy in µJ for 6 time values.

FIG. 8: Components of the growth tensor G at Z = 0 in the anisotropic and isotropic cases. For the anisotropic case at Z = 0,
G = diag(1+αt t,1+ βt t,1+ γt t). For the isotropic case at Z = 0, G = diag(1+ ξt t,1+ ξt t,1+ ξt t). The growth parameters
αt ,βt ,γt were found by minimizing the total energy and xit was found by ensuring det(G) was equal at Z = 0 in both cases.

3.3 Isotropic Growth vs General Anisotropic Growth

Motivated by the previous section, here we discuss a method to choose an anisotropic growth that is
energetically most favorable. We hypothesize that such method will give a growth tensor that has a
large weight in the radial component. Our method is inspired by the common two field minimization
for incompressible materials. However, instead of minimizing for a displacement and pressure field we
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minimize with respect to displacement and growth. Mathematically, we want to find u and (αt ,βt ,γt)
that minimizes (3.2) subject to

Jg1 = f (t), at Z = 0 (3.4)

where αt ,βt ,γt are the parameters in (2.30), (2.31), (2.32). The subscript t is to emphasize that the mini-
mization happens at each time-step to produce a displacement vector field and three growth parameters.
The constraint (3.4) can be imposed by letting γt be a function of αt and βt as follows

γt =

f (t)
(1+αt t)(1+βt t)

−1

t
, (3.5)

This ensures that (3.4) will hold. The function f (t) is set by the user in this scheme to determine
the desired volumetric growth at each step (in our simulations we use f (t) = 1+ 2.7t). After this,
to show the importance of using an anisotropic growth scheme as opposed to an isotropic scheme we
compare the two cases. For the isotropic growth tensor diag(1+ξtt exp(−aZ2),1+ξtt exp(−aZ2),1+
ξtt exp(−aZ2)) we choose ξt such that

ξt =
3
√

f (t)−1
t

(3.6)

This choice of ξt will ensure that the Jacobian of the growth tensor for both cases are equal at Z = 0 at
each time t. Figure 9 shows 1+ ξtt as well as 1+αtt, 1+βtt and 1+ γtt acquired form the two field
minimization problem conditional on (3.4).

FIG. 9: Changes in anisotopic growth parameters αt ,βt ,γt and isotropic growth parameter ξt .

From Figure 9, one can see that this minimization produces a growth regime in which the radial
component is dominant. This is not surprising since the energy is very insensitive to radial growth, see
Figure 8. The axial direction as expected from Figure 8 is the most strictly controlled growth direction.
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Now using the growth parameters from Figure 9 at each time step, we acquire the evolution of
the domain in time, Figure 10. We observe a mild buckling effect in the isotropic case which can
be due to the axial stress in each layer. In addition, the intima is thickened but the narrowing of the
lumen is not completely a result of intimal thickening in this case. It is clear that buckling contributes
to the narrowing process. On the other hand, for anisotropic growth with approximately the same Jg
we can clearly observe an intimal thickening close to the center of growth as the main contributor to
the encroachment. Figure 11 shows that the isotropic growth induces much less stenosis compared
to the anisotropic growth. On the other hand, the behavior of the lumen area vs stenosis curves in
the anisotropic case (specifically at Z = 0) look very similar to Glagov’s original data (Glagov et al.
(1987)). Finally a comparison between the energies from the isotropic and anisotropic growth shows
that the latter is much more energetically favorable, see Figure 12.

In addition, we investigate the changes in the fiber angles and values of I4 in (2.8). The latter can be
thought as a measurement of stiffness for each layer. In both isotropic and anisotropic cases, the fiber
angle in the intima increases the most, see Figure 13(a) and (c). However, Figures 13 (b) and (d) show
that I4 does not change significantly in the intima in both cases. Physically this means the fibers do not
change their length in the intima, only their orientation. In addition, Figures 13 (b) and (d) show that
the isotropic case eventually a stiffer adventitia but a more compliant media than the anisotropic case.
Therefore, the intima in the anisotropic case finds it easier growing inward than pushing against a stiffer
media to grow outward. This is supported by the difference in the sizes of the inward bulges in the two
cases in Figure 11.

Finally, we impose our energetically favorable anisotropic growth scheme on arteries with different
initial lumen areas. Figure 14 shows the lumen area-stenosis curves for six arteries at Z = 0 along with
Glagov’s original data. This further confirms that our energetically favorable anisotropic growth model
is a better fit for real data than the isotropic case.
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(a) (b)

FIG. 10: Evolution of the domain for −0.58 6 Z 6 0.58 subject to (a) isotropic growth with ξt from Fig. 9, (b) general
anisotropic growth with (αt ,βt ,γt) from Fig. 9. Parameter a in (2.30)-(2.32) is taken to be 14.29.
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FIG. 11: Left: Comparison between the lumen area against stenosis for both isotropic and anisotropic growth. Star denotes the
time t = 0. Right: Comparison between the lumen area in time for both isotropic and anisotropic growth. Dashed lines correspond
to isotropic and solid lines correspond to anisotropic growth.

FIG. 12: Changes in the strain energy produced by isotropic and anisotropic growth in time.
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(a) (b)

(c) (d)

FIG. 13: Top: Isotropic growth with ξt from Fig. 9. (a) Changes in the minimum and maximum fiber angles. (b) Changes in
the maximum of I4 in each layer.
Bottom: Anisotropic growth with (αt ,βt ,γt) from Fig. 9. (c) Changes in the minimum and maximum fiber angles. (d) Changes
in the maximum of I4 in each layer.
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FIG. 14: Glagov curves at Z = 0 for six arteries under anisotropic growth. For each case, all linear dimensions for the artery
were scaled by a factor ζ . Each curve corresponds to a 10% increase in arterial dimensions, that is, ζ = 0.9,1.0,1.1,1.2,1.3,1.4
respectively. Stenosis is unchanged by the scaling while lumen area increases by ζ 2. The red curve corresponds to the one in
Figure 11. The data points are Glagov’s original data and the dashed blue line marks the begining of inward remodeling.

4. Conclusion

In this paper we investigated an axisymmetric growing artery using morphoelasticity. First we were
curious to see the effect of growth in each direction separately. This allowed us to associate each aspect
of the Glagov remodeling phenomenon with growth in a certain direction. We observed that the radial
growth is the main culprit in encroachment of the vessel while circumferential growth is responsible for
the outward remodeling. In the case of axial growth, we saw both types of remodeling. However, the
inward remodeling was partly a result of arterial wall buckling. We also saw that radial growth thickens
the intima without changing the thickness of the other two layers. The circumferential growth thins the
media and thickens the intima slightly, and the axial growth slightly thickens the intima and, thins the
media and stretches the artery axially.

We hypothesized that if the growth tensor is determined by an energy minimization, radial growth
would emerge to become dominant. We suggested a displacement-growth two field minimization frame-
work to test our hypothesis. As we expected due to the large energy produced by axial and circumfer-
ential growth this prescription suppresses the effect of these growth directions. In other words, for the
growth tensor

G = diag(1+αtt exp(−aZ2),1+βtt exp(−aZ2)),1+ γtt exp(−aZ2))

the parameters αt , βt and γt follow αt > βt > γt for the most part.
To further enforce the need for an anisotropic treatment of our problem we investigated an isotropic

growth with the growth tensor

G = diag(1+ξtt exp(−aZ2),1+ξtt exp(−aZ2)),1+ξtt exp(−aZ2))

The parameter ξt is chosen such that the maximum Jacobian of growth (which happens at Z = 0) for
both cases is exactly the same for each time step t. Our result is that the anisotopic growth is much
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more energetically favorable than the isotropic case for the same amount of volumetric growth. On a
plot of lumen area vs stenosis, anisotropic growth produced curves that were closer to Glagov’s original
data. Furthermore, we saw more stenosis for the more energetically favorable anisotropic growth than
isotropic growth. This was expected due to the dominance of growth in the radial direction and the
increased effective stiffness of the media layer in the anisotropic case.

Many studies have shown that smooth muscle cell (SMC) proliferation is the reason for intimal
thickening (Groves et al. (1995), Sho et al. (2002), Francis et al. (2003) and Nakagawa & Nakashima
(2018)). In addition, there are studies that suggest that SMC proliferation is regulated by changes in the
circumferential stress in the vessel wall (Wayman et al. (2008)) or changes in wall shear stress induced
by blood flow (Ueba et al. (1997) and Haga et al. (2003)). Although it is acknowledged that atheroscle-
rosis proceeds because of growth in the intima, few authors have studied the nature of the anisotropy
in the growth tensor when they model this phenomenon. Our approach was to choose an anisotropic
growth tensor based on minimizing the total energy. The result was a radially dominant growth, consis-
tent with experiments on radial construction in arterial walls (Greif et al. (2012)). According to Greif
et al. (2012), smooth muscle cells (SMCs) have to re-orient themselves to become “bricks” in the vessel
wall. Cells in different layers re-orient themselves at different times, so that there is a re-orientation
wave that radiates outwards. This radial patterning is probably due to a platelet derived growth factor
(PDGF) wave that itself has a strong radial component. In this paper we do not work with PDGF, but
it would be interesting to compute the effective growth tensor from Greif et al. (2012) experiments and
compare them with our model predictions.

Our model is consistent with durotaxis (migration of cells up the rigidity gradients in the extracellu-
lar matrix), in the sense that growth occurs in the intima only, which is the stiffest layer in atherosclerotic
arteries (note that η1� η2, η3 and β1� β2,β3 in Table 1). In the early stages of atherosclerosis, smooth
muscle cells from the media migrate to the intima and then proliferate. Our model lumps both of these
processes into a single growth tensor, G.

In this paper, we did not consider long term dynamics of the blood flow. Our model solely focuses
on the arterial remodeling caused by growth. However, in reality, the remodeling process can be sig-
nificantly affected by hemodynamics due to the sensitivity of endothelial cells to shear stress. Altered
laminar shear stress from a flow rate can contribute to the remodeling process (Langille (1996)).Further-
more, it has been observed that a chronic reduction in blood flow can lead to a reduction of the arterial
diameter (Langille & O’Donnell (1986)). Therefore, a more realistic model requires a more detailed
inclusion of the blood flow rather than a static value.

Even though our hypothesis was tested using the mathematical tool of energy minimization, we hope
it can motivate a rigorous biological experiment to validate it. With advances in nanospring technology,
it may eventually be possible to measure the energy associated with growth in radial, circumferential
and axial directions (Iwaki et al. (2016)). We believe that finding a practical way to control or change the
dominant anisotropy of growth might be the key to slow down or even reverse inward remodeling which
is responsible for affecting local hemodynamics and promoting medical conditions such as angina.
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