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Abstract

In this paper, we study the inverse problem of reconstructing the spatially de-
pendent transition rate F (x) of a one-dimensional Broadwell process from exit time
distributions. In such a process, an advecting particle is assumed to undergo transi-
tions between states with constant positive (+v) and negative (−v) velocities. The
goal is to reconstruct the transition rate function F (x) from the exit time distributions
out of a finite interval. Using the associated backward equation, we compute the dis-
tribution of exit times and its Laplace transform, given a fixed starting position and
velocity. We propose two methods (called ‘t’ and ‘s’) for finding F (x). In both meth-
ods, we represent F (x) as a linear combination of polynomials and repeatedly solve
the backward equation to minimize the difference between its solution and given first
exit time data. In the t-method we work in the time domain, using exit times directly
and leveraging a novel series solution for the exit time distribution. In the s-method,
we work with the Laplace-transformed equation and Laplace-transformed exit times.
Noisy data is generated using a custom-designed algorithm to simulate the trajectories
of a Broadwell process. In most cases we can find 4 coefficients to within O(10−1)
accuracy from O(104) exit times, with the t-method method slightly out-performing
the s-method. We also explore the effectiveness of our algorithms for a fixed number of
exit times under different advection speeds and find that optimal reconstruction occurs
when v = O(1).

Keywords: Random Walk, Inverse Problem, Broadwell, Telegrapher’s equation

1 Introduction1

Inverse problems arise in many applications such as medical imaging [1], high energy particle2

physics [21], and seismology [9]. Most of these applications involve measurement of waves at3
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the boundary of a domain; from this boundary data one may wish to reconstruct spatially-4

dependent properties within the domain such as the density and/or wave speed. However,5

there have been fewer successful applications where the underlying physics involves an in-6

trinsic random process. The corresponding “boundary data” for stochastic inverse problems7

are probability fluxes or exit time distributions. The types of stochastic inverse problems8

we are concerned with in this paper involve inferring the parameters of a stochastic process9

from such a distribution.10

One example of such a stochastic inverse problem arises in the reconstruction of bond11

potentials from rupture time distributions [10, 12, 17]. In force spectroscopy experiments, an12

increasing force is applied across a macromolecular bond until it ruptures. Because of thermal13

fluctuations, the rupture force is a random variable; thus the goal is to infer properties of14

the bond potential from the distribution of rupture forces. Stochastic inverse problems also15

commonly arise in diffuse optical tomography [1, 2]. In all these applications, the exit time16

distribution of a Brownian motion leaving a finite interval is measured, and one wishes to17

reconstruct the drift and/or diffusion function.18

While Brownian motion is a canonical stochastic model, the inverse problem associated19

with Brownian motion is ill-posed [4, 11] and motivates the study of stochastic exit time20

problems based on other types of random walk. Ill-posedness is a trademark of many inverse21

problems. A problem is well-posed if a solution exists, is unique and depends continuously on22

the data. Otherwise the problem is ill-posed. At present, issues of existence and uniqueness of23

spatially dependent parameters for random walks are generally not well established, although24

some important results for Brownian motions can be found in [4].25

In this paper, we generalize the study of Brownian inverse problems by focusing on a class26

of persistent random walk models called Broadwell processes [6, 7, 8, 16, 20]. In a Broadwell27

process, a particle randomly interconverts (“flips”) between multiple states with each state28

associated with a particular velocity. The Broadwell process has the desirable property that29

it interpolates between a ballistic and diffusive motion [5, 22]: the time between transitions30

decreases as the flip rate increases, but increases as the flip rate decreases. The Broadwell31

model opens the analysis of the inverse problem for these two types of limiting processes;32

studying the inverse Broadwell problem may therefore provide insight into the important,33

fully diffusive problem. We specialize to the constant speed Broadwell process, assuming34

that transition probabilities that are spatially dependent and that the particle takes only two35

states associated with a positive and negative velocity. From the distribution of exit times36

out of a finite interval, our goal is to find the transition probability (“flip-rate”) function.37

Accurately simulating the exit times of a Brownian motion can be quite involved although38

reliable methods do exist: see [14, 15, 19, 25] for example. Nevertheless, one important39

advantage of studying the Broadwell model is the ease with which it can be simulated.40

Accurate simulations are critical for comparisons between reconstructed flip-rate functions41

and the underlying target functions that produced the exit data. When generating the exit42

time distribution from our simulations, the only source of error (besides round-off) stems43

from using a finite number of realizations.44

The outline of this paper is as follows. In section A, we derive from first principles the45

Backward Kolmogorov Equation (BKE) for a general K-state Broadwell process. We then46

restrict our attention to the simple two-state case parameterized by a spatially dependent47
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(but state-symmetric) transition rate and a constant speed. We also state the inverse prob-48

lem of reconstructing the flip-rate function from the exit time distributions. The associated49

optimization problem involves minimizing the distance between the solution of the BKE and50

the exit time data (derived from simulations or from the solution of the BKE with a given51

flip rate function). In section 2 we discuss the numerical aspects of our work. In partic-52

ular, we present two reconstruction methods. The first involves minimizing the difference53

between the solution to the BKE and the target data in the time domain. The second in-54

volves minimizing the difference between the Laplace-transformed solution of the BKE and55

transformed exit time data. We also explain the simulation of Broadwell random walkers to56

test our reconstruction protocols. In Section 3 we present the results of our reconstruction57

using noisy data and compare the two methods. We show that for a finite number of exit58

times, the most reliable reconstruction of the flip rate occurs at an intermediate advection59

speed, no matter which method is used. In Section 4, we discuss general implications of our60

results and summarize our findings.61

1.1 Two-state model and statement of inverse problem62

A two-state Broadwell model describes a particle that can take one of two states. Initially,63

the particle is at position x and in state i ∈ {1, 2}. The particle advects within an interval64

(−L/2, L/2) with velocity +v if i = 1 and −v if i = 2. While advecting, the particle may65

change state with probability F (y)dt within time interval (t, t + dt) where y is the current66

particle position.67

Let w(t|x, 1, 0) ≡ w1(x, t) and w(t|x, 2, 0) = w2(x, t) be the exit time distributions condi-68

tioned on the particle initially being at position x and having a positive (+v) and negative69

(−v) velocity respectively. Then the exit time distributions satisfy70

∂w1

∂t
= v

∂w1

∂x
+ F (x)(w2 − w1), (1)

∂w2

∂t
= −v

∂w2

∂x
+ F (x)(w1 − w2), (2)

subject to initial conditions71

w1(x, 0) = 0, w2(x, 0) = 0. (3)

and boundary conditions72

w1(x = L/2, t) = δ(t), w2(x = −L/2, t) = δ(t). (4)

A full derivation of the backward equation for the exit time distribution for a general K-state73

Broadwell process (of which (1)-(4) are a special case) can be found in Appendix A.74

Given F (x), one can solve eqs. (1)-(3) (the “forward problem”) to find w1(x, t) and w2(x, t)75

for all −L/2 < x < L/2 and t > 0. Note that eqs. (1) and (2) constitute Kolmogorov’s76

backward equations for the exit time distributions, and that solving this backward equation77

defines the forward problem for computing w1(x, t), w2(x, t) from a known F (x). However in78
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this paper we are interested in the inverse problem:79

80

Problem Statement: Consider eqs. (1)-(3). Given a known, fixed −L/2 < x0 < L/2,81

a known velocity v > 0 and exit time distributions w1(x0, t) and w2(x0, t) for t > 0, find82

F (x) ∈ C(−L/2, L/2).83

84

In practice, the exit time distributions could come from directly simulating a Broadwell85

process or from a single solution of the forward problem. For particles that initially advect86

with velocities +v and −v, we refer to associated exit time distributions w1,data(x0, t) and87

w2,data(x0, t) respectively; note that w1,data(x0, t) and w2,data(x0, t) may or may not be noisy.88

We give details on how w1,data and w1,data are computed in Section 2.2.89

Unfortunately, eqs. (1)-(3) are not useful in practice for inferring F (x) because the so-90

lutions are highly singular. Related quantities that are more regular and whose governing91

equations are more amenable to numerical methods are the cumulative density functions92

(cdfs) and Laplace-transformed probability density functions. We now give explicit forms for93

these equations since we make frequent use of them later on.94

The cdfs are related to the pdfs by W1,2(x, t) =
∫ t

0
w1,2(x, t

′)dt′. Therefore, upon inte-95

grating (1) and (2) in time, we find96

∂W1

∂t
− v

∂W1

∂x
= F (x)(W2 −W1), (5)

∂W2

∂t
+ v

∂W2

∂x
= F (x)(W1 −W2), (6)

subject to the boundary conditions97

W1(L/2, t) = H(t), W2(−L/2, t) = H(t), (7)

and initial conditions98

W1(x, 0) = 0, W2(x, 0) = 0. (8)

In eqs. (7), H(t) is the Heaviside step function satisfying H(t) = 1 if t > 0 and H(t) = 099

if t ≤ 0. The corresponding inverse problem is to find F (x) ∈ C(−L/2, L/2) given −L/2 <100

x0 < L/2, v and Wj,data(x0, t) =
∫ t

0
wj,data(x0, t

′)dt′ for t > 0 and j = 1, 2. Alternatively, we101

can also take Laplace transforms of (1) and (2) to find102

sw̃1(x, s) = v
∂w̃1

∂x
+ F (x)(w̃2 − w̃1), (9)

sw̃2(x, s) = −v
∂w̃2

∂x
+ F (x)(w̃1 − w̃2), (10)

subject to boundary conditions103

w̃1(x = L/2, s) = 1, w̃2(x = −L/2, s) = 1. (11)

The corresponding inverse problem is to find F (x) ∈ C(−L/2, L/2) given −L/2 < x0 < L/2,104

v and w̃j,data(x0, s) for s > 0 and j = 1, 2.105
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2 Algorithms for Reconstruction106

This section is divided into 3 parts. First, we give details on solving the forward problems107

(9)-(11) and (5)-(8). Then we explain how to generate noisy data by directly simulating a108

Broadwell process with spatially dependent flip rate. Finally, we discuss a projection method109

to solve the inverse problem.110

2.1 Solution to the forward problems111

Solution to (9)-(11): Our method for finding w̃1(x0, s) and w̃2(x0, s) from eqs. (9)-(11) is112

based on solving the boundary value problem using a pseudospectral method [26] for different113

values of s ≥ 0: see Algorithm 1. The solutions w̃1,2(x0, s) are always infinitely differentiable,114

monotonically decreasing functions in s that → 0 as s→∞.115

116

Algorithm 1 Algorithm for solving the forward problem (9)-(11).

1: Require: flip rate function F (x), velocity v > 0, interval size L, starting position −L/2 <
x0 < L/2 and integer N � 1.

2: for i = 1, 2, . . . , N do
3: let ξi = (i− 1)/N and si = ξi/(1− ξi).
4: With s = si, solve (9)-(11) using a pseudospectral discretization [26] in x.
5: Interpolate the solution at x = x0 to find w̃1(x0, si) and w̃2(x0, si).
6: end for
7: Output: Laplace Transformed exit time distributions w̃1(x0, si) and w̃2(x0, si), i =

1, . . . , N .

Solution to (5)-(8): In contrast to w̃1,2(x0, s), the solutions W1,2(x, t) contain jump dis-117

continuities that propagate into the domain of solution with velocity ±v: the jump dis-118

continuity in W1(x, t) (W2(x, t)) propagates along the characteristic line t = −x/v + L/(2v)119

(t = +x/v+L/(2v)). This behavior in the singularities is illustrated by the following theorem120

which uses an eigenfunction expansion to construct an explicit solution to (5)-(8).121

Theorem 1 (Series solution to the forward problem (5)-(8)). For 0 < t < L/v, the solution122

to (5)-(8) is123

W1(x, t) = a1(x)H [t + x/v − L/(2v)] + Z1(x, t), (12)

W2(x, t) = a2(x)H [t− x/v − L/(2v)] + Z2(x, t), (13)

where H [·] is the heaviside step function and Z1,2(x, t) are continuous functions given by the124

series125

Z(x, t) = −
∞
∑

m=1

um(x)

smDm

[h(1)
m (t) + h(2)

m (t)], (14)
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where:126

h(1)
m (t) =

∫ −L/2+vt

−L/2

p(1)∗m (y)a2(y)F (y)(1− e(t−
y

v
− L

2v )sm)dy, (15)

h(2)
m (t) =

∫ L/2

L/2−vt

p(2)∗m (y)a1(y)F (y)(1− e(t+
y

v
− L

2v )sm)dy, (16)

a1(x) = exp

[

−
1

v

∫ L/2

x

F (x′)dx′

]

, (17)

a2(x) = exp

[

−
1

v

∫ x

−L/2

F (x′)dx′

]

, (18)

Dm = 〈pm(x),um(x)〉 =

∫ L/2

−L/2

p∗
m(x)um(x)dx. (19)

In (14), sm ∈ C and um(x) ∈ C2 are the eigenvalues and eigenfunctions of A where127

A

(

u1

u2

)

=

{[

v d
dx

0
0 −v d

dx

]

+ F (x)

[

−1 1
1 −1

]}(

u1(x)
u2(x)

)

, (20)

along with the boundary conditions u1(L/2) = u2(−L/2) = 0. pm(x) =
[

p
(1)
m (x), p

(2)
m (x)

]T

128

are the eigenfunctions of the adjoint operator A∗.129

We now discuss the behavior of the solutions W1,2(x, t) in light of eqs. (12)-(13) and130

defer the proof of the theorem to the end of this section. From (12) and (13) it is clear that131

discontinuities in the boundary conditions (7) propogate into the interior. In Figure 1(a), W1132

is discontinuous on the diagonal line separating A,C andB,D whileW2 is discontinuous on the133

line separating A,D and B,C. Because the hyperbolic system (5)-(8) has a finite wave speed134

v > 0, region C is outside the region of influence of the disturbances originating at (x, t) =135

(L/2, 0) and (−L/2, 0) and we expect that W1(x, t) = W2(x, t) = 0 in C. This behavior136

is confirmed in Figure 1(b) which shows the cumulative distribution functions W1,2(x =137

−L/4, t) calculated using (12)-(14). The function W1(−L/4, t) has a discontinuous derivative138

at t1 = L/(4v) and a jump discontinuity at t2 = 3L/(4v) while W2(−L/4, t) has a jump139

discontinuity at t1 and a discontinuous derivative at t2. Figure 1(c) shows cdfs evaluated140

at x0 = L/3. The inset shows associated Laplace-transformed probability density functions141

w̃1(L/3, s) and w̃2(L/3, s), found by solving eqs. (9)-(11)) using Algorithm 1. Cumulative142

density functions from Monte-Carlo simulations are superposed to validate our numerical143

method; details of how these simulations are performed are described in section 2.2.144

The expansions (12)-(13) in Theorem 1 are commonly used to analyze seismic waves145

[9, 23, 24] and form the basis of our numerical method for the forward problem in t: see146

Algorithm 2. Numerically, the cdfs W1,2 are computed by taking a finite number of terms147

in (14) and adding on a step discontinuity at t = ∓x/v + L/(2v) with strength given by148

(17) and (18). A pseudo-spectral collocation method on a Chebyshev grid was used to find149

the eigenvectors uj and Clenshaw-Curtis quadrature [26] was used to quickly evaluate the150
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Algorithm 2 Algorithm for solving the forward problem (5)-(8). The same symbol is used
to refer to quantities in (14)-(19) as well as their numerical approximations. For example, A
refers to the differential operator as well as its matrix approximation.

1: Require: A target flip rate F (x), velocity v > 0, an integer N , a starting position
−L/2 < x0 < L/2 and a discretization of the interval [−L/2, L/2], {χ0, χ1, . . . , χn}.

2: Discretize the differential operators A and the adjoint A∗ where

A

(

u1

u2

)

=

{[

v d
dx

0
0 −v d

dx

]

+ F (x)

[

−1 1
1 −1

]}(

u1(x)
u2(x)

)

,

A∗

(

p1
p2

)

=

{[

−v d
dx

0
0 v d

dx

]

+ F (x)

[

−1 1
1 −1

]}(

p1(x)
p2(x)

)

.

Note that A must account for the boundary conditions u1(L/2) = 0 and u2(−L/2) = 0
respectively and A∗ must account for the adjoint boundary conditions p1(−L/2) = 0 and
p2(L/2) = 0.

3: Compute s1, . . . , sN , the first N complex eigenvalues of A with smallest absolute value.
4: Compute the corresponding N eigenvectors of u1, . . . ,uN of A and p1, . . . ,pN of A∗.

5: Compute the inner products Dm =
∫ L/2

−L/2
p∗
m(x)um(x)dx for m = 1, . . . , N .

6: Compute the functions h
(1)
m (t) and h

(2)
m (t) in (15) and (16) for m = 1, . . . , N .

7: Compute a1(x) and a2(x) in (17) and (18).
8: Compute

Z(x0, t) = −
N
∑

m=1

um(x0)

smDm
[h(1)

m (t) + h(2)
m (t)], (21)

as the N -term approximation to (14). If x0 does not coincide with a grid point χj, use
interpolation to find um(x0).

9: Compute W1(x0, t) and W2(x0, t) by adding discontinuities of strength a1(x0) and a2(x0)
at t = −x0/v + L/(2v) and t = x0/v + L/(2v) respectively to Z1 and Z2: see eqs. (12)
and (13).

10: Output W1(x0, t) and W2(x0, t).
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Figure 1: (a) Propagation of discontinuities of (1)-(3) in the x-t plane. The solution w1(x, t)
is formally infinite on x = L/2 − vt while w2(x, t) is infinite on x = −L/2 + vt. These
singularities give rise to discontinuities in W1 and W2 that can be seen in (b,c). (b) Numeri-
cal computation of cumulative probability densities (cdfs) W1,2(x0 = −L/4, t) and auxiliary
functions Z1,2(x0 = −L/4, t) computed through (14) and Algorithm 2 using using 101 Cheby-
shev grid points and 51 eigenfunctions u1,u2, . . . ,u51. (c) Numerical computation of cdfs
W1,2(x0 = L/3, t) (solid) along with results from Monte Carlo simulations (diamond). Inset
shows Laplace-transformed probability densities w̃1,2(x0 = L/3, s). Common parameters in
(b,c) are v = 1, F (y) = 1 + y and L = 1.

integrals (15) and (16) for 0 < t < L/v. The strength of this numerical method is that no151

integration in time is required to find W1,2(x0, t) and the method allows quick evaluation of152

the cdfs at one fixed value of x = x0. Its weakness is that many terms are usually required153

(& 100) in the expansion to obtain accurate results when x0 is close to ±L/2. Furthermore154

we found that when x0 = ±L/2, the expansion (14) converged to a discontinuous function,155

giving W1,2(x0, t) > 1 as t → ∞; hence the properties of the series (14) still require further156

investigation at the domain boundaries.157

Another important reason for separating out W1 and W2 into continuous and discontin-158

uous components is to avoid Gibbs oscillations when solving for Z(x, t) as superpositions of159

eigenfunctions un. These oscillations would introduce large errors into the solution to the160

forward problem (5)-(8) and therefore hinder the solution of the inverse problem.161

Proof of Theorem 1. Upon substituting (12), (13) into (5), (6), we find that Z1,2(x, t) satisfy162

∂Z1

∂t
− v

∂Z1

∂x
− F (x)(Z2 − Z1) = a2(x)F (x)H [t− x/v − L/(2v)], (22)

∂Z2

∂t
+ v

∂Z2

∂x
− F (x)(Z1 − Z2) = a1(x)F (x)H [t+ x/v − L/(2v)], (23)

subject to the homogeneous boundary conditions Z1(L/2, t) = 0, Z2(−L/2, t) = 0 and initial163

conditions Z1(x, 0) = 0, Z2(x, 0) = 0 and a1,2 are defined by (17) and (18). We now find a164
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series representation for Z1,2(x, t). After taking Laplace transforms of (22) and (23), we find165

that Z̃(x, s) =
[

Z̃1(x, s), Z̃2(x, s)
]T

satisfies166

(A− sI)Z̃(x, s) = −
Ñ(x, s)

s
,

Ñ(x, s) = F (x)

[

a2(x)e
−( L

2v
+x

v )s

a1(x)e
−( L

2v
−x

v )s

]

.

with boundary conditions Z̃1(L/2, s) = 0, Z̃2(−L/2, s) = 0. Eq. (24) has a solution of the167

form168

Z̃(x, s) =
∞
∑

n=1

cn(s)un(x)

s− sn
, (24)

where the vector eigenfunctions un(x) ∈ C2 satisfyAun = snun for eigenvalues sn ∈ C. As an169

aside, when F (x) = F0 is a constant, one can show that the eigenfunctions are proportional170

to [−(α2+λ2
n)

1/2 sinhλn(x+1/2)+λn coshλn(x+1/2), α sinhλn(x+1/2)]T with α ≡ F0L/v,171

the λn ∈ C satisfy the transcendental equation −(α2 + λ2
n)

1/2 tanhλn + λn = 0, and the172

eigenvalues are given by sn = −α − (α2 + λ2
n)

1/2.173

Recall that if {un} are the eigenfunctions of A and {pm} are the eigenfunctions of the
adjoint operator A∗, then 〈pm,un〉 = 0 unless m = n. Substituting (24) into (24), left-
multiplying both sides of by p∗

m and integrating, we find that

cn(s) =
〈pm(x), Ñ(x, s)〉

sDm
,

where Dm is defined by (19). (One cannot obtain cn by invoking orthogonality of {un} since174

A is not self-adjoint.) We now take the inverse Laplace transform of (24) and switch the175

order of integration to obtain the continuous parts of the cumulative density functions (cdfs):176

Z(x, t) =
∞
∑

m=1

um(x)

Dm

{

∫ L/2

−L/2

dyp(1)∗m (y)a2(y)F (y)

∫ γ+i∞

γ−i∞

ds

2πi

e(t−
y

v
− L

2v )s

s(s− sm)
+

∫ L/2

−L/2

dyp(2)∗m (y)a1(y)F (y)

∫ γ+i∞

γ−i∞

ds

2πi

e(t+
y

v
− L

2v )s

s(s− sm)

}

, Reγ > 0,

= −
∞
∑

m=1

um(x)

smDm
[h(1)

m (t) + h(2)
m (t)].

where h
(1)
m (t) and h

(2)
m (t) are given by eqs. (15) and (16) respectively.177

2.2 Monte-Carlo simulation using Rejection-Acceptance178

We now give details of our Monte-Carlo method in Algorithm 3. This method can be used to179

simulate a broadwell particle with spatially dependent velocity, even though for our inverse180
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problem, the particles always have constant velocity. The method is based on the Rejection-181

Acceptance method [3], a common method for drawing random variables from a pdf whose182

functional form is known, but non-standard. We note four important points about the183

algorithm.184

1. The algorithm samples from w1(y0, t) or w2(y0, t) depending on the initial velocity: see185

eqs. (27).186

2. The algorithm generates random variables for the time periods in between the state187

transitions θ (the “flip times”). For a Broadwell process with a constant transition188

rate, the flip times are exponentially distributed. For a spatially-dependent transition189

rate F (y), the flip time θ ≡ tj+1 − tj is distributed according to190

θ ∼ Q(t) ≡ F [y(t)] exp[−p(t)],

p(t) =

∫ t

0

F [y(t′)] dt′, (25)

where the position of the particle satisfies dy(t)/dt = v(y). We sample from Q(t)
using a Rejection-Acceptance method [3]: suppose there exist constants Fmin and Fmax

satisfying 0 < Fmin ≤ F (y) ≤ Fmax <∞ for −L/2 < y < L/2. Then

Q(t) ≤ CFmin exp(−Fmint) ≡ P (t),

where C = Fmax/Fmin and so an exponential distribution can be used as an envelope191

function.192

3. Once the flip time θ is generated, the flip position yj+1 can be found by solving193
∫ yj+1

yj
v−1(y)dy = θ. This integral could be expensive to calculate if it has to be done194

many times. Also, every evaluation of Q(t) requires computing the integral p(t) in (25).195

Both of these issues are handled simultaneously in our algorithm through the solution196

of the pair of ordinary differential equations (26)-(??). For the special case where v is a197

constant, (26) and (27) should be replaced with dp/dt = F (yj + vt) and y(t) = yj + vt.198

4. When solving the differential equations (26) and (27), F may have to be evaluated199

outside of the interval [−L/2, L/2]. Because the form of F (y) outside [−L/2, L/2] does200

not affect the exit time, we simply take F (y) = F (L/2) for y > L/2 and F (y) =201

F (−L/2) for y < −L/2.202

Figure 2 shows the probability density functions w1(0, t) generated by the algorithm for203

two different F (x) when v(x) = constant. By definition, w1 is the exit time density for a204

particle that initially has velocity v > 0. Therefore the solution w1(x, t) in (1) contains delta205

functions that correspond to an immediate particle exit at a time tc ≡ (L/2 − x)/v. The206

reason is if t is the particle exit time and θ is the time before the first state transition, then207

P (t = tc) = P (θ ≥ tc) =

∫ ∞

tc

Q(t′)dt′ > 0. (28)
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Algorithm 3 Generating exit times from a Broadwell process

1: Require: an interval size L, a starting position −L/2 ≤ y0 ≤ L/2, functions F (y), v(y) ∈
C(−∞,+∞), Fmin, Fmax > 0 where Fmin ≤ F (y) ≤ Fmax for y ∈ [−L/2, L/2].

2: Let P (t) ≡ Fmax exp(−Fmint).
3: Set j = 0 and tj = 0.
4: while −L/2 < yj < L/2 do
5: Draw θ ∼ exp(Fmin)
6: Compute p(θ) and y(θ) by numerically solving

dp(t)

dt
= F (y), (26)

dy(t)

dt
=

{

(−1)jv(y), {for positive velocity at t = 0}
(−1)j+1v(y), {for negative velocity at t = 0}

(27)

on t ∈ [0, θ], subject to initial conditions p(0) = 0 and y(0) = yj.
7: Set Q(θ) = F [y(θ)] exp[−p(θ)]
8: Draw ρ ∼ U(0, 1)
9: if ρ < Q(θ)/P (θ) then
10: j ← j + 1 {acceptance}
11: Set yj = y(θ) and tj = tj−1 + θ
12: Goto 4
13: else
14: Goto 5 {rejection}
15: end if
16: end while{Particle has left interval}
17: if yj > L/2 then

18: Output the exit time as tj +
∫ L/2

yj
v−1(y)dy.

19: else
20: Output the exit time as tj +

∫ −L/2

yj
(−v−1(y))dy.

21: end if

11



0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

exit time, t

pr
ob

ab
ili

ty
 d

en
si

ty
, w

1(0
,t)

0 2 4

0

0.5

1

s
w

1(0
,s

)

 

 

Predicted

Simulated Data

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

exit time, t

pr
ob

ab
ili

ty
 d

en
si

ty
, w

1(0
,t)

0 2 4

0

0.5

1

s

w
1(0

,s
)

 

 

Predicted
Simulated Data

(a) (b)

Figure 2: Simulated exit times of a Broadwell process. Although probability densities are
shown here, cumulative density functions are used to infer the flip rate function. (a) F (x) =
10x3 + 5ex + 1, v = 1/2 (b) F (x) = 1 + x2, v = 1. Insets show Laplace-transformed data.
Solid line: solution to (9), (10). Red diamonds: Laplace transform of histogram data. The
number of realizations was N = 40, 000 in each case.

Hence the probability distribution of the exit times will always contain point masses (delta208

functions) of probability located at t = tc [20]. In Fig. 2(b) a numerical approximation of209

this delta function can be seen. The height of this “spike” is controlled by the size of the210

bins used when creating the histogram and becomes unbounded as the bin size tends to zero211

and the number of trials tends to infinity. These delta distributions are always present in the212

exact solution but they may not always be visible in the numerical solution if the number of213

trials is small or the bin size is large; see Fig. 2(a) for example.214

2.2.1 Generation of noisy distributions from a finite number of exit times215

We always use Algorithm 3 to generate two sets of N exit times
{

τ
(1)
j

}

and
{

τ
(2)
j

}

. With216

this notation, τ
(i)
j (1 ≤ j ≤ N , i = 1, 2) is the jth exit time conditioned on the particle217

having initial velocity (−1)i+1v. Assuming that
{

τ
(1)
j

}

and
{

τ
(2)
j

}

are sorted in ascending218

order, noisy cumulative densities W1,data(t) and W2,data(t) are computed as219

Wi,data(t) =



























0 if t < τ
(i)
1 ,

m

N
if τ

(i)
1 < t < τ

(i)
N ,

1 if t ≥ τ
(i)
N ,

(29)

where m is the unique index satisfying τ
(i)
m < t < τ

(i)
m+1.220
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The noisy Laplace transform of a finite number of exit times is calculated through221

w̃j,data(s) =











∫ ∞

0

e−stdWj,data(t)

dt
dt = sW̃j,data(s), s > 0,

1, s = 0,

(30)

where222

W̃j,data(s) =

∫ ∞

0

e−stWj,data(t)dt =

∫ 1

0

e−st[η]Wj,data(t[η])
dη

(1− η)2
, (31)

where j = 1, 2 and t[η] = η/(1− η). We avoid “binning” when calculating w̃j,data, since this223

introduces a corresponding discretization error. The integral in (31) can be calculated using224

the trapezium rule on equally spaced abscissae in η.225

2.3 Projection method to solve inverse problem226

We now briefly describe our algorithms for reconstructing the flip rate function F (x) from227

the two distributions of exit times w1,data(t) and w2,data(t). These distributions can come228

from simulating the Broadwell process directly through Algorithm 3 or through a one-time229

solution of the forward problems (9)-(11) or (5)-(8). We implement two related algorithms.230

The first method uses the exit time data directly (t-method) and the second method uses231

Laplace-transformed exit time data (s-method). Pseudocode for the two methods is given in232

Algorithms 4 and 5.233

In both methods, we represent the trial flip rate function FM(x) and the target flip rate234

function F ∗(x) as linear combination of Legendre polynomials on [−L/2, L/2]:235

FM(x) =

M−1
∑

j=0

ajφj(x), (32)

For example, φ0(x) = 1, φ1(x) = 2x/L, φ2(x) = 6
(

x
L

)2
− 1

2
.236

Our aim is to find coefficients a1, . . . , aM to minimize the objective functions for the237

t-method and s-methods, Π1 and Π2 respectively. These take the form238

Π1(a) =

∫ L/v

0

|W1(x0, t; a)−W1,data(x0, t)|
2dt +

∫ L/v

0

|W2(x0, t; a)−W2,data(x0, t)|
2dt,

Π2(a) =

∫ ∞

0

|w̃1(x0, s; a)− w̃1,data(x0, s)|
2ds+

∫ ∞

0

|w̃2(x0, s; a)− w̃2,data(x0, s)|
2ds.

The data sets Wj,data(x0, t), w̃j,data(x0, s) associated with F ∗(x) can be computed from indi-239

vidual exit times using (29) and (30) respectively.240

Minimization of Π1 and Π2 with respect to a was performed using the Matlab rou-241

tines fminunc.m and lsqnonlin.m for the t and s methods respectively, with the tolerances242

TolFun and TolX set to 10−14. The initial guess for the coefficients was always aj = 1243

for j = 1, . . . ,M , unless otherwise stated. The minimizing coefficients âj then define the244

reconstructed flip rate through F̂ (x) =
∑N

j=1 âjφj(x).245
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An obvious limitation of the projection method is that the method does not converge for246

non-polynomial F ∗ and polynomial F ∗ with degree > M . However, as we shall see in section247

3, the method may still be used to find reasonable approximations in these cases.248

Algorithm 4 Reconstruction of flip rate coefficients using the t-method

1: Require: An integer M , an interval length L, target flip rate function F ∗(x), a particle
speed v > 0, a starting position −L/2 < x0 < L/2 and the first M legendre polynomials
on (−L/2, L/2), φ1, . . . , φM (see text for details).

2: Generate noisy cdfs of the exit time W1,data(x0, t) and W2,data(x0, t) for F
∗(x) using Al-

gorithm 3.
3: For a given a = (a0, a1, . . . , aM−1) ∈ RM , define FM(x) =

∑M−1
j=0 ajφj(x). Let

W1,2(x0, t; a) be the solution to the forward problem (5)-(8) with F = FM , calculated
using Algorithm 2.

4: Find a = â that minimizes

Π1(a) =

∫ L/v

0

|W1(x0, t; a)−W1,data(x0, t)|
2dt +

∫ L/v

0

|W2(x0, t; a)−W2,data(x0, t)|
2dt.

(33)
Integrating through discontinuities can be avoided by noting that W1,2(x, t) = 0 when
t < min

(

L
2v
− x

v
, x
v
+ L

2v

)

. The lower limits of integration in (33) can be replaced with
(

L
2v
− x0

v

)+
when 0 ≤ x0 < L/2 and

(

x0

v
+ L

2v

)+
when −L/2 < x0 ≤ 0.

5: Output F̂ (x) ≡
∑M−1

j=0 âjφj(x) as the estimate of the flip rate function for the exit time
distributions W1,data(x0, t) and W2,data(x0, t).

3 Results and Discussion249

Flip Rate Reconstruction250

We used the projection algorithm discussed in section 2.3 to reconstruct flip rate functions251

from data generated using Monte Carlo simulation (see section 2.2). In the following discus-252

sion, let N be the number of exit times for each initial velocity +v, −v, so that the total253

number of exit times is always 2N . We also take the starting position x0 = 0, interval length254

L = 1 and particle speed v = 1 unless otherwise stated.255

For Fig. 3, we reconstruct some “structurally simple” smooth functions that have few256

extrema within (−L/2, L/2) and find that the accuracy of the reconstructions improves as257

the noise in the data decreases. For the “N =∞” cases, artificial, noiseless data is generated258

by solving the forward problems eqs. (5)-(8) and (9)-(11) with F = F ∗. Panels (a-f) indicate259

that for a given N , the t-method generally outperforms the s-method since the associated260

errors are smaller. In (a,b) we reconstruct a cubic polynomial by recovering M = 4 Legendre261

coefficients. In (c,d) we attempt to reconstruct a transcendental function by representing262

F ∗(x) with M = 5 coefficients. Although ||FM − F ∗||∞ 9 0 as the noise decreases, we are263

still able to find a reasonable approximation FM so that ||FM−F ∗||∞ is not too large. The s-264

method converges to the correct solution for perfect data but the inclusion of a small amount265
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Algorithm 5 Reconstruction of flip rate coefficients using the s-method

1: Require: An integer M , an interval length L, a target flip rate function F ∗(x), a particle
speed v > 0 and a starting position −L/2 < x0 < L/2 and the first M Legendre
polynomial on (−L/2, L/2), φ1, . . . , φM (see text for details).

2: Use F ∗(x) to generate Laplace-transformed exit time pdfs w̃1,data(x0, s) and w̃2,data(x0, s)
through Algorithm 3.

3: For a given a ∈ R
M , let w̃1,2(x0, s; a) be the solution to the forward problem (9)-(11)

calculated using Algorithm 1 with flip rate function defined by a = {a0, a2, . . . , aM−1}:

FM(x) =

M−1
∑

j=0

ajφj(x).

4: Find a = â that minimizes

Π2(a) =

∫ ∞

0

|w̃1(x0, s; a)− w̃1,data(x0, s)|
2ds+

∫ ∞

0

|w̃2(x0, s; a)− w̃2,data(x0, s)|
2ds, (34)

The integral in (34) is calculated using using a change of variable s[ξ] = ξ/(1−ξ) so that

Π2 =

2
∑

j=1

∫ 1

0

[w̃j(x0, s[ξ], a)− w̃j,data(x0, s[ξ])]
2 dξ

(1− ξ)2
,

which can be computed using the trapezium rule on equally spaced abscissae on [0,1].
5: Output F̂ (x) ≡

∑M−1
j=0 âjφj(x) as the estimate of the flip rate function for the exit time

distributions w̃1(x0, s) and w̃2(x0, s).
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Figure 3: Reconstructed approximations to flip rate functions F ∗(x) from noisy exit time
data. (a,b) F ∗(x) = 1− 0.7x− 0.3x2 + 6x3, M = 4; (c,d) F ∗(x) = x2e−x/10 + 1/10, M = 5;
(e,f) F ∗(x) = 1 + x + 3x2, M = 3. The t-method was used in the left panels and the s-
method was used in the right panels. N = ∞ corresponds to perfect, noiseless data, which
is generated by solving the forward problems (5)-(8) and (9)-(11).

of noise renders the method unstable, resulting in a large error. This kind of behavior also266

occurs with the t-method when M & 5 and is typical in many ill-posed problems (see below).267

In (e) and (f), we reconstruct flip rate functions from a relatively small number of exit times268

by taking M = 3 basis functions; however, smaller M restricts the range of admissible target269

functions.270

If we have no a-priori knowledge on F ∗(x) (e.g. it may be a high-degree polynomial,271

have many extrema or be discontinuous), our method may not capture F ∗(x) accurately.272

For our method to be successful, it is important that we know beforehand that F ∗(x) is273

smooth and structurally not too complex. Increasing the number of basis functions M in-274

creases the range of functions we can accurately represent. Providing F ∗ is smooth enough,275

it can always be represented through its Taylor series and our method strives to capture its276

first M coefficients. Ideally, we would like M to be as large as possible to represent any277
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M κt κs

2 5.3× 102 3.1× 102

3 1.0× 104 3.3× 104

4 1.4× 105 3.5× 106

5 1.0× 106 1.6× 108

Table 1: Local condition numbers
κs and κt for F ∗(x) = 1 + x corre-
sponding to the objective functions
(34) and (33) respectively. M de-
notes the number of basis functions
used in (32).

M κt κs

3 5.0× 105 1.8× 105

4 3.5× 106 1.6× 107

5 6.7× 106 5.2× 108

Table 2: Local condition numbers for
F ∗(x) = 1 − x + x2: see Table 1 for
details.

F ∗(x) ∈ C∞(−L/2, L/2). However in practice it is difficult to reliably reconstruct F ∗(x)278

(even polynomials) when M & 5. The reason, which is common with all projection methods279

[11, 18], is that as the finite-dimensional approximation to F ∗(x) improves with M →∞, the280

method becomes more unstable due to ill-posedness. In this limit, minimizing the objective281

functions (33), (34) is prone to large errors.282

283

Instability of Projection Method284

Numerically, the instability discussed above may be quantified by examining the condition285

number of the objective function near its minimum. Specifically, we study the Hessian286

(matrix of second partial derivatives) of the objective functions Π1 and Π2 in (33) and (34)287

with respect to the coefficients aj , j = 0, . . . ,M − 1:288

H
(1)
ij ≡

∂2Π1

∂ai∂aj

∣

∣

∣

∣

ai=a∗i ,aj=a∗j

, H
(2)
ij ≡

∂2Π2

∂ai∂aj

∣

∣

∣

∣

ai=a∗i ,aj=a∗j

, (35)

for i, j = 0, . . . ,M−1. In (35), a∗i are the target coefficients of a polynomial flip rate function:289

F ∗(x) =
∑M−1

i=0 a∗iφi(x). The condition number of a matrix A is defined as the ratio of its290

largest eigenvalue to its smallest: κ = λmax(A)/λmin(A). Since the eigenvalues represent the291

principle curvatures of Π1,2 at the point a∗, they are always positive; a very large condition292

number indicates that Π1 or Π2 is locally very flat at a = a∗ and finding a∗ numerically293

is prone to errors. On the other hand, a moderate-sized condition number indicates only a294

small difference in curvatures near a∗ and so finding the minimum numerically should not be295

difficult. Tables 1 and 2 show that both condition numbers for the t- and s-methods grow296

exponentially as the number of basis functions M increases. For M = 5 basis functions,297

the condition numbers for the t-method are consistently two orders of magnitude smaller298

than those for the s-method. This suggests that fitting to the exit time data directly (as299

opposed to its Laplace transform) leads to more effective algorithms and better estimates300

for the flip rate function. This is confirmed in our numerical experiments since occasionally301

the t-method is able to recover M = 5 coefficients of a quartic polynomial F (x), but the302

s-method is seldom able to do so.303

304
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Figure 4: Error in reconstructed flip rate as a function of particle velocity. Each point is an
average over 10 sets of 2N = 20, 000 exit times. Target flip rate F ∗(x) = 9

4
x2 − 3

4
x + 9

16
,

corresponding to target coefficients a∗ = [0.75,−0.375, 0.375, 0]. Initial guesses are (a) a =
[1, 1, 1, 1], (b) a = [0.76,−0.385, 0.365, 0.01]. The same exit times were used for both (a) and
(b). The difference in the errors is shown in (c).

Sensitivity of Reconstruction to Advection Speed305

We also explore the accuracy our reconstruction for different advection speeds v, given a306

fixed number of exit times when F ∗(x) is a polynomial of degree ≤ M . In Fig. 4, we see307

that, for both methods, when the velocity is either much less or much larger than unity, the308

associated error is large. (Although the upper limit of the objective function (33) depends309

on the value of v used, we checked that the non-monotonic behavior in ||FM −F ∗||∞ was not310

sensitive to the upper limit of integration.)311

In practice, there are always two sources of error in the reconstruction of F ∗: the first is312

from noise in the data and the second stems from the minimization procedure itself:313

Total error = error from noise in data + error from minimization. (36)

If the minimization of the objective functions (33) or (34) was achieved with zero error,314

noisy exit times would still produce an error in the reconstructed F . On the other hand, for315

noiseless data, the flat minima and large condition numbers discussed above would produce316

an erroneous F from the minimization. It is hard to separate the two types of error in (36),317

but some insight can be gained by comparing Figs. 4 (a) and (b) which differ only in the318

starting values for the coefficients a0, . . . , aM−1; in particular the exit times for each value319

of v for each figure are identical. When we move the initial guess for the coefficients closer320

to their target values in (b), we greatly reduce the error in minimization since the accuracy321

of minimization algorithms depends on the quality of the initial guess. Therefore, the error322

in (b) comes mainly from noise in the data. Since the exit times were identical for (a) and323

(b), the difference of the errors in (a) and (b) – shown in (c) – represents the error from324

minimization which is associated with large condition numbers and flat extrema. We note325

that the error from minimization from the s-method is much larger than the corresponding326

error from the t-method for a wide range of v values.327

18



When the dominant error stems from noise in the data (as is the case in Fig. 4(b)), we328

can understand why v = O(1) provides the most accurate reconstruction by analyzing how329

well the Monte Carlo simulations approximate the moments of the exit time distribution.330

We prove331

Theorem 2. Let T
(n)
1 (x) and T

(n)
2 (x) be the nth moments of the exit time conditioned on the332

particle starting at position x with initial velocity +v and −v respectively. Then the moments333

have the asymptotic behavior334

T
(k)
1,2 (x) =



















O

(

k!

v2k

)

, v � 1,

O

(

k!

vk

)

, v � 1.

(37)

Proof. We have T
(n)
1,2 (x) = (−∂/∂s)n w̃1,2(x, s)|s=0 for n ≥ 0, and from eqs. (9) and (10),335

these moments satisfy the coupled equations336

−v
dT

(n)
1

dx
− F (x)(T

(n)
2 − T

(n)
1 ) = nT

(n−1)
1 ,

v
dT

(n)
2

dx
− F (x)(T

(n)
1 − T

(n)
2 ) = nT

(n−1)
2 ,

subject to the boundary conditions T
(n)
1 (L/2) = 0 and T

(n)
2 (−L/2) = 0 where n ≥ 1 and337

T
(0)
1,2 (x) = 1. After some algebra, we find expressions for the moments in terms of indefinite338

integrals:339

T
(n)
1 (x) = −

n

v2

∫

dxF (x)

∫

dx[T
(n−1)
1 (x) + T

(n−1)
2 (x)]−

n

v

∫

dxT
(n−1)
1 (x), (38)

T
(n)
2 (x) = −

n

v2

∫

dxF (x)

∫

dx[T
(n−1)
1 (x) + T

(n−1)
2 (x)] +

n

v

∫

dxT
(n−1)
2 (x). (39)

When v � 1, we retain the first integral in each of eqs. (38) and (39) to find to obtain340

T
(k)
1,2 = O(k!/v2k). If v � 1, we retain the second integral to find T

(k)
1,2 = O(k!/vk).341

In (37), we see that the moments have a different asymptotic form depending on whether v342

is small or large. When v � 1, the random walker is the diffusive limit where all the moments343

(except for the zeroth moment) diverge. On the other hand, when v � 1, the particle is in344

the ballistic limit: all moments except for the zeroth moment are asymptotically small and,345

to leading order, independent of F (x).346

Now consider approximating w1(x0, t) or w2(x0, t) with their noisy counterparts generated347

by the Monte-Carlo simulations. How well are the w1,2(x0, t) approximated? One way to348

quantify the accuracy is by calculating the error in the moments of the noisy distribution.349

Given an initial velocity +v, let {τj}, 1 ≤ j ≤ N be the N generated exit times (the following350
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argument with initial velocity −v is almost identical). Then by the central limit theorem,351

the kth moment is approximately distributed according to352

1

N

N
∑

j=1

τkj ∼ N

(

T
(k)
1 ,

Var(τkj )

N

)

,

where N (µ, ν) is a normal distribution with mean µ and variance ν. Therefore a measure of353

the error incurred when calculating the kth sample moment is354

N−1/2
√

Var(τkj ) = N−1/2

√

T
(2k)
1 − T

(k)
1

2
=

{

O(N−1/2v−2k), v � 1,
O(N−1/2v−k), v � 1,

(40)

using (37) and Var(τkj ) = E[(τkj − T
(k)
1 )2]. Therefore from (40), a quick rule-of-thumb for355

the accuracy of the Monte-Carlo generated exit time distribution is that the error scales as356

N−1/2 where N is the number of trials.357

It is evident from (40) that for a fixed number of realizations, the error in the kth moment358

diverges as v−2k as v → 0 and the underlying exit time distribution is badly approximated359

in the limit of small v. On the other hand, as v → ∞, although the error in the moments360

tend to zero, the moments themselves also tend to zero. From eq. (28) the probability that a361

Broadwell particle with initial velocity +v exits in time tc tends to 1 as v →∞: for large v,362

the generated list of exit times is populated almost exclusively by tc (and tc → 0 as v →∞).363

From a single exit time it is very difficult to infer any information about F (x). In both364

limiting cases, since the distribution of exit times is poorly captured by a finite number of365

realizations, the quality of the reconstruction suffers.366

Finally, we systematically explore the effect of noise on the reconstruction quality. In367

Fig. 5, we plot the error of the reconstructed FM (x) against the number of exits. For a wide368

range of polynomials F ∗(x), using both the t- and s-methods, we find that the error in the369

reconstructed function scales as O(N−1/2). In particular, we see that for N = O(104), the370

error ||FM − F ∗||∞ = O(10−1) whereas N must exceed O(106) for the error to fall below371

O(10−2). These estimates are mean values: the accuracy resulting from fitting one data set372

to the next will always vary because the noise in each set is different.373

4 Conclusions374

In this paper, we made three contributions. The first is a pair of algorithms, Algorithms 4375

and 5, that can be used to estimate the flip rate function of a 1D, constant-speed Broadwell376

process from the distribution of exit times out of a finite interval. In particular, the t-method377

is based on a novel series solution of the backward equation (5)-(8); see Theorem 1. The378

second is a simulation method, Algorithm 3, that is used in this paper to generate the exit379

times of a Broadwell particle. The algorithm can accommodate spatially dependent flip380

rates and velocities. Our final contribution is a set of calculations and asymptotic results381

that quantify the errors in approximating the exit time distribution with simulated data, and382

the corresponding error in the flip rate reconstruction.383
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Figure 5: Dependence of error in reconstructed flip rate function F (x) on the number of exit
times per initial particle state N when F (x) = 1− 0.7x− 0.3x2+6x3 using (a) t-method (b)
s-method. For each N , the error is calculated by performing minimizations for 10 data sets
and taking the average, with each set containing 2N exit times.

We found that polynomial transition rates could be reconstructed if the degree of the384

polynomial was not too large (. 4) and that fitting to the exit time distribution (t-method)385

directly versus fitting to the Laplace-transformed distribution (s-method) generally allowed386

the reconstruction of one extra coefficient in the representation of F (x). Providing our initial387

guess for the coefficients of F (x) was not too far from the target coefficients, we were able388

to find F (x) to within O(10−1) using O(104) exit times. We were also able to find good389

approximations to non-polynomial flip-rate functions providing they are smooth and slowly390

varying. Finally, we experimented with reconstructions using different advection speeds. We391

found that v = O(1) yielded the most accurate reconstructions because very small or large392

values of v in the Monte-Carlo simulations gave poor representations of the true underlying393

exit time distribution.394

Our results suggest that the t-method is an effective method to infer the spatially-395

dependent flip rate function of a two-state Broadwell process, if it is known a-priori that this396

function is smooth and structurally simple. The t-method involves explicitly solving for the397

cumulative density functions (5)-(8), tracking the discontinuities via (12)-(13) and minimiz-398

ing the objective function (33). With this method, one can often find M = 4 coefficients from399

about 2N = 20, 000 exit times. The s-method usually reconstructs one less coefficient than400

the t-method for the same number of exit times, and is more sensitive to the initial guess.401

However, it is much simpler to implement and only involves solving the ordinary differential402

equations (9)-(11) and minimizing (34).403

We see two main extensions to this work. The first is to reconstruct spatially dependent404

advection velocities v(x) as well as transition rates F (x). The second is to develop alternative405

algorithms for reconstruction. We showed in this paper that as the number of coefficients406
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representing the flip rate function increases, our method becomes unstable due to the presence407

of flat minima in the objective functions (see eqs. (33) and (34) and Tables 1 and 2). This408

instability could be alleviated by introducing a small regularization parameter in the objective409

functions (33), (34) or developing iterative algorithms based directly on (1)-(3) and (5)-(8).410
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A Derivation of a multi-state Broadwell process415

A one-dimensional generalized Broadwell model describes a particle that can take any one of416

K states. Initially, the particle is at position x and in state i. A particle in state 1 ≤ k ≤ K417

advects within an interval (−L/2, L/2) with a velocity function vk(y) that is single signed418

on −L/2 ≤ y ≤ L/2 with y being the current position. While advecting, the particle may419

transition from state i to any other state j with probability Fji(y)dt within time interval420

(t, t + dt). Also Fji(y) are positive functions when i 6= j, but Fii(y) ≡ 0. The goal of this421

appendix is to find the backward equation for the exit time distribution for such a process.422
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Figure 6: The transitions relevant for computing the Backward equation for the probability
density of a multi-state persistent random walk. The quantities x, x + ξ and y represent
initial, intermediate and final positions while i, j and k represent initial, intermediate and
final states.

If P (y, k, t|x, i, 0)dy is the probability that the particle lies between y and y + dy and423

is in state k at time t, given that it had started at position x in state i at time t = 0, the424

Chapman-Kolmogorov equation [13] is425

P (y, k, t+ dt|x, i, 0) =
K
∑

j=1

∫ V2dt

V1dt

P (y, k, t+ dt|x+ ξ, j, dt)P (x+ ξ, j, dt|x, i, 0)dξ, (41)

where V1 = mink min−L/2<y<L/2 vk(y), V2 = maxk max−L/2<y<L/2 vk(y) and state k and posi-426

tion y of the particle at time t+dt arise from accounting for all transitions from intermediate427
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states j, j = 1, . . . , K and positions x + ξ at time dt: see Fig. 6. Note that V1 can be428

negative and the integration over V1dt < ξ < V2dt corresponds to all possible displacements429

from position x.430

We will assume that the advection velocities and flip rates are explicitly time-independent431

so that the process is time-homogeneous. Therefore, the probabilities are time-translationally432

invariant and P (y, k, t+ dt|x + ξ, j, dt) = P (y, k, t|x+ ξ, j, 0). In the following calculations,433

we make frequent use of delta distributions so Taylor expansions and associated derivatives434

are to be interpreted in the weak sense.435

The probability of transition from (x, i) to (x+ ξ, j) in time dt can be decomposed into436

two terms corresponding to continued particle advection when no state flips occur in time437

dt, or a state change occuring within (0, dt):438

P (x+ ξ, j, dt|x, i, 0) = δ(ξ− vi(x)dt)






1−

K
∑

`=1
6=i

F`i(x)dt






δij + δ(ξ)Fji(x)(1− δij)dt+O(dt2).

(42)
The symbols δij and δ (·) are the usual Kronecker tensor and Dirac delta function, respec-439

tively. The first term in Eq. 42 represents the probability that the particle did not transition440

out of state i in (0, dt), while the second term describes the transition probability from state441

i to state j 6= i.442

In (42), when i = j, the term proportional to Fji is zero (no state transitions have443

occurred) and the probability density originally centered at x is simply advected to x+vi(x)dt.444

Therefore, the probability density of being in position x + ξ and state j = i at time dt is445

δ(ξ−vi(x)dt) (1−
∑

F`i(x)dt). When i 6= j, the term proportional to 1−
∑

F`idt is zero. To446

O(dt), we can ignore advection and simply assume the particle changed state in its current447

position.1 Therefore the probability of being at position x + ξ and state j at time dt is448

δ(ξ)Fji(x)dt.449

Upon Taylor-expanding the remaining probability densities in (41):450

P (y, k, t+ dt|x, i, 0) = P (y, k, t|x, i, 0) +
∂P

∂t
dt+O(dt2), (43)

451

P (y, k, t|x+ ξ, j, 0) = P (y, k, t|x, j, 0) +
∂P

∂x
ξ +O(ξ2), (44)

we find to order dt (note that ξ = O(dt)),452

∂

∂t
Pki(y, t|x, 0) =

K
∑

j=1

LjiPkj(y, t|x, 0), (45)

1If advection was included, δ(ξ)Fjidt in (42) would be replaced with δ(ξ + O(dt))Fjidt corresponding to
an additional displacement of O(dt) and an associated error of O(dt2).
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where453

Pki(y, t|x, 0) ≡ P (y, k, t|x, i, 0), Lji = δijvi(x)∂x + (1− δij)Fji − δij

K
∑

`=1
6=i

F`i. (46)

When t ≤ 0, the particle is at y = x in state i so that454

P (y, k, t|x, i, 0) = δikδ(x− y), t ≤ 0. (47)

Henceforth, we consider the domain y ∈ (−L/2, L/2) with absorbing boundaries at y = ±L/2455

so that when t > 0 the appropriate boundary conditions are456

P (y, k, t|x = +L/2, i, 0) = 0, ∀i : vi > 0,

P (y, k, t|x = −L/2, i, 0) = 0, ∀i : vi < 0.
(48)

A.1 Survival Probabilities457

If we do not distinguish from which boundary the particle eventually exits, we can define458

the survival probability by integrating Eq. (45) over all positions y ∈ (−L/2,+L/2) and459

summing over all possible final states. The survival probability460

Si(x, t) =
K
∑

k=1

∫ L/2

−L/2

P (y, k, t|x, i, 0)dy, (49)

describes the probability that a particle started at position x ∈ (−L/2,+L/2) in state i has461

not left through either boundary up to time t. When t ≤ 0, we have from (47)462

Si(x, t) = 1, −L/2 ≤ x ≤ L/2. (50)

When t > 0, the survival probability obeys463

∂

∂t
Si(x, t) = vi(x)

∂

∂x
Si(x, t) +

K
∑

j=1
6=i

Fji(x)Sj(x, t)−
K
∑

`=1
6=i

F`i(x)Si(x, t), (51)

with boundary conditions464

Si(L/2, t) = 0, for i : vi(x) > 0,
Si(−L/2, t) = 0 for i : vi(x) < 0.

(52)

A.2 Exit time distributions465

The full exit time distribution is found from the usual definition w(t|x, i, 0) ≡ wi(x, t) =466

−∂Si(x, t)/∂t, so differentiating Eq. (51), we have467

∂

∂t
wi(x, t) = vi(x)

∂

∂x
wi(x, t) +

K
∑

j=1
6=i

Fji(x)wj(x, t)−
K
∑

`=1
6=i

F`i(x)wi(x, t). (53)
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The initial condition is found by differentiating (50) in time so that wi(x, t) = 0 when t ≤ 0.468

In particular,469

wi(x, 0) = 0. (54)

From (51) and (52), we have Si(L/2, t) = Si(−L/2, t) = H(−t) for all t. Therefore the470

boundary conditions for wi(x, t) are471

wi(L/2, t) = δ(t), ∀i : vi > 0,
wi(−L/2, t) = δ(t), ∀i : vi < 0.

(55)

When K = 2, F12(x) = F21(x) = F (x), v1(x) = −v2(x) = v (a positive constant), equations472

(53)-(55) reduce to (1)-(4).473
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