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ABSTRACT

Many physical processes and phenomena have solutions containing sums of expo-

nential functions. These exponential functions generally describe the decay of processes

and signals they emit. In order to better understand them, one needs to determine the

parameters that underly these processes, given measured data. The estimation and

inference of these parameters from data is an inverse problem, and is usually ill-posed

in that multiple sets of parameters may generate the same, or similar data.

In this dissertation, we study exponential analysis in three different applications.

The first application is inferring the transition rates of a birth-death process (BDP)

from its extinction time (ET) distribution. We first investigated the analytical solution

with noise-free data as the sum of exponential functions, and then solved small BDP

problems from exact ETs. Then with maximum sites as additional information, we

proposed a new numerical scheme to infer the transition rates from a BDP of length

N+1, in the context of protein folding with atomic force microscopy (AFM) data. This

method focuses on the coefficients of the characteristic polynomial of the underlying

ODE, and establishes recurrence relations between them. Transition rates are recovered

sequentially with initial errors propagating exponentially in the BDP.

The second problem arises in nuclear magnetic resonance (NMR) and medical

imaging. In an effort to determine the type of tissue in NMR experiments, we need to

apply the inverse Laplace transform (ILT) on NMR signals which are functions of two

relaxation times T1 and T2. Since ILT is ill-conditioned, we use Tikhonov regularization

to recover the distribution of relaxation times. The inversion can be done either in a

single step by resizing the solution matrix as a large vector with one parameter, or in

two steps by sequential inversion of T1 and T2 that involves two parameters. We show

xiv



that the one-parameter approach performs well, and adding extra parameters does not

improve the result.

The third problem is to fit a two-term exponential probability distribution given

measured data. When the exponents are close to each other, many classic methods fail.

We propose the moment constraint method, which is revised from the modified Prony

method, that takes into account moments of data, regularization, and expectation-

maximization (EM) techniques to overcome the difficulties. This method outperforms

many other methods, such as maximum-likelihood, when two exponents are very close.

The moment constraint method is also applied to four-term exponential fitting prob-

lems whose exponents can be separated into two groups by magnitude. It breaks

down to two-term exponential fitting subproblems, after a preprocessing step involving

Tikhonov regularization and EM sorting, and yields results with reasonable accuracy.
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Chapter 1

INTRODUCTION

1.1 Motivation

Estimation and inference problems are ubiquitous in understanding physical

phenomena. In reality, we have direct access to data being generated by certain under-

lying processes whose mathematical models and equations are well defined. In order

to better interpret these processes, one often finds it important to figure out the pa-

rameters or intrinsic relationship hidden in the models.

Usually, these estimation and inference problems classify into parametric and

nonparametric models. Parametric models are ones that are explicitly determined by

a fixed set of parameters, whereas nonparametric models have variable parameter sets

that may depend on the data collected. A typical example of a parametric model

is the prediction of house prices using regression, where one needs to assign weights

to a set of features, such as square footage and number of beds/baths. Once the

weight parameters are calculated, this model can be used to predict the price of new

houses. Another example of a parametric model is the application of the Black-Scholes

equation to find the implied volatility of an option given the current option price,

underlying stock price and other related information. Parametric models are also

used in spam filtering, fraud detection, and many other fields. On the other hand,

nonparametric models are becoming popular nowadays. They are used in decision tree

models, neural networks, and other machine learning techniques, which can be used

for image classification, text retrieval, speech recognition, and other technologies.

In this dissertation, however, we only consider parametric models with the prob-

lem of estimating the parameters that are defined in a fixed but unknown distribution.

1



The challenge is that learning from data to infer parameters is an inverse problem,

which is usually subject to ill-conditioning. That is, several different parameter sets

can potentially generate the same data that we observe.

We will mainly study exponential analysis in this dissertation, in three different

contexts. The first problem is inferring the transition rates in a birth-death process

given its extinction time distribution. The second application is in medical imaging,

where we try to infer the type of tissues from the magnetic resonance signal. The last

one is a straightforward exponential fitting problem. These problems appear to be

distinct, but they can be analyzed with the same mathematical framework.

1.2 Outline of Dissertation

This dissertation mainly consists of the following chapters.

Chapter 1 herein motivates all the work done in my PhD studies, introduces the

physical and biological background of these problems in the real world, and summarizes

the contents to be presented.

Chapter 2 is concerned with the birth-death process (BDP), where our main

interest is to infer the transition rates from relevant quantities in a birth-death process,

such as the extinction times. We start with reviewing basic concepts of the stochastic

process and birth-death process in particular, and proceed to analytical inference in

a noise-free environment. Next, numerical schemes are proposed in the case of noisy

data of birth-death chains with various lengths, where we mainly consider the reflection

problems in a birth-death chain. We also apply this methodology to protein folding

problems and landscape theories.

Chapter 3 discusses the inference problem in a biomedical setting – Nuclear Mag-

netic Resonance (NMR) and Magnetic Resonance Imaging (MRI). The backgrounds

and concepts of NMR are introduced along with the mathematical formulation of the

inverse Laplace transform. The inverse Laplace transform is well-known to be ill-posed,

and Tikhonov regularization is introduced to resolve this issue in practice. Theoretical

relaxometry problems are then derived in both 1D and 2D, and numerical examples of

2



relaxometry inverse imaging comes after that. We finally propose a Tikhonov regular-

ization scheme using directional total variation in order to deal with a special type of

NMR signal.

Chapter 4 presents the work related to exponential analysis. Since this is a

problem with a long history, we first perform a brief survey of major classic methods

that solve exponential fitting problems. Finally, we propose a new method for esti-

mating the parameters in a two-exponential function which potentially overcomes the

limitation of similar methods.
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Chapter 2

INFERENCE OF THE BIRTH-DEATH PROCESSES FROM
EXTINCTION TIMES

In this chapter, we will first review some basic concepts from stochastic pro-

cesses in the context of the birth-death process in Section 2.1, and then discuss our

contributions to the analytical and numerical inference problems in different scenarios

in Sections 2.2-2.4.

2.1 Introduction to the Birth-Death Process

2.1.1 General examples

Birth-death processes (BDP) are widely used in modeling many physical, chem-

ical and biological processes and phenomena [102]. These are special Markov processes

defined on a lattice S = {0, 1, . . . , N}, where the largest state N could be finite (which

is our focus) or infinite. There are two sets of parameters that underlie the process,

namely the birth and death rates (see Definition 2.2)

λn : n→ n+ 1,

µn : n→ n− 1.
(2.1.1)

In this dissertation, we only consider continuous-time BDPs. It is essentially a

random walk on S in which the random walker may only move forward or backward

by one step to its neighboring state. The probability of the process moving forward

in a small time interval dt is λn dt if it is currently in state n, and the probability of

moving backward in that time period is µn dt. Since a population of organisms stops

evolving once it becomes extinct, we define the state n = 0 to be an absorbing state

at which the BDP terminates, which is also called “extinction”, so that λ0 = 0. In the
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following sections, we will be mainly concerned with the times to extinction, also called

extinction times. To further clarify, the process has to go extinct because state 0 is

the only absorption state. The expected time to absorption is finite in finite absorbing

Markov chains: see section 4.6 in [92] for details.

To get started, let’s consider some simple examples of BDP from epidemiol-

ogy and population biology [28]. The Susceptible-Infected-Susceptible (SIS) model of

epidemiology [55] describes a common situation where n individuals from a larger pop-

ulation of size N suffer from an infection such as influenza, and the remaining N − n

individuals are susceptible. Each recovered individual becomes susceptible again, hence

the name “SIS”. Suppose the infection rate per contact is Λ/N , and the recovery rate

is unity. Since there are n(N − n) possible contacts, we can describe this model as

a BDP with birth rates λn = Λn(1 − n/N), and death rates µn = n. It has been

shown that this model has a threshold of Λ = 1, above which the BDP remains near

a quasi-stationary state for quite a long time before extinction [73]. If we apply the

inference problem here, we would record the extinction time in multiple populations,

get a distribution of extinction times, and try to infer the underlying infection rate in

this situation.

Another example is the M/M/1 queue in queueing theory [58]. An M/M/1 queue

represents the queue length in a system with a single server, where customer arrivals

follow a Poisson process with rates λ and service times are exponentially distributed

with mean 1/µ. Each queue length corresponds to one state in the BDP, i.e., state

i represents there are i customers currently in the queue. In fact, the name M/M/1

follows Kendall’s notation [57], and it actually stands for a queue with “Markovian

arrival time/Markovian service time/one server”. Since a single server queue follows a

first-come first-serve discipline, the BDP can be used to model the queueing process,

where birth rates λn = λ, and death rates µn = µ are constant throughout the birth-

death chain. The process starts when the first customer arrives, and ends when the

last customer leaves the queue. It can be further extended to an M/M/k queue where

k servers are available with other assumptions unchanged. In this case, birth rates are
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still λn = λ from the Poisson process, while the death rates are µn = nµ if n < k and

µn = kµ if n ≥ k, when the number of customers is beyond capacity.

In the field of chemistry, BDP is used for modeling chemical kinetics. Suppose

there are two chemical species A and B with overall population of N , and a reaction

between them

A
k1
�
k2

B,

where the reaction rates are proportional to species counts. Then both species counts

A(t), B(t) are BDPs, with birth and death rates for A(t) as λn = k2(N − n) and

µn = k1n. By recording and analyzing the time it takes for species A to vanish, we can

infer the coefficients k1, k2 that determine the process.

2.1.2 Application in Protein Folding

One important application of this inference problem is in the area of single-

molecule biophysics, specifically the folding of proteins and nucleic acids [21, 27, 108].

The folding of these macromolecules depends on the sequence of amino acids or nu-

cleotides that make up the protein or nucleic acid (primary structure) [2, 13]. The

prediction of the native conformation of a protein, given its amino acid sequence, is

one of the great open problems in structural biology [7]. Some of the main experimental

techniques to study this problem are Atomic Force Spectroscopy [76] and Förster Res-

onance Energy Transfer [67, 95], which have allowed experimentalists to explore the

relationship between macromolecular structure and folding/unfolding rates. A com-

putational approach to protein folding is usually implemented by large-scale all-atom

molecular dynamics (MD) simulations [94].

Energy landscape theory [78] provides the fundamental biophysical model for

the structural conformation of these macromolecules. Proteins may fold into many pos-

sible conformational microstates, and the free-energy landscape is a hyper-dimensional

surface that spans all of these configurations. Each point on this hypersurface repre-

sents the free energy in a specific structural conformation. In view of this, the folding

process may be considered as a diffusion process over the free-energy hypersurface, and
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it naturally tends to arrive at the configuration with minimal energy. This configura-

tion is similar to the “absorption state” in a BDP. Another approach to understand

protein folding is to introduce a reaction coordinate [9] which effectively maps the high-

dimensional space onto a single scalar. In practice, this scalar is often an observable

metric that measures the progress of the folding, such as bond angle, bond length,

etc. In the reaction coordinate, this simple landscape may exhibit multiple minima,

corresponding to multiple metastable configurations. In addition, the rates of transi-

tion among these configurations differ, in that many macromolecules have evolved to

fold rapidly towards the native configuration, while energy barriers may exist among

the microstates that slow the process. Inferring the shape of these landscapes from

quantities such as first passage times [37], rupture forces [99] or time-displacement

trajectories [19] remains a challenging theoretical problem.

One of the most common ways of probing the energy landscape is through

Atomic Force Microscopy (AFM) [91]. In AFM experiments, one end of the molecule

is tethered to a movable platform and the other is attached to a cantilever tip: see Fig.

2.1(a). Small deflections of the cantiliever are detected using a laser-photodiode setup.

The AFM can operate in several ways. One protocol is “force-ramp” mode where the

platform lowers at a constant speed. As a protein domain is coercively unfolded, the

cantilever deflection increases until a critical platform position is reached. Beyond this

point, the cantilever quickly relaxes, corresponding to domain rupture. The resulting

force-extension curve allows quantification of the “entropic elasticity” of that particular

domain. The procedure can also be performed sequentially if multiple domains are

present in a large protein [75, 89]. The discrete event corresponding to rupture is

interesting both physically and mathematically. Experiments show that rupture does

not always occur at the same force. Furthermore, the rupture force distribution shifts

towards higher values when the platform speed is larger. Both of these observations

are in stark contrast to mechanical bonds that break at a single yield stress. They

point towards a model of bond-breaking that is based on “thermally activated escape”,

i.e., a theory of random walks.

7



AFM cantilever

protein

surface

(a)

laser

photodiode

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

time (a.u.)

-0.5

0

0.5

1

1.5

2

R
e
a
c
ti
o
n
 C

o
o
rd

in
a
te

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (a.u.)

-1

-0.5

0

0.5

1

1.5

2

2.5

R
e
a
c
ti
o
n
 C

o
o
rd

in
a
te

(c)

(b)

21

Figure 2.1: (a) Experimental schematic for Atomic Force Microscopy of proteins. Deflection
of a soft cantilever is detected using a laser-photodiode setup. (b) Possible time trace of
reaction coordinate for a two-state protein. (c) Possible trace of reaction coordinate for a
three-state protein. Extinction times τ1 and τ2 along with maximal sites n1 = 2 and n2 = 2
respectively are used for inference. a.u. = arbitrary units.
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Besides force-ramp mode, another protocol is to keep the AFM platform sta-

tionary and operate in “force-clamp” mode. Under this mode of operation, one focuses

on deflections of the cantilever which essentially provide the reaction coordinate as a

function of time. Some possible time traces are shown in Fig. 2.1(b) and (c). The

protein spends most of its time in metastable configurations (when the reaction coor-

dinate is an integer) and very little time in-between these states. Figure 2.1(b) shows

the trace for a simple protein with a single folding domain that can be in one of two

states: folded or unfolded. The kinetics in this case are well-described by two expo-

nential distributions [90]; one for the 1 → 0 transition and the other for the 0 → 1

transition. The half-lives or rate constants associated with each exponential distri-

bution can easily be inferred from the time trace in Fig. 2.1(b). For proteins with

multiple domains the traces can be more complex and could resemble Fig. 2.1(c). If

one assumes exponential kinetics as before (i.e. the transition between states always

follows an exponential distribution, but the parameters of the distribution could be

state-dependent) the resulting stochastic process is a birth-death chain. These chains

correspond to energy landscapes with multiple metastable states: see Fig. 2.2. Small

proteins typically follow single-exponential kinetics, which is well-described by a two-

state chain see Fig. 2.2(a). However, larger proteins may exhibit more complicated

kinetics corresponding to one or more intermediate states: see Fig. 2.2(b). The prac-

tical inference of transition rates in these longer birth-death chains is the focus of this

chapter.

An extinction time is the time taken for the reaction coordinate to start at 1

and reach 0 for the first time, corresponding to the state where all domains are folded.

In Fig. 2.1(c), the measurement of τj starts when the reaction coordinate reaches 1

for the first time. For each excursion, one can also define the maximal site nj that is

reached before extinction occurs. After suitable processing of the signal, a single time

trace generates many pairs (τj, nj), j = 1, . . . ,M and M � 1. In Section 2.4, we show

how to recover all the transition rates of the birth-death chain from {τj, nj}.

We now briefly describe some of the existing methods used to interpret AFM
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Figure 2.2: (a) Two-state and (b) Four-state Markov models for protein folding dynamics.
Small proteins are usually described by a two-state model. Larger proteins may have multiple
metastable states giving rise to longer birth-death chains.
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data. One of the earliest methods is Bell’s method [6] which assumes a force-dependent

rate ansatz (of Arrhenius form) for the state of a domain or chemical bond. Providing

that the force on the protein depends on the instantaneous deflection in the cantilever,

Bell’s method predicts rupture force distributions and survival probabilities for a chem-

ical bond under the action of a force ramp. The method is used to solve the “forward”

problem in the sense that rupture distributions are predicted from a potential well

whose shape is known. In contrast, Dudko and co-authors [29] and Freund [40] essen-

tially solved the inverse problem by inferring rate constants, features of the potential

well and other related parameters from rupture force distributions.

Chang and co-authors [19] utlilized a path integral method that takes trajectory

data (time traces) as input rather than force distributions. Based on non-parametric

Bayesian estimation, the method makes very few assumptions about the underlying

energy landscape and is able to simultaneously infer the energy landscape and an

effective spatially-dependent diffusivity for the reaction coordinate.

Most of the above methods are mainly concerned with the AFM operating in

force-ramp mode. However, in works such as [70, 37], the authors develop methodology

to extract energy landscapes from data generated by AFMs in force-clamp mode. They

treat the reaction coordinate using a Smoluchowksi framework to infer features of the

energy landscape; this type of analysis dates back to Kramers’s classic transition state

theory [61] for chemical reactions. Finally, it is worth mentioning that if the reaction

coordinate is treated as a Brownian random walker on an energy landscape, estimating

the parameters of the resulting stochastic process from sample paths is a classic problem

in statistics and control theory [36, 74].

The method described in this chapter is different because from the outset, we

assume that the underlying stochastic process is a birth-death chain (and subsequently,

transitions are always exponentially distributed). Estimation of parameters from sam-

ple paths of a birth-death chain is a classic problem [107, 56]. However, our goal is to

estimate transition rates “mainly” from extinction times. Unfortunately, as discussed

below, as well as in Chapter 4, using only extinction times results in a severely ill-posed
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problem. Having access to maximal site data turns out to render the inference problem

much better-posed.

The inclusion of maximal sites is important. The calculation of transition rates

in a birth-death chain purely from extinction times essentially reduces to finding the

best-fit coefficients and exponents to a given extinction time distribution. Such prob-

lems are highly ill-posed: a small amount of noise added to the curve can lead to a

large change in the best-fit coefficients/exponents. Nevertheless, because fitting ex-

ponential modes to given data is one of the most commonly-arising inverse problems,

it has a long history and has been investigated by many researchers: see for example

[33, 62, 80, 81] and references within.

2.1.3 Continuous-Time Markov Chains (CTMC)

A Markov chain is a stochastic process that possesses the memoryless prop-

erty, such that the conditional probability distribution of future states of the process

depends only on the present state. We only consider the continuous-time (discrete-

space) Markov chains in this context: see [92] for backgroud. The Poisson process,

birth-death process, and chemical reaction networks are examples of such CTMC, in

that these physical processes may only be in certain discrete states while the transition

between states could occur at any nonnegative time, and they do not have “memory”

of the past. Suppose that X = {X(t) : t ≥ 0} is a continuous time process with X

taking values in a discrete state space S. Then X is a continuous time Markov chain

if

P[X(s+ t) = j|X(u) = x(u), u ∈ [0, s), X(s) = i] = P[X(s+ t) = j|X(s) = i], (2.1.2)

where x = x(u) is the state at time u. In addition, we call X a time-homogeneous

CTMC if

P[X(s+ t) = j|X(s) = i] = P[X(t) = j|X(0) = i], (2.1.3)

meaning that the probability distribution only depends on the time elapsed rather than

the absolute time, and we will always assume time-homogeneity for a CTMC in this
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dissertation. Transition from state i to state j within time t defines the transition

probabilities,

pij(t) = P[X(s+ t) = j|X(s) = i]. (2.1.4)

The transition times {Ti}, or the inter-event times, in a CTMC are exponentially

distributed with parameter being the positive transition rates {νi}i∈S associated with

specific states:

Ti ∼ exp(νi), for i ∈ S. (2.1.5)

Let’s suppose X(0) = i ∈ S, and Ti is the time for X to transition into some other

state, then

P[Ti > s+ t|Ti > s]

= P[X(0, s+ t] = i|X(0, s] = i]

= P[X(s, s+ t] = i|X(s) = i] (Markov property)

= P[X(0, t] = i|X(0) = i] (Time-homogeneity)

= P[Ti > t]

Thus Ti is a memoryless random variable. Since the only memoryless continuous proba-

bility distribution is the exponential distribution, Ti must be exponentially distributed.

The connection of a continuous time Markov chain with its discrete time counterpart

is established through conditioning on the transition times. Suppose that X is at state

i now, then the probabilities for the next state j ∈ S are given by

pij(Ti) = P[X(Ti) = j|X(0) = i]. (2.1.6)

This is exactly the transition probability in the discrete chain, and all elements from

different i, j make up the transition matrix P = [pij]i,j∈S of that discrete-time Markov

chain (DTMC). For this reason, such DTMC is called the “embedded chain” of the

given CTMC. It follows that the embedded chain transition probabilities together with

trainsition rates {νi}i∈S determine the distribution of the CTMC X . For any pair of

states i and j, let

qij = νipij. (2.1.7)
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Since νi is the rate at which the process makes a transition from state i and pij is the

probability that this transition is into state j, then qij is the rate of transition of the

process from i to j. These quantities qij are usually called the instantaneous transition

rates. Since all transition probabilities at state i sum to one,

νi =
∑
j

νipij =
∑
j

qij (2.1.8)

and

pij =
qij
νi

=
qij∑
j qij

. (2.1.9)

We have the following lemma for the transition probabilities in a small time interval

h: see [92] for more details.

Lemma 2.1. For a CTMC X = {X(t) : t ≥ 0} with instantaneous transition rates qij,

pij(h) = P[X(t+ h) = j|X(t) = i] = qijh+ o(h), (2.1.10)

pii(h) = P[X(t+ h) = i|X(t) = i] = 1− νih+ o(h). (2.1.11)

Proof. Note that since the inter-event time Ti is exponentially distributed with param-

eter νi, we use Taylor expansion to get

pij(h) = P[X(t+ h) = j|X(t) = i]

= P[Ti < h,X(Ti) = j|X(0) = i]

= (1− e−νih)pij

= νihpij + o(h)

= qijh+ o(h).

and

pii(h) = P[X(t+ h) = i|X(t) = i]

= P[Ti > h|X(0) = i]

= e−νih

= 1− νih+ o(h).
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Given that pij(0) = δij, when the time interval h approaches zero,

lim
h→0+

pij(h)− pij(0)

h
=

qij, if i 6= j

−νi, if i = j.

(2.1.12)

Definition 2.1. The infinitesimal generator of a CTMC X = {X(t) : t ≥ 0} is a

matrix Q with entries

Qij =

qij, if i 6= j

−νi, if i = j.

(2.1.13)

Or,

Q =


−ν1 q12 q13 · · ·

q21 −ν2 q23 · · ·

q31 q32 −ν3 · · ·
...

...
...

. . .

 , (2.1.14)

with rows of Q summing up to 0.

So far we have reviewed main concepts of a CTMC. We now introduce the birth-death

process as a special kind of CTMC.

2.1.4 Birth-Death Process (BDP)

Definition 2.2. A birth and death process is a continuous-time Markov chain with

non-negative integer states S = {0, 1, 2, 3, . . .} for which transitions from state n may

go only to either state n− 1 or state n+ 1. The rate at which the process moves from

state n to state n + 1 is called the birth rate, denoted by λn; and the rate of moving

from state n to state n− 1 is called the death rate, denoted by µn.

From the definitions of the CTMC, we may directly write the infinitesimal gen-

erator matrix of a birth-death process. Notice that the death rate at state 0 is always

zero; thus the process never enters a negative state.

15



Lemma 2.2. The infinitesimal generator of a birth-death process on a semi-infinite

domain S = {0, 1, 2, 3, . . .} with birth rates {λn}∞n=0 and death rates {µn}∞n=0 is a tri-

diagonal matrix

Q =


−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .
. . .

. . .

 . (2.1.15)

For the rest part of this chapter, we consider the state space to be finite with

S = {0, 1, . . . , N} and assume that state 0 is an “absorption” state at which the

birth-death process terminates because both birth and death rates here are zeros. In

addition, the birth rate at site N is also zero, preventing the process from evolving

further. Figure 2.3 shows an representation of such a birth-death process.

0 1 2 · · · · · ·n− 1 n n+ 1 N

µn λn

Figure 2.3: Finite birth-death chain with N + 1 sites, with λN = 0.

We study the “reflection” problem on this chain. Suppose that a birth-death

process starts at site 1 in this chain of length N+1. Since state 0 is the only absorption

state of this finite chain, the process will terminate at state 0 with probability one,

possibly after visiting some other states, and the total time spent at these other states

is called the extinction time (ET), or exit time. If this process is repeated with all birth

and death rates unchanged (i.e. in the same underlying chain), we obtain a collection of

extinction times which follows an intrinsic distribution. This distribution is the given

data to our problem, and the goal is to determine the underlying birth and death rates

{λn, µn}Nn=1 from it.
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2.2 Analytical Inference of Birth-Death Rates in a Reflection Problem

In this section, let’s first relax the assumption of the BDP starting at state 1 to

a general state n. Suppose that Wn(t) is the cumulative distribution function (c.d.f.)

for the exit times of the particle starting at position n, and S(n, t) = 1−Wn(t) is the

survival probability function corresponding to the c.d.f.

Suppose the c.d.f. Wn(t) can be obtained exactly, so that there is no numerical

error involved. We first derive the analytical inference of the birth and death rates

under this assumption. Generally, we can obtain the exact solution to the c.d.f. if all

transition rates λn and µn are known.

2.2.1 Survival Probabilities

Let P (m, t|n) be the probability that the BDP is in state m at time t given that

it was in state n at time 0. For t < 0, P (m, t|n) = 0; for t > 0, since

P (m, t+ δt|n) = λnδtP (m, t|n+ 1) + µnδtP (m, t|n− 1) + (1− λnδt− µnδt)P (m, t|n),

we have the following ODEs:

P (m, t|n = 0) = 0, (2.2.1)

d

dt
P (m, t|n) = λnP (m, t|n+ 1)− (λn + µn)P (m, t|n) + µnP (m, t|n− 1),

for 1 ≤ n ≤ N − 1

(2.2.2)

d

dt
P (m, t|n = N) = −µNP (m, t|N) + µNP (m, t|N − 1). (2.2.3)

The survival probability S(n, t) is the probability that the particle has not be-

come extinct at time t:

S(n, t) =
N∑
m=1

P (m, t|n) (2.2.4)

For t < 0, the process has not started yet, thus

S(n, t) = 1 (2.2.5)
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For t > 0:

S(0, t) = 0, (2.2.6)

d

dt
S(n, t) = λnS(n− 1, t)− (λn + µn)S(n, t) + µnS(n+ 1, t), 1 ≤ n ≤ N − 1 (2.2.7)

d

dt
S(N, t) = −µNS(N, t) + µNS(N − 1, t) (2.2.8)

if we sum both sides of (2.2.1)–(2.2.3).

2.2.2 Equation for the Exit Time Distribution

Since the c.d.f. is related to the survival probability by Wn(t) = 1− S(n, t), we

have the following equations for the c.d.f.:

W0(t) = H(t), (2.2.9)

dWn

dt
= λnWn+1 − (λn + µn)Wn + µnWn−1, 1 ≤ n ≤ N − 1 (2.2.10)

dWN

dt
= −µNWN + µNWN−1. (2.2.11)

where H(t) is the Heaviside function. Furthermore, by the nature of a c.d.f.,

Wn(0) = 0, n = 1, 2, 3, . . . (2.2.12)

and

Wn(t) = 0, t < 0. (2.2.13)

Equation (2.2.10) can be arranged so that

Wn+1 =

(
1 +

µn
λn

)
Wn +

1

λn

dWn

dt
− µn
λn
Wn−1. (2.2.14)

2.2.3 Exact Solution to the Birth-Death Process

For the birth-death process, let W (t) = (W1(t),W2(t), . . . ,WN(t))T be the

c.d.f.s corresponding to all possible starting points, then the infinitesimal generator
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matrix of the birth-death process is given by

Q =



−(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

µ3 −(λ3 + µ3) λ3

. . .
. . .

. . .

µN−1 −(λN−1 + µN−1) λN−1

µN −µN


.

(2.2.15)

Then the equations that govern the BDP are
d

dt
W (t) = QW (t) + µ1e1,

W (t) = 0, t ≤ 0

(2.2.16)

where e1 = (1, 0, . . . , 0)T . A particular solution to this system is W (t) = −µ1Q
−1e1.

Let σk and vk be the eigenvalues and corresponding eigenvectors of the matrix Q. Then

the general solution to (2.2.16) is

W (t) =
N∑
k=1

ckvke
σkt − µ1Q

−1e1 = V Σ(t)c− µ1Q
−1e1, (2.2.17)

where V = [v1, . . . ,vN ] contains all eigenvectors of Q and Σ(t) is a diagonal matrix

satisfying Σkk = eσkt, and c = (c1, . . . , cN)T for some constants ck. Applying the initial

condition, we have c = µ1V
−1Q−1e1, and hence W (t) = [V Σ(t)V −1 − I]µ1Q

−1e1.

Expressing (2.2.17) element-wise, we have

Wn(t) = 1 +
N∑
k=1

α
(n)
k eσkt, (2.2.18)

where α
(n)
k = ckv

(n)
k , and v

(n)
k is the n-th element in vector vk. This expression is a

sum of exponential terms, and we call it a hyperexponential function [10]. Specifically,

given the starting state is n = 1, we have

W1(t) = 1 +
N∑
k=1

α
(1)
k eσkt. (2.2.19)
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The coefficients {α(n)
k }Nn=1 satisfy a recurrence relation which can be derived from

(2.2.14),

1 +
N∑
k=1

α
(n+1)
k eσkt =

(
1 +

µn
λn

)(
1 +

N∑
k=1

α
(n)
k eσkt

)
+

1

λn

N∑
k=1

α
(n)
k σke

σkt

− µn
λn

(
1 +

N∑
k=1

α
(n−1)
k eσkt

)
.

Matching the coefficients for the exponential terms, we get the recurrence relation:

α
(n+1)
k =

(λn + µn + σk)α
(n)
k − µnα

(n−1)
k

λn
, n ≥ 1, (2.2.20)

with α
(0)
k = 0 for all k.

Going back to the problem where the BDP starts at state 1, our goal is to find

{λk, µk} from W1(t). If the actual function W1(t) is known, λk and µk can be found

from the Maclaurin series expansion of Wk(t) in a recursive way given by (2.2.20).

On the other hand, if W1(t) is only given at specific time nodes, then we can use the

exponential fitting method from Chapter 4.

Theorem 2.1. The c.d.f.s have the following Taylor series expansion,

Wn(t) =
∞∑
j=n

cn,jt
j, t ≥ 0 (2.2.21)

for some coefficients cn,j.

Proof. Let’s integrate the derivative of the master equation (2.2.10) on [−ε, ε], for any

ε > 0. Note that Wn(t) = 0 for all t < 0, W ′
n(t) is bounded for n > 0 via (2.2.18), and

W ′
n(t) = 0 for t < 0. The jump of W ′

1 at t = 0 is

[W ′
1]t=0 = lim

ε→0+

∫ ε

−ε
W ′′

1 (t) dt

= lim
ε→0+

∫ 0

−ε
[λ1W

′
2 − (λ1 + µ1)W ′

1]︸ ︷︷ ︸
=0

dt+ lim
ε→0+

∫ ε

0

[λ1W
′
2 − (λ1 + µ1)W ′

1] dt

+ lim
ε→0+

∫ ε

−ε
µ1W

′
0(t) dt

= lim
ε→0+

∫ ε

−ε
µ1δ(t) dt = µ1. (2.2.22)
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In addition, since Wn(0) = 0 for n = 1, . . . , N , it follows from (2.2.10) that

W ′
j(0) = 0, for all j > 1. (2.2.23)

Similarly, let’s consider the second derivatives. The jump of W ′′
2 at t = 0 is

[W ′′
2 ]t=0 = lim

ε→0+

∫ ε

−ε
W ′′′

2 (t) dt

= lim
ε→0+

∫ 0

−ε
[λ2W

′′
3 − (λ2 + µ2)W ′′

2 ]︸ ︷︷ ︸
=0

dt+ lim
ε→0+

∫ ε

0

[λ2W
′′
3 − (λ2 + µ2)W ′′

2 ] dt

+ lim
ε→0+

∫ ε

−ε
µ2W

′′
1 (t) dt

= µ2 lim
ε→0+

∫ ε

−ε
W ′′

1 (t) dt

= µ2[W ′
1]t=0 = µ1µ2, (2.2.24)

and

W ′′
j (0) = 0, for all j > 2. (2.2.25)

Inductively, one can prove that the jump in the n-th derivative of Wn at t = 0 is

[W (n)
n ]t=0 =

n∏
i=1

µi, (2.2.26)

and

W
(n)
j (0) = 0, for all j > n. (2.2.27)

Motivated by these equations under the assumption that Wn is differentiable, the c.d.f.s

thus have the following Taylor series expansion:

Wn(t) =
∞∑
j=n

cn,jt
j (2.2.28)

Plugging the expansion (2.2.21) into (2.2.10), we have

ncn,nt
n−1 + cn,n+1(n+ 1)tn + cn,n+2(n+ 2)tn+1 + . . .

= λn
[
cn+1,n+1t

n+1 + cn+1,n+2t
n+2 + cn+1,n+3t

n+3 + . . .
]

− (λn + µn)
[
cn,nt

n + cn,n+1t
n+1 + cn,n+2t

n+2 + . . .
]

+ µn
[
cn−1,n−1t

n−1 + cn−1,nt
n + cn−1,n+1t

n+1 + . . .
]
.

(2.2.29)

21



Equating coefficients for tn−1:

ncn,n = µncn−1,n−1, 1 ≤ n ≤ N. (2.2.30)

Equating coefficients for tn+m(m ≥ 1):

cn+1,n+m =
(n+m+ 1)cn,n+m+1 + (λn + µn)cn,n+m − µncn−1,n+m

λn
(2.2.31)

Specifically, in each step we need to compute the following two entries:

cn,n =
(n+ 1)cn−1,n+1 + (λn−1 + µn−1)cn−1,n − µn−1cn−2,n

λn−1

, (2.2.32)

cn,n+1 =
(n+ 2)cn−1,n+2 + (λn−1 + µn−1)cn−1,n+1 − µn−1cn−2,n+1

λn−1

, (2.2.33)

where c0,0 = 1 and c0,i = 0, i ≥ 1.

The relations of these coefficients are shown in the matrix (2.2.34) with the first

two rows are given. The tableaux is updated using the triangular stencil [14] given

above, and each blue entry is obtained from three red entries above it:

1 0 0 0 0 0 0 0 . . .

c1,1 c1,2 c1,3 . . . c1,n−1 c1,n c1,n+1 . . .

c2,2 c2,3 . . . c2,n−1 c2,n c2,n+1 . . .

. . .
...

...

cn−2,n−1 cn−2,n cn−2,n+1 . . .

cn−1,n−1 cn−1,n cn−1,n+1 . . .

cn,n cn,n+1 . . .

. . .
. . .



(2.2.34)

Using (2.2.30), we have

µ1 = c1,1. (2.2.35)

It is easy to show that

cn,n =
[W

(n)
n ]t=0

n!
=

1

n!

n∏
k=1

µk. (2.2.36)
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Comparing the coefficient of tn in eq. (2.2.29), we find that

cn,n+1 =
−(λn + µn)cn,n + µncn−1,n

n+ 1
(2.2.37)

In general, it can be proved by induction that

Mn ≡
n∏
k=1

µk. (2.2.38)

cn,n+1 = − Mn

(n+ 1)!

(
n∑
k=1

λk +
n∑
k=1

µk

)
, (2.2.39)

2.2.4 Detailed inference steps

We use a layer stripping method to infer the original birth and death rates. Data is
assumed to be perfect, so that the functional form of W1(t) is known.

1. Initiate M0 = 1;

2. Find the coefficient α
(n)
k from Wn(t) = 1 +

∑N
k=1 α

(n)
k eσkt. If n = 1, these coeffi-

cients are known since the function W1(t) is known; if n ≥ 2, they are obtained
through the recurrence relations in equation (2.2.20).

3. Find cn,n and cn,n+1 by the exact c.d.f.. Assuming the form in (2.2.21), we will use
Maclaurin series expansion to match the coefficients of tn with cn,n, and match
the coefficients of tn+1 with cn,n+1.

4. Compute µn and λn:

µn =
n! cn,n
Mn−1

, (2.2.40)

λn = −(n+ 1)! cn,n+1

Mn

−

(
n−1∑
k=1

λk +
n∑

m=1

µm

)
(2.2.41)

In summary, given the c.d.f. W1(t) exactly, we may infer the birth and death rates

exactly. In Algorithm 1, we described the procedure of inference when the coefficients

of Taylor expansion are explicitly given, while in Algorithm 2, we infer the transition

rates from α and σ in W1(t).
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Algorithm 1 Inference of birth and death rates given Taylor coefficients of W1(t)

Input: {c1,j}∞j=1.

Initialize: c0,1 = 0 and c1,1 = µ1; M0 ← 1, µk ← 0, λk ← 0, k = 1, . . . , N ; n = 1

1: µ1 = c1,1, M1 = µ1, λ1 = −2! c1,2

M1

− µ1

2: while n < N do

3: cn,n =
(n+ 1)cn−1,n+1 + (λn−1 + µn−1)cn−1,n − µn−1cn−2,n

λn−1

4: cn,n+1 =
(n+ 2)cn−1,n+2 + (λn−1 + µn−1)cn−1,n+1 − µn−1cn−2,n+1

λn−1

5: µn =
n! cn,n
Mn−1

6: Mn = µnMn−1

7: λn = −(n+ 1)! cn,n+1

Mn

−
(
n−1∑
k=1

λk +
n∑

m=1

µm

)
8: n← n+ 1

9: end while

Output: µ and λ

24



Algorithm 2 Inference of birth and death rates given functional form of c.d.f. W1(t)

Input: α = {αk}Nk=1 and σ = {σk}Nk=1

Initialize: M0 ← 1, µk ← 0, λk ← 0, α
(0)
k ← 0, α

(1)
k ← αk, k = 1, . . . , N ; n = 1

1: c1,1 =
N∑
k=1

α
(1)
k σk and c1,2 =

N∑
k=1

α
(1)
k σ2

k

2!

2: µ1 =
c1,1

M0

, M1 = M0µ1, λ1 = −2! c1,2

M1

− µ1

3: while n < N do

4: α
(n+1)
k =

(λn + µn + σk)α
(n)
k − µnα

(n−1)
k

λn
, k = 1, . . . , N

5: cn,n =
N∑
k=1

α
(n)
k σnk
n!

and cn,n+1 =
N∑
k=1

α
(n)
k σn+1

k

(n+ 1)!

6: µn =
n! cn,n
Mn−1

7: Mn = µnMn−1

8: λn = −(n+ 1)! cn,n+1

Mn

−
(
n−1∑
k=1

λk +
n∑

m=1

µm

)
9: n← n+ 1

10: end while

Output: µ and λ

This is the end of analytical inference of the BDP. In the next two sections, we

make a closer connection to actual data, where the c.d.f. W1(t) is obtained numerically

and is contaminated with noise. In this case, Algorithms 1 and 2 do not work in

practice, for fitting the hyper-exponential function to noisy data is an ill-posed problem,

and the Taylor coefficients cannot be accurately computed in the noisy setting. This

motivates the need for more data, and we will explore numerical schemes to tackle such

problems.

2.3 Numerical Estimation of Transition Rates from Extinction Times

Starting from here, the problem becomes more realistic in that the input data

is not an exact c.d.f. anymore. Instead, the data is a collection of extinction times

obtained from reiterated numerical simulation of the BDP. We will introduce the basic

steps of generating the BDP first, and discuss the inference later in the section.
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2.3.1 Monte-Carlo Simulation of the BDP

In order to simulate the BDP, we use the idea of the embedded-chain. The

simulation reduces to two separate steps: sampling the exponentially distributed inter-

event times, and determining the next jump according to birth and death rates. We

generate the exponential random variable by inverse sampling [25].

Lemma 2.3 (Inverse Sampling). If a U has a uniform distribution on [0, 1] and if

X has a cumulative distribution FX , then the random variable F−1
X (U) has the same

distribution as X.

Proof. By definition of c.d.f. and uniform distribution,

P[F−1
X (U) ≤ x] = P[U ≤ FX(x)] = FX(x). (2.3.1)

we have that the random variable F−1
X (U) has FX as its c.d.f..

Since the inter-event time (with rates λ) has c.d.f. F (t) = 1 − e−λt, its inverse

function is F−1(u) = − 1
λ

ln(1−u), and we can easily sample them in this manner. The

details of generating an extinction time of a BDP of N + 1 states is in Algorithm 3.

In practice, repeating this experiment a large amount of times yields a collection of

extinction times, and we compute the numerical c.d.f. with them.

We consider the same problem discussed in Section 2.2, i.e., to recover the

birth and death rate of a chain of length N + 1. Instead of working with analytical

expressions, we now generate a large dataset of extinction times {τi}Mi=1 by Algorithm 3.

As the number of ETs in the sample approaches infinity, {τi} should have distribution

of W1(t) in (2.2.19). Considering the noise in the data generation process, and the

limited number of ETs from simulation, we obtain an approximate distribution of

W1(t). The goal is to find {λn, µn} from these ETs. We first derive the method from

4-site chain (N = 3), and later generalize to (N + 1)-site chain.

The following subsections are closely related to exponential fitting techniques

which are discussed in details in Chapter 4. We will first introduce the Variable pro-

jection method and the modified Prony method here.
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Algorithm 3 Generating the Extinction Time of a Birth-Death Process of N + 1
states.

Input: Birth rates {λn}Nn=1, death rates {µn}Nn=1.
Initialize: Initial state i = 1, time t = 0, iteration n = 0, maximum iteration nmax.

1: while n < nmax do
2: Generate a standard uniform random number u ∼ uniform(0, 1).

3: Sample exponential inter-event time T = − ln(1− u)

λi + µi
.

4: Generate another standard uniform random number v ∼ uniform(0, 1).

5: if v <
λi

λi + µi
then

6: i = i+ 1
7: else
8: i = i− 1
9: end if

10: Update time t = t+ T
11: if i == 0 then break
12: end if
13: end while
14: if i 6= 0 then discard current result
15: Return
16: end if
Output: Extinction time t.
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2.3.2 Variable Projection

The Variable projection (Varpro) method is used to solve separable nonlinear

least squares problems [43], in which the data is a linear combination of nonlinear

functions of multiple parameters. In general, such a separable nonlinear least squares

problem seeks to minimize the residual vector

ri(α,σ) = yi −
n∑
j=1

αjφj(σ; ti), for i = 1, . . . , n. (2.3.2)

In matrix notation we have,

r(α,σ) = ‖y − Φ(σ)α‖2
2, (2.3.3)

where y is the vector of measurements, α is the vector of linear coefficients, σ is the

vector of nonlinear coefficients, and the j-th column of the matrix Φ(σ) is the vector

(φj(σ, t1), ..., φj(σ, tN))T , i.e., the nonlinear function φ(σ) evaluated at all time values

{ti}Ni=1. Note that in the special case of exponential fitting, we have the nonlinear

function as φj(σ; ti) = e−σjti .

If the nonlinear parameters σ are known, then the linear parameters can be

found by

α = Φ(σ)†y, (2.3.4)

where Φ(σ)† is the pseudo-inverse of the matrix Φ(σ). Substituting (2.3.4) into (2.3.3)

gives

min
σ
‖(I− Φ(σ)Φ(σ)†)y‖2

2, (2.3.5)

where the linear parameters α are eliminated from the optimization. The method

first minimizes (2.3.5) to get nonlinear parameters σ, and then solves (2.3.4) for linear

parameters α. We then define

ψ(σ) = ‖(I− Φ(σ)Φ(σ)†)y‖2
2, (2.3.6)

as the Variable Projection functional, since the first term I−Φ(σ)Φ(σ)† is the projector

onto the orthogonal complement of the column space of Φ(σ), or P⊥Φ(σ).
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A naive approach to solve the nonlinear least squares problem (2.3.3) is mini-

mization of the residual r over both α and σ simultaneously. The variable projection

method is an improvement over algorithms that aim to minimize (2.3.3) because it

breaks down the minimization problem into two smaller subproblems that solve α and

σ sequentially. The Varpro algorithm will converge in fewer iterations compared to

minimizing the original functional (2.3.3), and also guarantees that the set of station-

ary points of the two approaches are the same. Algorithm 4 summarizes the steps for

the variable projection method.

Algorithm 4 Variable Projection for separable nonlinear least squares problems

Input: y = {y1, . . . , yn} at regular time nodes tk = k × δt.

1: Build the matrix Φ(σ) whose (i, j) entry is φj(σ; ti). Specifically, φj(σ; ti) = e−σjti

in exponential fitting problems.

2: Minimize the Variable Projection functional ψ(σ) in (2.3.6) to get the best expo-

nents σ.

3: Solve the coefficients α = Φ(σ)†y.

Output: σ and α.

2.3.3 Osborne’s Modified Prony Method

The modified Prony method was introduced by Osborne and Smyth in [80, 81].

Given a differential equation
p+1∑
k=1

ξkD
k−1y = 0, (2.3.7)

where D is the differential operator, the modified Prony method gives estimation for

the coefficients ξk. The solution to (2.3.7) could be a sum of complex exponentials,

damped and undamped sinusoids, and real exponentials. We only focus on the following

specific problem of fitting the sum of p real exponential functions

y(t) =

p∑
j=1

αje
−σjt (2.3.8)
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to experimental data evaluated at n data points, where αj and σj are assumed to

be real, the σj distinct and nonnegative. In addition, without loss of generality, the

domain for t is assumed to be the unit interval and ti = i/n, i = 1, . . . , n.

Difference and recurrence equations

The differential equation (2.3.7) can be represented in three forms: the ODE,

the difference equation and the recurrence equation. The modified Prony method is

based on these three forms of equations.

Let Π be the forward shift operator defined by Πy(t) = y
(
t+ 1

n

)
, and let ∆ be

the divided difference operator ∆ = n(Π− I). Suppose the polynomial

pξ(z) =

p+1∑
k=1

ξkz
k−1 (2.3.9)

has distinct roots −σj for j = 1, . . . , p. Then the three types of equations are as follows.

1. The ODE:
p∏
j=1

(D + σjI)y(t) = 0 (2.3.10)

2. Difference equation. Since ∆e−σjt = −e−σjtζj with ζj = n(1− e−σj/n), we have

p∏
j=1

(∆ + ζjI)y(t) = 0, (2.3.11)

which can be written as
p+1∑
k=1

γk∆
k−1y(t) = 0 (2.3.12)

for some suitable choice of γk. The {γk} are called the difference form Prony
parameters. The ζj and γk represent discrete approximations to σj and ξk in the
sense that ζj → σj and γk → ξk as n→∞.

3. Recurrence equation. Since Πe−σjt = e−σjtρj with ρj = e−σj/n, we have

p∏
j=1

(Π− ρjI)y(t) = 0, (2.3.13)

which can be written as
p+1∑
k=1

δkΠ
k−1y(t) = 0 (2.3.14)
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for some suitable choice of δk. The {δk} are called the recurrence form Prony
parameters.

Let ck satisfy the following equation in which the difference relation and the

recurrence relation are equivalent,

p+1∑
k=1

γk∆
k−1 =

p+1∑
k=1

ckΠ
k−1. (2.3.15)

Then c could be solved as

cj =

p+1∑
k=j

(−1)k−j
(
k − 1

j − 1

)
nk−1γk. (2.3.16)

This can also be represented by matrices, c = Uγ, where U is the nonsingular matrix

U =



1 −1 1 · · · · · · (−1)p

1 −2 3
...

1 −3 6
...

. . .
. . .

...

. . .
(
p
2

)
1 −

(
p
1

)
1




1

n

. . .

np

 (2.3.17)

and c = (c1, . . . , cp+1)T . The original recurrence parameter δ is defined so that δp+1 = 1.

We may easily observe that c and δ are rescaled versions of each other: δ = c/cp+1.
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The algorithm

Denote yi = y(ti), i = 1, . . . , n. Let y = (y1, . . . , yn)T and Xδ be the n× (n− p)

matrix

Xδ =



δ1

δ2 δ1

... δ2

. . .

δp+1

...
. . . δ1

δp+1 δ2

. . .
...

δp+1


. (2.3.18)

Rewriting the recurrence equation (2.3.14), we have

XT
δ y = 0, (2.3.19)

Alternatively, we may write the rescaled version of the matrix above to be

X =



c1

c2 c1

... c2

. . .

cp+1

...
. . . c1

cp+1 c2

. . .
...

cp+1


. (2.3.20)

and

XTy = 0, (2.3.21)

which corresponds to the difference equation (2.3.12).

Next, we will use the Varpro method to fit the exponential function. Let A be

the n× p matrix function of σ with Aij = e−σjti , and

y = A(σ)α, (2.3.22)
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where α = (α1, . . . , αp)
T . Then A is orthogonal to all columns of Xδ and X. The

variable projection functional defined in (2.3.6) can be written as

ψ(σ) = yT (I−PA)y, (2.3.23)

where PA = A(ATA)
−1

AT is the orthogonal projection onto the column space of A.

Since A is orthogonal to X, we can reparametrize to the Prony parameters as

ψ(γ) = yTPXy = yTX(XTX)−1XTy, (2.3.24)

where PX is the orthogonal projection onto the common column space of X and Xδ.

Now, the least squares problem is equivalent to minimization of ψ with respect

to γ. In fact, one can show that the derivative of ψ can be written

∂ψ

∂γ
= 2B(γ)γ, (2.3.25)

where B is the symmetric (p+ 1)× (p+ 1) matrix function of γ with elements

Bij = yTXi(X
TX)

−1
XT
j y − yTX(XTX)

−1
XT
i Xj(X

TX)
−1

XTy, (2.3.26)

and where X is defined in (2.3.20) and Xj = ∂X/∂γj.

The modified Prony method minimizes ψ(γ) in (2.3.24) by repeatedly solv-

ing (2.3.25) until ∂ψ
∂γ

= 0. In fact, it is formulated using Lagrange multipliers subject

to the constraint γTγ = 1 so that a necessary condition for minimization to (2.3.24)

is

[B(γ)− λI]γ = 0. (2.3.27)

The method solves (2.3.27) iteratively by updating γ and λ until the Lagrange multi-

plier λ is sufficiently small. At the end of iterations, we get γ as an approximation to

the coefficients ξ in ODE (2.3.7). We then solve for the roots of the characteristic poly-

nomial to get ζ and σ, and α finally follows from (2.3.22). In practice, however, we can

alternatively implement the modified Prony method by directly minimizing (2.3.24) us-

ing algorithms like quasi-Newton or Nelder-Mead. Algorithm 5 summarizes the steps

for the modified Prony method.
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Algorithm 5 Modified Prony method

Input: y = {y1, . . . , yn} at regular time nodes tk = k × δt.

1: Build the matrix X as function of γ.

2: Start with an initial γ0, and a tolerance ε.

3: while λ(n) > ε‖B‖ do

4: Solve [B(γ(n))− λ(n+1)I]γ(n+1) = 0, with γ(n+1)Tγ(n+1) = 1

5: λ(n+1) is the closest to zero of such solutions.

6: end while

7: Find roots of characteristic polynomial of (2.3.7) to get ζ, using coefficient γn

obtained in the last step.

8: Exponents are given by σj = − 1

n
ln

(
1− ζj

n

)
9: Solve the coefficients α = A(σ)†y.

Output: σ and α.

2.3.4 ODEs for three sites N = 3

Suppose that w(t) = W ′(t) is the p.d.f. of extinction times. We apply Laplace

transform to (2.2.14) and get the following system:

w̃0(s) = 1, (2.3.28)

sw̃1(s) = λ1w̃2 − (λ1 + µ1)w̃1 + µ1w̃0, (2.3.29)

sw̃2(s) = λ2w̃3 − (λ2 + µ2)w̃2 + µ2w̃1, (2.3.30)

sw̃3(s) = −µ3w̃3 + µ3w̃2. (2.3.31)

where w̃(s) is the Laplace transform of w(t), This system of algebraic equations can

be solved for w̃1:

(ξ1 + ξ2s+ ξ3s
2 + s3)w̃1(s) = ξ1 + ξ0s+ ξ−1s

2 (2.3.32)
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where the {ξk} are defined in terms of birth and death rates

ξ3 = λ1 + λ2 + µ1 + µ2 + µ3, (2.3.33)

ξ2 = λ1λ2 + λ2µ1 + µ1µ2 + λ1µ3 + µ1µ3 + µ2µ3, (2.3.34)

ξ1 = µ1µ2µ3, (2.3.35)

ξ0 = µ1µ2 + µ1µ3 + λ2µ1, (2.3.36)

ξ−1 = µ1. (2.3.37)

We will now deal with the vector ξ instead of {λ,µ}, because the transition rates can

be inferred once ξ is known.

Directly computing the birth and death rates from these equations using the

modified Prony method is subject to instability. For better results, we consider adding

some moments of the extinction times as constraints. Let Tk be the k-th moment of exit

times starting at site n = 1, and take the k-th derivative of w̃1(s) = dk

dsk

∫∞
0
e−stw1(t) dt =

(−1)k
∫∞

0
tke−stw1(t) dt. Setting s = 0, we have

w̃
(k)
1 (0) = (−1)k

∫ ∞
0

tkw1(t) dt = (−1)k Tk (2.3.38)

2.3.5 General ODE for any N

In general, if N is arbitrary in the birth-death process, the Laplace-transformed

p.d.f. can be expressed as:

F (s) =

(
N∑
j=0

ξj+1s
j

)
w̃1(s)−

N−2∑
k=−1

ξ−ks
k+1 = 0, (2.3.39)

where ξN+1 = 1 always holds. We may iteratively take the derivative of (2.3.39) with

respect to s, set s = 0, and use the relation in (2.3.38). Notice that the definition for

the parameters {ξj} are different for chains with different lengths, and these derivative

equations form a set of constraints on the moments of the data. Given the number of

sites N (finite), we could represent all constraints in a matrix form:

Gξ = b, (2.3.40)
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where ξ = (ξ2−N , . . ., ξ−1, ξ0, ξ1, . . . , ξN)T , and b = (0, . . . , 0,−N !)T , and

G =



0 · · · 0 0 0 0 −1! −T1 1! 0 · · · 0

0 · · · 0 0 0 −2! 0 T2 −2!T1 2! 0 · · · 0

0 · · · 0 0 −3! 0 0 −T3 3T2 −3!T1 3! 0 · · · 0

0 · · · 0 −4! 0 0 0 T4 −4T3 12T2 −4!T1 4! 0 · · · 0

0 · · · −5! 0 0 0 0 −T5 5T4 −20T3 60T2 −5!T1 5! · · · 0

... . .
. ...

...
...

...
...

...
...

...
...

...
. . .

. . .
...

−N ! · · · 0 0 0 0 0 gN1 gN2 gN3 gN4 gN5 · · · gNN gN,N+1


.

(2.3.41)

The left block of G is an anti-diagonal matrix and the right block of G has elements

gij = (−1)i−j+1Ti−j+1

j−2∏
k=0

(i− k), for 1 ≤ j ≤ N + 1. (2.3.42)

2.3.6 Estimation of Rates by Minimization

In order to improve the result using the nonlinear least squares methods, we will

use the constraints introduced in (2.3.40). The Modified Prony’s Method minimizes

the Variable projection functional with respect to the parameter γ, which is an approx-

imation to coefficients of the characteristic polynomial ξ. The details of this method

were described in Section 2.3.3. However, we will directly work with the parameter ξ

by defining a new objective function

ψ̃(ξ1, ξ2, ξ3) = ψ(γ1, γ2, γ3) = ψ

(
ξ1 −

ξ1ξ3

2n
, ξ2 −

ξ2ξ3 − 3ξ1

2n
, ξ3 −

ξ2
3 − 2ξ2

2n

)
. (2.3.43)

Consider the constraints matrix G in (2.3.41) for three sites, we have


0 −1 −T1 1 0

−2 0 T2 −2T1 2

0 0 −T3 3T2 −6T1





ξ−1

ξ0

ξ1

ξ2

ξ3


=


0

0

−6

 (2.3.44)

Note that we can compute any moment of the data in theory to improve the result,

but the high-order moments have larger errors. Hence we only choose the first three

moments here. This is an underdetermined linear system, so we may find a solution
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(with least 2-norm) such that Gx0 = b. Suppose the singular value decomposition of

G is G = USV ∗, then the last two columns v1 and v2 of V will be the basis for the

nullspace of G. Then

ξ = x0 + c1v1 + c2v2 (2.3.45)

is a solution to (2.3.44). We can then search in the coefficients (c1, c2) such that ψ̃ is

minimized. The true solution is just the last three elements in ξ.

When we search for the coefficients c, it is helpful to include the gradient. By

the chain rule, we have
∂ψ̃

∂c
=
∂ξ

∂c

∂γ

∂ξ

∂ψ

∂γ
, (2.3.46)

where

∂γ

∂ξ
=



1− ξ3
2n

3
2n

0

0 1− ξ3
2n

1
n

− ξ1
2n

− ξ2
2n

1− ξ3
n

0 0 0

0 0 0


, (2.3.47)

∂ξ

∂c
=

vT1
vT2

 . (2.3.48)

where n is the number of time nodes used in [0,1], and the last derivative term in the

product ∂ψ̃
∂γ

is given by the modified Prony method in (2.3.25).

Once the estimations for ξ is computed, one can follow the flow chart 2.4 to

obtain the transition rates λ and µ, through a series of intermediate computations

with respect to different variables shown in the chart.

2.3.7 Numerical Results

We explore the error behavior of the following six methods that compute the
birth/death rates. Notice that the last 3 methods include moments while the first three
do not.
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ζ
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σ
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minimization

(2.3.45) Find roots
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1

n
ln
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1−

ζj

n

)(2.3.22) Algorithm 2

Figure 2.4: Flow chart of the entire inference procedure for N = 3. The input data is c.d.f.
W1(t) given at equispaced time nodes. One first finds the SVD of the matrix G in (2.3.41), and
coefficients (c1, c2). Then the coefficients of characteristic polynomial for the corresponding
ODE can be recovered as ξ. By solving the roots of this polynomial, one obtains ζ and σ as
specified in the modified Prony method. The coefficients of hyperexponential α will be then
solved by ordinary least squares. Finally, the transition rates are calculated via Algorithm 2
using σ and α.

(1) Direct minimization of ψ̃ via fminunc based on BFGS1 quasi-newton method,
starting at random initial point, without any additional information.

(2) Minimization of ψ̃ via fminunc starting at random initial point, with the gradient
of objective function. This is Osborne’s modified Prony method.

(3) Minimization of ψ̃ via fminsearch based on Nelder-Mead simplex algorithm (gra-
dient free method), starting at random initial point, without any additional in-
formation.

(4) Minimization of ψ̃ via the new proposed moments method with fminsearch, start-
ing at random initial point, with moments for the first passage times.

(5) Minimization of ψ̃ via the new proposed moments method with fminunc without
gradient, starting at random initial point, with moments for the first passage
times.

(6) Minimization of ψ̃ via the new proposed moments method with fminunc plus
gradient, starting at random initial point, with moments for the first passage
times.

Note that there is a subtle difference between method (2) and the modified Prony

method: we just need to minimize ψ̃ whereas Osborne’s modified Prony method sets

up a nonlinear eigenvalue problem for ψ̃.

1 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is an iterative method for
solving unconstrained nonlinear optimization problems [35].

38



2.3.7.1 Three-Site BDP (N = 2)

A total of 106 birth-death processes, starting from site 1 and ending in site 0,

are simulated in MATLAB, with rates λ = (0.65, 0),µ = (0.6, 0.48). The c.d.f. and

moments are estimated from these exit times. For the moment constraints method

implementation, we choose 256 equispaced time nodes in the interval (0, 1].

Consider ν = (λ1, µ1, µ2) as a new vector. We sample random birth and death

rates that are within the interval (0, 1], and denote the exact rates by ν∗. Also note

that λ2 = 0 is assumed and there is no need to infer this parameter. Figure 2.5 shows

how the vector ν changes after applying each of the six methods. The triangular

markers represent the final relative distances (relative error) to the exact solution. It

is clear from these plots that all six methods work properly and give accurate results

when N = 2. We may use any of these methods to infer the birth-death rates in the

three-site chain.

2.3.7.2 Four-Site BDP (N = 3)

A total of 106 birth-death processes, starting from site 1 and ending in site 0,

are simulated in MATLAB, with rates λ = (0.65, 0.35, 0),µ = (0.6, 0.48, 0.3). The

CDF and moments are estimated from these exit times, with an error of 0.2% in CDF

and 2.4% in the first 5 moments. For the moment constraints method implementation,

we choose 256 equispaced time nodes in the interval (0, 1].

Consider ν = (λ1, λ2, µ1, µ2, µ3) as a new vector. We sample random birth

and death rates that are within the interval (0, 1], and denote the exact rates by

ν∗. Also note that λ3 = 0 is assumed and there is no need to infer this parameter.

Figure 2.6 shows how the vector ν changes after applying each of the six methods. The

blue crosses represent the results where the birth-death rates improved their accuracy

(got closer to ν∗) while the magenta squares represent the results that reduced their

accuracy (got further from ν∗). Methods that do not use moments generally yield bad

results and incorporating the moments usually improves the inference.
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Figure 2.5: Methods comparison for three sites BDP (N = 2). All methods have the same
initial condition in each iteration. In each plot, x-axis is the relative distance from the initial
guess to the exact transition rates ν∗, and y-axis is the relative distance from the resulting
transition rates to ν∗. The red lines are y = x. The triangles are all below the red line,
indicating that the methods have actually decreased the distance to the exact solution. All
methods work well, insensitive of initial guesses.
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We further investigate the best performing method (6) in Figure 2.7. It shows

a histogram of transition rates calculated from method (6). Although over 90% of

the final transition rates show an improvement over the initial guesses, the method is

sensitive to initial conditions and does not infer all the sites with uniform accuracy,

due to error accumulation in larger sites. The other methods perform even worse.

As the birth-death chain grows longer, these method become unreliable and

unstable, if we only have pure extinction times from the BDP. This motivates the need

for additional data, which we will discuss next.

2.4 Numerical Estimation of Transition Rates from Conditional Extinction

Times

In this section, our problem set up is different in that we assume we also have

access to the maximal site for each trajectory, as well as the extinction time. This

additional data turns out to render the inference problem much better-posed.

2.4.1 Governing Equations for the Birth Death Process

Consider the same birth-death chain as in previous sections which is on a lattice

with sites labeled {0, 1, 2, . . . , N}, where N is known and finite: see Figure 2.8. A

particle starts at site 1 and executes a random walk which we write as X = X(t): X(t) is

a random walk on the non-negative integers. At site i, the rightward (leftward) hopping

rate is λi (µi). When the particle reaches site 0, we record the time of extinction. When

this experiment is repeated many times, we may use the resulting data to compute the

extinction time distribution W (t).

The matrix that determines this process is defined as

A(N) =



−(λ1+µ1) µ2

λ1 −(λ2+µ2) µ3

. . .
. . .

. . .

λN−2 −(λN−1+µN−1) µN

λN−1 −(λN+µN)


(2.4.1)

41



10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

Method comparison for four sites, mean relative initDist = 65.4%

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

better

worse

y = x

Figure 2.6: Methods comparison for four sites BDP (N = 3). All methods have the same
initial condition in each iteration. The black lines are y = x. Blue crosses stand for results
that are better than initial guess, and magenta squares correspond to results that get worse.
The percentage on top of each plot is the proportion of results that actually get closer to
exact rates.
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Figure 2.7: Histogram for transition rates ν = (λ1, λ2, µ1, µ2, µ3) computed by method (6),
which takes gradient and moments into consideration. Vertical dashed red lines are the exact
transition rates. The rates are mostly accurate for ν1 = λ1 and ν3 = µ1, but not so for the
other three transition rates.
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0 1 2 · · · · · ·n− 1 n n+ 1 N

µn λn

Figure 2.8: Birth death chain with N + 1 sites, with λN = 0. Our algorithm uses the
extinction times of the process given that the positions of particles never exceed site n (always
remain in the dashed box).

with λN = 0. Note that the superscript to this square matrix corresponds to its size.

It turns out that this is the transpose of the infinitesimal generator matrix defined

in (2.1.14) with first row and column removed, since this BDP satisfies a forward

equation, and that definition is from a backward equation. If Pk(t) = P [X(t) = k]

is the probability that the random walker is in site k at time t, then the vector of

probabilities P = (P1, . . . , PN)T satisfies the forward master equation

Ṗ = A(N)P , P (0) = (1, 0, . . . , 0)T , (2.4.2)

and it is a simple matter to find W (t) from P1(t) (see Section 2.4.2).

When N is known, finding all the transition rates {λi, µi}1≤i≤N from W (t)

amounts to an exponential fitting problem, which is very ill-conditioned [104]. To

overcome this difficulty, we assume that for every trajectory Xj(t) we also record the

maximal site of the particle, nj. The maximal site for the random walker is simply the

largest site number that it attains before exiting. By grouping trajectories according to

their maximal site and computing the statistics of the extinction times of each group,

we are able to accurately infer transition rates for birth death chains of length 11 from

about 5× 107 extinction times with relative error of a few percent.

To be more precise, if Xj(t) is the jth trajectory, then τj is the jth extinction

time defined as τj = inf{τ : Xj(τ) = 0} and nj = max
0≤t≤τj

Xj(t) is the maximal site of

the jth trajectory. If Sn = {τj : nj ≤ n} is the set of extinction times corresponding to

trajectories whose maximal site does not exceed n, then for a finite sample of trajec-

tories, we have S1 ⊆ S2 ⊆ . . . ⊆ SN . The algorithm that we propose essentially takes

as input |Sn| and S̄n (cardinality and mean of Sn) to infer λn and µn for each n.
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Random walkers that exit from the dashed red box in Figure 2.8 can exit at

site 0 or n + 1. We informally call the times that correspond to exit at site 0 (n + 1)

“left” (“right”) extinction times. Then, the distribution of extinction times for the

birth-death process, conditioned on trajectories not exceeding site n is identical to the

left extinction time distribution out of the sublattice {1, . . . , n}. By finding analytical

expressions for the moments of this distribution and matching them to the observed

moments, we may infer the transition rates on the lattice. This forms the basis of our

method.

2.4.2 Extinction times and Probability Fluxes

We assume that sites 0 and n+ 1 are absorbing in the sense that if the particle

reaches site 0 or n+1 (“exits”), it stays at these sites for all time. We use the superscript

n to distinguish the subproblem from the entire chain. Define the probability that the

random walker is at site k at time t as

P
(n)
k (t) = P[X(t) = k]. (2.4.3)

If we take the n×n leading principal submatrix of A(N), then it follows that the condi-

tional probabilities P (n) = (P
(n)
1 , P

(n)
2 , . . . , P

(n)
n )T satisfy the forward master equations

Ṗ (n) = A(n)P (n), P (n)(0) = e
(n)
1 = (1, 0, . . . , 0)T︸ ︷︷ ︸

n elements

, (2.4.4)

for 1 ≤ n ≤ N . Eq. (2.4.4) is the starting point for the reconstruction process.

Now we introduce the two random variables

• E(n) ∈ {0, n + 1}: a binary random variable which represents the exit site of the

random walker on the sublattice {1, . . . , n}:

P[E(n) = 0] = Π(n), (2.4.5)

P[E(n) = n+ 1] = Π(n)
∗ ,

and Π(n) + Π
(n)
∗ = 1.
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• T (n): the extinction time of the random walker, defined to be the time at which the

walker arrives either at site 0 or n+ 1 for the first time. Conditioning on E(n), let the

density of extinction times T (n) be w
(n)
L (t) and w

(n)
R (t):

P (t ≤ T (n) ≤ t+ dt|E(n) = 0) = w
(n)
L (t)dt,

P (t ≤ T (n) ≤ t+ dt|E(n) = n+ 1) = w
(n)
R (t)dt,

and we let W
(n)
L (t) and W

(n)
R (t) be the corresponding CDFs.

Now we show how extinction times are related to probability fluxes. The prob-

ability of the particle being at site 0 at time t+ dt is given by

P
(n)
0 (t+ dt) = P

(n)
1 (t)µ1dt+ P

(n)
0 (t)× 1. (2.4.6)

Note that the probability of hopping left in time dt from site 1 is µ1dt and the prob-

ability of staying at site 0 in time dt is 1 since site 0 is absorbing. Eq. (2.4.6) implies

that

dP
(n)
0 (t)

dt
= µ1P

(n)
1 (t). (2.4.7)

Lemma 2.4. The flux out of site 1, µ1P
(n)
1 (t), and the left extinction time density

w
(n)
L (t) are related through

µ1P
(n)
1 (t) = w

(n)
L (t)Π(n), (2.4.8)

where µ1 is the death rate from site 1 and Π(n) is defined in eq. (2.4.5).

Proof. If the random walker is at site 0 at time t, it must have arrived there either at

t or before. Then

P
(n)
0 (t) = P[T (n) ≤ t, E(n) = 0],

⇒ P
(n)
0 (t) = P[T ≤ t|E(n) = 0]P[E(n) = 0],

⇒ P
(n)
0 (t) = W

(n)
L (t)Π(n),

⇒ d

dt
P

(n)
0 (t) = w

(n)
L (t)Π(n),

⇒ µ1P
(n)
1 (t) = w

(n)
L (t)Π(n),

using eq. (2.4.7).

46



2.4.3 Algorithm for reconstructing transition rates

Our algorithm for transition rate reconstruction requires the following as input:

for each n, the fraction of random walks that exit and whose maximal site does not

exceed n; and the mean extinction time for these conditional random walks. For each

n ≥ 1, Π(n) and E[T (n)|E(n) = 0] ≡M (n) yield {λn, µn}: see Fig. 2.9.

{λ1, µ1}

Π(1),M (1)

{λ2, µ2}

Π(2),M (2)

· · · {λn, µn}

Π(n),M (n)

· · ·

Figure 2.9: Flow chart of the algorithm presented in this paper. Π(n) is the probability of
left exit and M (n) is the mean of the extinction times, all conditioned on that the particles
remain in the domain of {1, . . . , n} before exiting. At each site, a pair of birth and death
rate at that site is recovered.

2.4.3.1 Inference of µ1 and λ1

In the first step, we recover the birth and death rates at site 1. Note that P (1)(t) only

contains a single element, and the forward master equation can be written as

Ṗ (1) = A(1)P (1),

with

A(1) = −(λ1 + µ1) and P (1)(0) = 1.

This simple ODE has solution

P (1)(t) = e−(λ1+µ1)t.

Suppose we only consider left extinction times, with n = 1, generated by all trajectories

that directly arrive at site 0 from site 1. These extinction times are exponentially

distributed with parameter λ1 + µ1:

W
(1)
L (t) = P

[
T (1) ≤ t|E(1) = 0

]
= 1− e−(λ1+µ1)t.

It follows from the property of exponential distribution that

λ1 + µ1 =
1

E [T (1)|E(1) = 0]
=

1

M (1)
. (2.4.9)
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In the next step, we use (2.4.8) to get

µ1P
(1)
1 (t) = w

(1)
L (t)Π(1)

⇒ µ1 =
Π(1)∫∞

0
P

(1)
1 (t′) dt′

⇒ µ1 = Π(1)(λ1 + µ1) =
Π(1)

M (1)
(2.4.10)

⇒ λ1 =
1− Π(1)

M (1)
. (2.4.11)

We now have obtained the forms of µ1 and λ1 in terms of Π(1) and M (1).

2.4.3.2 Inference of µ2 and λ2

The forward master equations are for P (2)(t) are

Ṗ (2) = A(2)P (2)

where

A(2) =

−(λ1 + µ1) µ2

λ1 −(λ2 + µ2)

 .

By (2.4.8), we have that

µ1P
(2)
1 (t) = w

(2)
L (t)Π(n),

⇒ µ1

∫ ∞
0

P
(2)
1 (t′)dt′ = Π(2),

⇒ w
(2)
L (t) =

P
(2)
1 (t)∫∞

0
P

(2)
1 (t′)dt′

.

We now introduce the Laplace transform L{P (t)} = P̃ (s). Then the transformed

equation for P
(2)
1 (t) satisfies[

s2 + ξ
(2)
2 s+ ξ

(2)
1

]
P̃

(2)
1 (s) = s+ η

(2)
2 , (2.4.12)

where ξ
(2)
2 = λ1 + µ1 + λ2 + µ2, ξ

(2)
1 = λ1λ2 + µ1µ2 + λ2µ1 and η

(2)
2 = λ2 + µ2. Taking

derivatives with respect to s, we have[
2s+ ξ

(2)
2

]
P̃

(2)
1 (s) +

[
s2 + ξ

(2)
2 s+ ξ

(2)
1

] dP̃ (2)
1 (s)

ds
= 1, (2.4.13)
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and when s = 0,

(λ1λ2 + µ1µ2 + λ2µ1)P̃
(2)
1 (0)− (λ2 + µ2) = 0,(2.4.14)

(λ1 + µ1 + λ2 + µ2)P̃
(2)
1 (0) + (λ1λ2 + µ1µ2 + λ2µ1)

dP̃
(2)
1 (s)

ds

∣∣∣∣∣
s=0

= 1.(2.4.15)

Eqs. (2.4.14) and (2.4.15) can be rewritten as[
λ1 + µ1

µ1

Π(2) − 1

]
λ2 +

[
Π(2) − 1

]
µ2 = 0, (2.4.16)[

1−M (2)(λ1 + µ1)
]
λ2 +

[
1−M (2)µ1

]
µ2 =

µ1

Π(2)
− λ1 − µ1, (2.4.17)

a linear system for λ2, µ2 where

Π(2) = µ1P̃
(2)
1 (0) and M (2) = − µ1

Π(2)

dP̃
(2)
1 (s)

ds

∣∣∣∣∣
s=0

. (2.4.18)

Assuming λ1 and µ1 are known from the n = 1 case, solving eqs. (2.4.16) and (2.4.17)

allows us to compute λ2 and µ2 from the conditional moments Π(2) and M (2).

2.4.3.3 Inference of µn and λn for n ≥ 3

Now we consider the n-th site after computing the birth and death rates for the first

n− 1 sites. The Laplace transformed ODEs of P̃ (n)(s) = [P̃
(n)
1 (s), . . . , P̃

(n)
n (s)]T can be

represented in the following matrix form:

(sIn − A(n))P̃ (n)(s) = e
(n)
1 (2.4.19)

where e
(n)
1 = [1, 0, . . . , 0]T has n elements and In is the identity matrix of size n × n.

Whenever s is not an eigenvalue of A(n), we have that P̃ (n)(s) = (sIn − A(n))−1e
(n)
1 .

Let the characteristic polynomial of A(n) be

q(s;λ1, µ1) = sn + ξ(n)
n sn−1 + · · ·+ ξ

(n)
2 s+ ξ

(n)
1 = det(sIn − A(n)), (2.4.20)

where the {ξ(n)
i } are the coefficients of the characteristic polynomial of A(n), and they

can be written as functions of birth and death rates:

ξ
(n)
i = ξ

(n)
i (λ1, . . . , λn;µ1, . . . , µn). (2.4.21)
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In addition, define another set of coefficients

η
(n)
i = ξ

(n)
i (λ1 = 0, λ2, . . . , λn;µ1 = 0, µ2, . . . , µn). (2.4.22)

Finally, we note that the coefficient of of sn in (2.4.20) is 1 and for notational conve-

nience, define

ξ
(n)
n+1 = 1; ξ

(n)
n+k = 0 for k ≥ 2

η
(n)
n+1 = 1; η

(n)
n+k = 0 for k ≥ 2

Lemma 2.5. The Laplace-transformed probability P̃
(n)
1 (s), the first element in P̃(n)(s)

from eq (2.4.19), is a rational function in s satisfying[
sn + ξ(n)

n sn−1 + · · ·+ ξ
(n)
2 s+ ξ

(n)
1

]
P̃

(n)
1 (s) = sn−1+η(n)

n sn−2+· · ·+η(n)
3 s+η

(n)
2 . (2.4.23)

for some constants {ξ(n)
i }ni=1 and {η(n)

i }ni=2.

Proof. Let Â(k−1) be the (k− 1)× (k− 1) submatrix of A(k) with the first row and first

column removed, so that

Â(k−1) =



−(λ2+µ2) µ3

λ2 −(λ3+µ3) µ4

. . .
. . .

. . .

λk−2 −(λk−1+µk−1) µk

λk−1 −(λk+µk)


. (2.4.24)

By Cramer’s rule [22] and the definition of the determinant in terms of its cofactor

expansion, the first element of the solution vector P̃ (n)(s) can be calculated as

P̃
(n)
1 (s) =

det

 1 −µ2[e
(n−1)
1 ]T

0 sIn−1 − Â(n−1)


det(sIn − A(n))

=
det(sIn−1 − Â(n−1))

det(sIn − A(n))
.

Now introduce the polynomial

det(sIn−1 − Â(n−1)) = sn−1 + cn−1s
n−2 + cn−2s

n−3 + . . .+ c2s+ c1, (2.4.25)
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for some coefficients cn−1, cn−2, . . . , c1. Then it is clear that

q(s; 0, 0) = sn + η(n)
n sn−1 + · · ·+ η

(n)
3 s2 + η

(n)
2 s+ η

(n)
1 , (2.4.26)

= det

 s −µ2[e
(n−1)
1 ]T

0 sIn−1 − Â(n−1)

 , by definition of characteristic polynomial

= s det(sIn−1 − Â(n−1)), (2.4.27)

from the definitions in eqs. (2.4.20) and (2.4.22) and the fact that the (1, 1) and (2, 1)

entries of A(n) are zero when λ1 = µ1 = 0. Because q(s = 0;λ1 = 0, µ1 = 0) = 0, it

follows that η
(n)
1 = 0. Eqs. (2.4.26) and (2.4.27) imply that

sn + η(n)
n sn−1 + · · ·+ η

(n)
3 s2 + η

(n)
2 s+ η

(n)
1︸︷︷︸
=0

= sn + cn−1s
n−1 + cn−2s

n−2 + . . .+ c2s
2 + c1s.

Comparing coefficients, we find that η
(n)
n = cn−1, η

(n)
n−1 = cn−2, . . . , η

(n)
2 = c1, so that eq.

(2.4.25) becomes

det(sIn−1 − Â(n−1)) = sn−1 + η(n)
n sn−2 + η

(n)
n−1s

n−3 + . . .+ η
(n)
3 s+ η

(n)
2 ,

⇒ P̃
(n)
1 (s) =

sn−1 + η
(n)
n sn−2 + · · ·+ η

(n)
3 s+ η

(n)
2

sn + ξ
(n)
n sn−1 + · · ·+ ξ

(n)
2 s+ ξ

(n)
1

. (2.4.28)

Since the expression Π(n)

µ1
appears frequently in later analysis, we define the notation

r(n) =
Π(n)

µ1

(2.4.29)

and use it in the analysis below.

Lemma 2.6 (Moment and Exit Probability). Let M (n) ≡ E
[
T (n)|E(n) = 0

]
, then

Π(n) = µ1P̃
(n)
1 (0), (2.4.30)

M (n) = − 1

r(n)

dP̃
(n)
1 (s)

ds

∣∣∣∣∣
s=0

. (2.4.31)
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Proof. The Laplace transform of P
(n)
1 (t) is P̃

(n)
1 (s) =

∫∞
0
e−stP

(n)
1 (t) dt. Integrating

both sides of (2.4.8), we have that

Π(n) = µ1

∫ ∞
0

P
(n)
1 (t′) dt′

⇒ w
(n)
L (t) =

P
(n)
1 (t)∫∞

0
P

(n)
1 (t′) dt′

.

Therefore, eq. (2.4.30) holds:

P̃
(n)
1 (0) =

∫ ∞
0

P
(n)
1 (t) dt = r(n).

If we differentiate the Laplace transform P̃
(n)
1 (s), then (2.4.31) is validated by

dP̃
(n)
1 (s)

ds
= −

∫ ∞
0

te−stP
(n)
1 (t) dt

⇒ dP̃
(n)
1 (s)

ds

∣∣∣∣∣
s=0

= −
∫ ∞

0

tP
(n)
1 (t) dt

= −r(n)

∫ ∞
0

tw
(n)
L (t) dt = −r(n)M (n),

using eq. (2.4.8).

By setting s = 0 in (2.4.23) and its derivative equation, we find two constraints

involving the exit probability and the first moment M (n) of the conditional extinction

times using (2.4.30,2.4.31):

ξ
(n)
1 r(n) = η

(n)
2 , (2.4.32)(

ξ
(n)
2 − ξ

(n)
1 M (n)

)
r(n) = η

(n)
3 . (2.4.33)

Lemma 2.7 (Recurrence Relations). The coefficients ξ
(n)
1 , ξ

(n)
2 and η

(n)
2 , η

(n)
3 are linear

in λn and µn, satisfying

ξ
(n)
1 = (λn + µn)ξ

(n−1)
1 − µnλn−1ξ

(n−2)
1 , (2.4.34)

ξ
(n)
2 = ξ

(n−1)
1 + (λn + µn)ξ

(n−1)
2 − µnλn−1ξ

(n−2)
2 . (2.4.35)

and

η
(n)
2 = (λn + µn)η

(n−1)
2 − µnλn−1η

(n−2)
2 , (2.4.36)

η
(n)
3 = η

(n−1)
2 + (λn + µn)η

(n−1)
3 − µnλn−1η

(n−2)
3 . (2.4.37)
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Proof. From the definition of A(n) and by cofactor expansion, we have

det(sIn − A(n)) = det



s+ λ1+µ1 −µ2

−λ1 s+ λ2+µ2 −µ3

. . .
. . .

. . .

−λn−2 s+ λn−1+µn−1 −µn
−λn−1 s+ λn+µn


,

= (s+ λn + µn)det(sIn−1 − A(n−1))− µnλn−1det(sIn−2 − A(n−2)).

Then,

n+1∑
k=1

ξ
(n)
k sk−1 = (s+ λn + µn)(sn−1 + ξ

(n−1)
n−1 sn−2 + . . .+ ξ

(n−1)
2 s+ ξ

(n−1)
1 )

− µnλn−1(sn−2 + ξ
(n−2)
n−2 sn−3 + . . .+ ξ

(n−2)
2 s+ ξ

(n−2)
1 ).

(2.4.38)

By equating coefficients of (2.4.38) at O(1) and O(s), we can establish a recurrence rela-

tion between the coefficients of the characteristic polynomial for the n-site subproblem

and the n− 1 and n− 2 site subproblems:

ξ
(n)
1 = (λn + µn)ξ

(n−1)
1 − µnλn−1ξ

(n−2)
1 ,

ξ
(n)
2 = ξ

(n−1)
1 + (λn + µn)ξ

(n−1)
2 − µnλn−1ξ

(n−2)
2 .

It is clear from this recurrence that ξ
(n)
1 and ξ

(n)
2 are linear in the transition rates λn

and µn since ξ
(n−1)
1 only depends on λ1, . . . , λn−1, µ1, . . . , µn−1 and ξ

(n−2)
1 only depends

on λ1, . . . , λn−2, µ1, . . . , µn−2. A similar argument applied to det(sIn−1− Â(n−1)) shows

that {η(n)
2 } and {η(n)

3 } are linear in λn and µn also:

η
(n)
2 = (λn + µn)η

(n−1)
2 − µnλn−1η

(n−2)
2 ,

η
(n)
3 = η

(n−1)
2 + (λn + µn)η

(n−1)
3 − µnλn−1η

(n−2)
3 .
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The way of computing (λn, µn) for the n-site subproblem is to rewrite (2.4.32)

and substitute eqs. (2.4.34)-(2.4.37) into (2.4.32) and (2.4.33):

V
(n)

1


ξ

(n)
1

ξ
(n)
2

η
(n)
2

η
(n)
3

 =

0

0

 , V
(n)

2

σn
µn

 =


ξ

(n)
1

ξ
(n)
2

η
(n)
2

η
(n)
3

−


0

ξ
(n−1)
1

0

η
(n−1)
2

 , (2.4.39)

where

V
(n)

1 =

 r(n) 0 −1 0

−M (n)r(n) r(n) 0 −1

 , V
(n)

2 =


ξ

(n−1)
1 −λn−1ξ

(n−2)
1

ξ
(n−1)
2 −λn−1ξ

(n−2)
2

η
(n−1)
2 −λn−1η

(n−2)
2

η
(n−1)
3 −λn−1η

(n−2)
3

 , (2.4.40)

and σn = λn + µn. Eliminating the vector
(
ξ

(n)
1 , ξ

(n)
2 , η

(n)
2 , η

(n)
3

)T
, we find that

V
(n)

1 V
(n)

2

σn
µn

 = −V (n)
1


0

ξ
(n−1)
1

0

η
(n−1)
2

 =

 0

η
(n−1)
2 − r(n)ξ

(n−1)
1

 . (2.4.41)

If the matrix V
(n)

1 V
(n)

2 is invertible, σn and µn are uniquely determined, and so are λn

and µn.

Theorem 2.2. Given exact data {Π(n), M (n)}, n = 1, 2, . . . , N generated by some

underlying birth-death process, the rates (λn, µn), n = 1, . . . , N are uniquely determined.

In particular, the matrix

F (2) =

 (λ1 + µ1)r(2) − 1 Π(2) − 1

1−M (2)(λ1 + µ1) 1−M (2)µ1

 (2.4.42)

from eqs. (2.4.16) and (2.4.17) is invertible and the 2× 2 matrix V
(n)

1 V
(n)

2 (where V
(n)

1

and V
(n)

2 are defined in eqs. (2.4.40)) is invertible for n ≥ 3.
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Proof. Consider the case n = 2. Then, we see that

detF (2) = λ1

(
r(2) −M (2)

)
, (2.4.43)

= − λ2
1µ2

(λ2 + µ2)(λ1λ2 + µ1λ2 + µ1µ2)
< 0, (2.4.44)

where we used the relations

Π(2) =
µ1(λ2 + µ2)

λ1λ2 + µ1µ2 + λ2µ1

,

M (2) =
λ2

2 + 2λ2µ2 + λ1µ2 + µ2
2

(λ2 + µ2)(λ1λ2 + λ2µ1 + µ1µ2)
.

Therefore (λ2, µ2) are uniquely determined. Now consider the case n ≥ 3. For reference,

define

Ṽ
(n)

2 =


ξ

(n−1)
1 ξ

(n−2)
1

ξ
(n−1)
2 ξ

(n−2)
2

η
(n−1)
2 η

(n−2)
2

η
(n−1)
3 η

(n−2)
3

 . (2.4.45)

(Compare Ṽ
(n)

2 to the definition of V
(n)

2 in eq. (2.4.40)). To show that V
(n)

1 V
(n)

2 is

invertible, it is sufficient to show that det
(
V

(n)
1 Ṽ

(n)
2

)
6= 0. We split the proof into two

parts. First, we find a simple expression for the determinant. Second, we show using

induction that this expression is always non-zero.

Expression for Determinant. The determinant depends on r(n) and M (n), which

are determined by the (perfect) data. Using the recurrence relations (2.4.34)-(2.4.37),

we note that

r(n) = P̃
(n)
1 (0) =

η
(n)
2

ξ
(n)
1

=
σnη

(n−1)
2 − µnλn−1η

(n−2)
2

σnξ
(n−1)
1 − µnλn−1ξ

(n−2)
1

, (2.4.46)
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and from Lemma 2.6,

−M (n)r(n) =
dP̃

(n)
1

ds

∣∣∣∣∣
s=0

=
η

(n)
3 ξ

(n)
1 − η

(n)
2 ξ

(n)
2

ξ
(n)
1

2 ,

=

(
η

(n−1)
2 + σnη

(n−1)
3 − µnλn−1η

(n−2)
3

)(
σnξ

(n−1)
1 − µnλn−1ξ

(n−2)
1

)
(
σnξ

(n−1)
1 − µnλn−1ξ

(n−2)
1

)2

−

(
σnη

(n−1)
2 − µnλn−1η

(n−2)
2

)(
ξ

(n−1)
1 + σnξ

(n−1)
2 − µnλn−1ξ

(n−2)
2

)
(
σnξ

(n−1)
1 − µnλn−1ξ

(n−2)
1

)2 . (2.4.47)

After substituting (2.4.46) and (2.4.47) into the definition of V
(n)

1 in (2.4.40) and per-

forming some algebra,

det(V
(n)

1 Ṽ
(n)

2 ) =
λn−1µn(η

(n−1)
2 ξ

(n−2)
1 − η(n−2)

2 ξ
(n−1)
1 )2

(λn−1µnξ
(n−2)
1 − σnξ(n−1)

1 )2
,

=
λn−1µn(η

(n−1)
2 ξ

(n−2)
1 − η(n−2)

2 ξ
(n−1)
1 )2

ξ
(n)
1

2 . (2.4.48)

The denominator is always nonzero because ξ
(n)
1 = (−1)n det(A(n)) 6= 0: it is well

known that the eigenvalues of the infinitesimal generator matrix (and its submatrices)

of a birth-death process and are all negative [69], and the matrix A(n) is the transpose of

a submatrix of such an infinitesimal generator. It remains to show that this expression

is non-zero for n ≥ 3.

Induction Proof. First we show that det(V
(3)

1 Ṽ
(3)

2 ) is non-zero. Because

ξ
(2)
1 = λ1λ2 + µ1µ2 + λ2µ1,

η
(2)
2 = λ2 + µ2,

ξ
(1)
1 = λ1 + µ1,

η
(1)
2 = 1,

⇒ det(V
(3)

1 Ṽ
(3)

2 ) =
λ2µ3λ

2
1µ

2
2

ξ
(3)
1

2 > 0.

Now assume that det(V
(n)

1 Ṽ
(n)

2 ) is non-zero. Then

η
(n−1)
2 ξ

(n−2)
1 − η(n−2)

2 ξ
(n−1)
1 6= 0.
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It suffices to show that η
(n)
2 ξ

(n−1)
1 − η(n−1)

2 ξ
(n)
1 6= 0. Using (2.4.34) and (2.4.36),

η
(n)
2 ξ

(n−1)
1 − η(n−1)

2 ξ
(n)
1

=
(
σnη

(n−1)
2 − µnλn−1η

(n−2)
2

)
ξ

(n−1)
1 − η(n−1)

2

(
σnξ

(n−1)
1 − µnλn−1ξ

(n−2)
1

)
,

= µnλn−1

(
η

(n−1)
2 ξ

(n−2)
1 − η(n−2)

2 ξ
(n−1)
1

)
6= 0.

Therefore det(V
(n)

1 Ṽ
(n)

2 ) is non-zero for n ≥ 3. Therefore V
(n)

1 V
(n)

2 is invertible for

n ≥ 3. From (2.4.41), σn and µn are uniquely determined and so (λn, µn) are also

uniquely determined.

In summary, at step n ≥ 3, we must solve the linear system

V
(n)

1 V
(n)

2

σn
µn

 =

 0

η
(n−1)
2 − r(n)ξ

(n−1)
1

 ,

which we may write as

F (n)νn = G(n), (2.4.49)

where

F (n) = V
(n)

1 V
(n)

2

1 1

0 1

 , νn =

λn
µn

 , G(n) =

 0

η
(n−1)
2 − r(n)ξ

(n−1)
1

 . (2.4.50)

The F (n) and G(n) depend on the previous transition rates ν1, . . . , νn−1 and from The-

orem 2.2, F (n) is invertible. For reference, the entries of F (n) are:

F
(n)
11 = r(n)ξ

(n−1)
1 − η(n−1)

2 , (2.4.51)

F
(n)
12 = r(n)

(
ξ

(n−1)
1 − λn−1ξ

(n−2)
1

)
− η(n−1)

2 + λn−1η
(n−2)
2 , (2.4.52)

F
(n)
21 = r(n)

(
ξ

(n−1)
2 − ξ(n−1)

1 M (n)
)
− η(n−1)

3 , (2.4.53)

F
(n)
22 = r(n)

[
ξ

(n−1)
2 −M (2)ξ

(n−1)
1 − λn−1

(
ξ

(n−2)
2 −M (2)ξ

(n−2)
1

)]
+ λn−1η

(n−2)
3 − η(n−2)

3

(2.4.54)

The following notation will be used in the next theorem about error propagation:

x∗ = (λ∗1, . . . , λ
∗
n−1, µ

∗
1, . . . , µ

∗
n−1; Π(1)∗, . . . ,Π(n)∗,M (1)∗, . . . ,M (n)∗), (2.4.55)

δx = (δλ1, . . . , δλn−1, δµ1, . . . , δµn−1; δΠ(1), . . . , δΠ(n), δM (1), . . . , δM (n))

57



where the birth-death rates with asterisks stand for exact rates and Π(n)∗,M (n)∗ are

the exact data. In contrast, the elements in δx are perturbations to the corresponding

elements. By Theorem 2.2, the exact transition rates at site n depend on the rates at

sites 1, 2, . . . , n− 1:

λ∗n = f
(n)
1 (λ∗1, . . . , λ

∗
n−1, µ

∗
1, . . . , µ

∗
n−1; Π(1)∗, . . . ,Π(n)∗,M (1)∗, . . . ,M (n)∗), (2.4.56)

µ∗n = f
(n)
2 (λ∗1, . . . , λ

∗
n−1, µ

∗
1, . . . , µ

∗
n−1; Π(1)∗, . . . ,Π(n)∗,M (1)∗, . . . ,M (n)∗), (2.4.57)

where f
(n)
i : R4n−2 → R for i = 1, 2.

Theorem 2.3 (Error Propagation with site number). Let νn = (λn, µn)T , Dn =

(Π(n),M (n))T and let ν∗n be the exact transition rate at site n. Suppose that all first

derivatives of f
(n)
1 and f

(n)
2 in eqs. (2.4.56, 2.4.57) are bounded in a small neighbor-

hood B(x∗, r) of x∗ in equation (2.4.55), i.e. there exists r, R > 0 such that for any

x ∈ B(x∗, r),

‖∇f (n)
m (x)‖∞ ≤ R/2, (2.4.58)

for 1 ≤ n ≤ N and m = 1, 2. Then, if a small error δDk, such that ||δDk||∞ < r, is

introduced into the data {Dk}nk=1 at each site such that Dk = D∗k + δDk for k = 1, ..., n,

the error of birth-death rates at site n satisfies

‖δνn‖∞ ≤
n∑
j=1

R(1 +R)n−j‖δDj‖∞. (2.4.59)

Proof. The analysis is fairly standard and makes use of Taylor series expansions. The

exact rates satisfy

λ∗n = f
(n)
1 (x∗), µ∗n = f

(n)
2 (x∗) (2.4.60)

where f
(n)
i : R4n−2 → R for i = 1, 2.

Now consider a perturbation δx such that ||δx||∞ < r. Then by the mean value

theorem for multivariate functions, the errors at each site satisfy

f
(n)
1 (x∗ + δx) = f

(n)
1 (x∗) +∇f (n)

1 (z
(n)
1 ) · (δλn−1, δµn−1) = λ∗n + δλn

f
(n)
2 (x∗ + δx) = f

(n)
2 (x∗) +∇f (n)

2 (z
(n)
2 ) · (δλn−1, δµn−1) = µ∗n + δµn

58



for some z
(n)
1 = x∗+ c

(n)
1 δx, z

(n)
2 = x∗+ c

(n)
2 δx with c

(n)
i ∈ (0, 1), i = 1, 2. By equations

(2.4.60), we have

δλn =
n−1∑
i=1

 ∂f
(n)
1

∂λi

∣∣∣∣∣
z
(n)
1

δλi +
∂f

(n)
1

∂µi

∣∣∣∣∣
z
(n)
1

δµi


+

n∑
i=1

 ∂f
(n)
1

∂Π(i)

∣∣∣∣∣
z
(n)
1

δΠ(i) +
∂f

(n)
1

∂M (i)

∣∣∣∣∣
z
(n)
1

δM (i)

 ,

δµn =
n−1∑
i=1

 ∂f
(n)
2

∂λi

∣∣∣∣∣
z
(n)
2

δλi +
∂f

(n)
2

∂µi

∣∣∣∣∣
z
(n)
2

δµi


+

n∑
i=1

 ∂f
(n)
2

∂Π(i)

∣∣∣∣∣
z
(n)
2

δΠ(i) +
∂f

(n)
2

∂M (i)

∣∣∣∣∣
z
(n)
2

δM (i)

 .

Define the matrices

R
(n)
k =


∂f

(n)
1

∂λk

∣∣∣∣
z
(n)
1

∂f
(n)
1

∂µk

∣∣∣∣
z
(n)
1

∂f
(n)
2

∂λk

∣∣∣∣
z
(n)
2

∂f
(n)
2

∂µk

∣∣∣∣
z
(n)
2

 (2.4.61)

and

S
(n)
k =


∂f

(n)
1

∂Π(k)

∣∣∣∣
z
(n)
1

∂f
(n)
1

∂M(k)

∣∣∣∣
z
(n)
1

∂f
(n)
2

∂Π(k)

∣∣∣∣
z
(n)
2

∂f
(n)
2

∂M(k)

∣∣∣∣
z
(n)
2

 (2.4.62)

Therefore,

δνn =
n−1∑
k=1

R
(n)
k δνk +

n∑
k=1

S
(n)
k δDk. (2.4.63)

In general, we can repeatedly substitute to get δνn in terms of {δDk}nk=1 only:

δνn =
n∑
j=1

(
S

(n)
j +

∑
j≤k1<n

S
(k1)
j R

(n)
k1

+
∑

j≤k1<k2<n

S
(k1)
j R

(k2)
k1

R
(n)
k2

+ . . .

+
∑

j≤k1<···<ki<n

S
(k1)
j R

(k2)
k1
· · ·R(n)

ki
+ . . .+ S

(j)
j R

(j+1)
j · · ·R(n)

n−1

)
δDj

(2.4.64)

By equation (2.4.58) we have ‖R(n)
k ‖∞ ≤ R and ‖S(n)

k ‖∞ ≤ R for all 1 ≤ i, j ≤ N .

Then the binomial expansion yields

||δνn||∞ ≤ R
n∑
j=1

(1 +R)n−j‖δDj‖∞
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Hence at each site n, the error in the birth-death rates (λn, µn) is the result of accu-

mulating the errors from sites 1 to n− 1.

Corollary 2.1. Suppose D = max
j
‖δDj‖∞, then equation (2.4.59) becomes

‖δνn‖∞ ≤ D[(1 +R)n − 1]. (2.4.65)

In this special case where all errors in data are bounded by D, we expect that the error

in the birth-death rates grows exponentially.

2.4.3.4 Algorithm Details

The input data is an array of extinction times T with their corresponding max-

imum sites. In the preprocessing step, we group these extinction times by their max-

imum sites, so that the n-th group contains all trajectories with maximum sites not

exceeding n. Π(n) is computed as the proportion of number of extinction times in this

group out of the total number of simulations, and M (n) is given by the mean extinction

times within this group. Graphically, only extinction times within the “red box” are

processed, as in Figure 2.8, and the red box grows larger with each preprocessing step.

The implementation of the algorithm starts with the inference at site 1 and site

2. In order to keep track of the recurrence relation in Lemma 2.7, we only need to

focus on the “feature vector” defined as un =
(
ξ

(n)
1 , ξ

(n)
2 , η

(n)
2 , η

(n)
3

)T
at each site n. For

site 1, we have

u1 =


ξ

(1)
1

ξ
(1)
2

η
(1)
2

η
(1)
3

 =


λ1 + µ1

1

1

0

 (2.4.66)
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For site 2, we have

u2 =


ξ

(2)
1

ξ
(2)
2

η
(2)
2

η
(2)
3

 =


λ1λ2 + µ1µ2 + λ2µ1

λ1 + µ1 + λ2 + µ2

λ2 + µ2

1

 (2.4.67)

Then we can define the matrix

Z =
(
u1 u2 · · · un

)
=


ξ

(1)
1 ξ

(2)
1 · · · ξ

(n)
1

ξ
(1)
2 ξ

(2)
2 · · · ξ

(n)
2

η
(1)
2 η

(2)
2 · · · η

(n)
2

η
(1)
3 η

(2)
3 · · · η

(n)
3

 (2.4.68)

where the j-th column is the feature vector at site j.

At each step j ≥ 3, we need to solve linear system defined by (2.4.49) and

(2.4.50) to obtain {λj, µj}, and update the j-th column of Z by Lemma 2.7. Details

are given in Algorithm 6.

There is an alternative way to infer the transition rates, instead of directly using

the recurrence relations in Lemma 2.7. This method is technically simpler, yet more

computationally intensive when the number of sites is large. We include the details of

this method in Appendix A.

2.4.4 Numerical Results

Example 1: 5-site birth death chain. First we present a simple result of a birth-

death chain with only 5 sites (N = 4) and some pre-determined rates. All the rates

are about the same order of magnitude, see Fig. 2.10.

The extinction time data is generated by simulating the birth-death process

with these given rates, and we evaluate the reconstruction in comparison to them: the

error is computed using the infinity norm. With about 5×106 extinction times, we can

infer the rates to very good accuracy – about 0.11% and 0.37% relative errors in {λk}

and {µk}, respectively. First, the sum of birth and death rates λ1 +µ1 follows from the
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Algorithm 6 Inference of birth and death rates up to site N
in a birth death chain given conditional extinction times

1: Input: An array of extinction times T along with maximal sites from repeated
simulation of a birth death process by Algorithm 3.

2: Initialize: Compute the conditional probabilities of left exit {Π(1), . . . ,Π(N)}, and
mean of conditional extinction times {M (1), . . . ,M (N)}, at each site. Initialize Z
as a 4×N zero matrix.

3: At site 1,

(
λ1

µ1

)
=

(
(1− Π(1))/M (1)

Π(1)/M (1)

)
, as in (2.4.10, 2.4.11). Feature vector Z:,1 =

u1 is defined in (2.4.66).
4: if N == 1 then return {µ1, λ1}
5: end if

6: At site 2,

(
λ2

µ2

)
=

(
r(2)(λ1 + µ1)− 1 Π(2) − 1

1−M (2)(λ1 + µ1) 1−M (2)µ1

)−1(
0

1/r(2) − λ1 − µ1

)
, see

(2.4.16, 2.4.17). Feature vector Z:,2 = u2 is defined as (2.4.67).
7: for j = 3 : N do
8: Compute V

(j)
1 and V

(j)
2 as in (2.4.40).

9: Form the matrices F (j) and G(j) as in (2.4.49) and (2.4.50).
10: Solve [λj, µj]

T = (F (j))−1G(j).

11: Update Z:,j = V
(j)

2

(
λj + µj
µj

)
+


0

Z1,j−1

0
Z3,j−1

 .

12: if j == N then
13: λj = 0
14: end if
15: end for
16: Output: {µ1, . . . , µN} and {λ1, . . . , λN−1}
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mean extinction time conditioned on immediate exit through eq. (2.4.9). The fraction

of times corresponding to immediate exit then yields µ1 and λ1 separately through

(2.4.10) and (2.4.11). Next, λ2 and µ2 are computed by (2.4.16, 2.4.17). Then for

n = 3, 4, we compute the n-th columns of matrix Z as in (2.4.68) and obtain {λn, µn}

simultaneously. Notice that the last birth rate λN is always assumed to be zero and

no inference is necessary at that site.
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Figure 2.10: Bar plots of the inference results in a 5-site birth death chain. The top subplot
(a) contains rates for µk and bottom subplot (b) for λk. The bars in dark blue represent
numerically approximated rates, and yellow bars stand for exact rates. On top of each bar is
the value associated with it.

Example 2: 11-site birth death chain. We now test our reconstruction algorithm on

a longer chain. In this result, 5 × 107 extinction times are simulated from an 11-site

birth-death chain. Following the same steps, we have the inference results with a rela-

tive error in {λk} and {µk} to be 3.29% and 3.71%, respectively: see Fig. 2.11.

Example 3: 9-site birth death chain with a bottleneck. This birth-death chain has a

“bottleneck” between sites 3 and 4 so that λ3 and µ4 are much smaller than the rates

at the other sites – it is very difficult for the particle to transition from site 3 to 4 or
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Figure 2.11: Bar plots of the inference results in a 11-site birth death chain. The top
subplot (a) contains rates for µk and bottom subplot (b) for λk. The bars in dark blue
represent numerically approximated rates, and yellow bars stand for exact rates.

from site 4 to 3: see Fig. 2.12. Upon application of our algorithm, we find that the

maximum error in the {λk} and {µk} are 1.17% and 1.24% respectively.
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Figure 2.12: Bar plots of the inference results in a 9-site birth death chain with a bottleneck
between sites 3 and 4. The top subplot (a) contains rates for µk and bottom subplot (b) for
λk. The bars in dark blue represent numerically approximated rates, and yellow bars stand
for exact rates.
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Example 4: 9-site birth death chain with a sticky site. This example corresponds to a

potential landscape with multiple minima, with one minimum much deeper than the

others. The transition rates into this “sticky” site are of moderate magnitude, but

the rates out of the site are small in comparison. For the same number of extinction

times, the presence of the sticky site reduces the overall accuracy of the inference.

With 5× 107 extinction times, the errors are 7.40% and 8.29% relative errors in {λk}

and {µk}, respectively: see Fig. 2.13. Specifically, the errors in the transition rates

are larger after the sticky site than they are before. This is because the random walk

samples sites 5-8 a lot less frequently than sites 1-4.
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Figure 2.13: Bar plots of the inference results in a 9-site birth death chain where site 4 is
“sticky” (i.e. both rates out of site 4 are relatively small). The top subplot (a) contains rates
for µ and bottom subplot (b) for λ. The bars in dark blue represent numerically approximated
rates, and yellow bars stand for exact rates.

Example 5: 9-site potential well with a single shallow minimum. In this example, the

potential landscape has one local minimum that is very shallow compared to the others:

the transition rates out of this minimum are large compared to the other rates. The

random walker spends very little time at this site, rendering it almost invisible with

respect to extinction times. One sees that the inference at the “invisible” site is very
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poor compared to the other sites. The relative error at this site is 19.96% for {λ6} and

19.38% for {µ6}: see Fig. 2.14. The errors at this site dominate the errors at the other

sites.
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Figure 2.14: Inference results for a 9-site birth death chain, representing a potential land-
scape with multiple minima where one minimum is very shallow: the rates out of site 6 are
much larger than the rates at the other sites. The top subplot (a) contains rates for µ and
bottom subplot (b) for λ. The bars in dark blue represent numerically approximated rates,
and yellow bars stand for exact rates.

Example 6: 11-site birth death chain error propagation. In this example, we show how

error propagates with site number. The birth and death rates are all equal to 1, and

1× 108 extinction times are generated from the Monte Carlo simulation. Bootstrap is

done by taking random samples of size 5× 106 from these extinction times and errors

at each site are computed. This resampling procedure is repeated 50 times, and Fig-

ures 2.15 and 2.16 display the mean error and 95% confidence intervals from the above

50 samples, where it is clear that errors for both {λk} and {µk} increase exponentially

with site number, as a result of Theorem 2.3.

Example 7: Minimum number of extinction times required. Finally, we consider the

minimum number of extinction times required such that relative error for both λk and
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Figure 2.15: Error plot for λ at each site, taken as the average of 50 random samples of
1 × 108 extinction times. The linear fit of the mean error of λ is given by ln[Error(λ)] =
0.643× [Site Number]− 7.449.
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Figure 2.16: Error plot for µ at each site, taken as the average of 50 random samples of
1 × 108 extinction times. The linear fit of the mean error of µ is given by ln[Error(µ)] =
0.5598× [Site Number]− 7.072.
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N (Estimated) Minimum number of ETs
1 5.0×101

2 1.5×102

3 5.0×102

4 1.0×104

5 1.0×105

6 3.0×105

7 2.0×106

8 4.0×106

9 7.0×106

Table 2.1: Number of extinction times required for rates to have relative error below 15%,
on chains of different lengths. The birth-death rates are on the same order of magnitude.

µk, 1 ≤ k ≤ N , are below 15%. In order to estimate the mimimum number of extinction

times required in a chain of length N + 1, we take 50 bootstrap samples of size m and

record the average relative errors in the birth-death rates. We repeat this process,

doubling m each time and then choose the smallest m that yields a relative error below

15%. We applied this process to a chain where all birth-death rates are about the same

order of magnitude. Our results are given in Table 2.1, and Fig. 2.17. It is obvious from

the plot that minimum number of extinction times required is increasing exponentially

with the length of chain.
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Figure 2.17: Number of extinction times required for rates to have relative error below
15%. The dashed red line is fit by data points on the blue line.
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2.4.5 Summary

In summary, we have presented a method for extracting the kinetic rates of

large proteins, with multiple folding domains, from extinction times (when all domains

have folded) and “maximal sites” (the maximum number of unfolded domains before

extinction). Both of these quantities can, in principle, be computed from AFM time

traces.

The inference relies on the recurrence relation specified in Lemma 2.7 and starts

with base cases when n = 1, 2, and inference of each subsequent site depends on

its previous sites by solving a linear system. If the data Π(n) and M (n) are exactly

given, meaning that they correspond to the statistics of an underlying birth-death

process, then the birth-death rates are uniquely determined, and we proved that a

small perturbation in site 1 will propagate exponentially throughout the chain, given

that the first derivatives of f
(n)
1 and f

(n)
2 in Theorem 2.3 are bounded near the exact

solution. With sufficient data (about 50 million for a chain of length 8 - 12), the method

can compute these rates to very good accuracy and is capable of detecting bottlenecks

or extreme values in the chain. In general, the number of extinction times one needs

to obtain reasonable results grows exponentially with the total length of the chain.

There still remain many theoretical challenges to interpreting single-molecule

AFM data. For example, inference from extinction times in the “transmission” prob-

lem where absorption/extinction is at site N rather than site 0 is severely ill-posed.

Can some aspect of time-trace data be used to better-condition this problem? Also,

bifurcations or loops in the birth-death chain representing multiple pathways to a final

unfolded state have not yet been explored. Finally, it remains to be seen if our method

can be adapted to force-ramp data, or how to proceed if transition times between

metastable configurations are not exponentially distributed.
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Chapter 3

INFERENCE IN NUCLEAR MAGNETIC RESONANCE PROBLEMS

In this chapter, inference problems arising in Nuclear Magnetic Resonance (NMR)

and Magnetic Resonance Imaging (MRI) are discussed. First, a brief introduction to

NMR and MRI with their physical backgrounds is given, and the relation between

the inverse problem in NMR to the inverse Laplace transform is demonstrated. Due

to the ill-posedness of the inverse Laplace transform, regularization methods are used

to treat these problems. Then, NMR relaxometry is investigated mathematically in

detail, where a new method to process some specific signals is proposed at the end.

3.1 Background

3.1.1 Introduction to Nuclear Magnetic Resonance

NMR is a physical phenomenon in which atomic nuclei absorb and re-emit

electromagnetic (EM) radiation in a magnetic field [97, 32]. It is a non-destructive

testing technique for observation of quantum mechanical magnetic properties of atoms,

and is widely used in medical imaging [66, 23], and structural determination [12, 20].

The NMR phenomenon is based on the inherent spin of neutrons and protons that make

up the atomic nucleus. This spin, determined by the spin quantum number, results

from the intrinsic angular momentum of the nucleus. A non-zero spin is associated with

a non-zero magnetic moment via the gyromagnetic ratio γ. This magnetic moment of

the nucleus precesses in an external magnetic field, similar to the motion of a classical

gyroscope in a gravitational field: see Figure 3.1.

In NMR experiments, nuclear spins are first aligned (polarized) in an external

magnetic field. This alignment is subsequently perturbed by radio-frequency (RF)

pulses with different frequencies, in order to trigger changes in nuclear spin and generate
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self-spin axis

precession

Figure 3.1: A hydrogen nucleus precesses in a magnetic field B0. The nucleus has an
intrinsic spin from angular momentum, whose axis rotates about the B0 axis.

NMR signals. The RF pulse is produced by a synthesizer and applied in the direction

orthogonal to the main magnetic field B0. An essential fact about atomic nuclei is that

they exist in discrete energy states (spin levels), separated by finite energy differences.

In the presence of an external magnetic field B0, this energy difference is given by

∆E = γ}B0, (3.1.1)

where } is the Planck constant divided by 2π. Transition between spin states occurs

only when exactly the correct amount of energy is absorbed or emitted [60]. Accord-

ing to the Planck-Einstein relation, the electromagnetic radiation energy absorbed or

emitted is proportional to its frequency ω, given by

∆E = }ω. (3.1.2)

Combining (3.1.1) and (3.1.2) gives

ω = γB0. (3.1.3)

This ω is the frequency of EM radiation required to activate a transition between two

spin levels, and is referred to as the Larmor precession frequency [65, 15]. Equation

(3.1.3) implies that the Larmor frequency only depends on the type of nucleus and the
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RF pulse emits EM

1) 2)

Figure 3.2: RF excitation of nuclei out of thermodynamic equilibrium. 1) A RF pulse of
correct frequency ω is applied on a nucleus, causing the spin level to move from E0 to E1. 2)
When the pulse is turned off, the nucleus decays back to initial state E0. During this decay,
the precessing magnetization vector of the nucleus induces voltage signals in the receiver coil.

magnetic field. When a RF pulse with Larmor precession frequency is applied, nuclear

spin moves to a higher level. The nucleus returns to its original state after the pulse is

turned off, and emits EM waves: see Figure 3.2.

However, not all nuclei give rise to NMR signals. If the numbers of both protons

and neutrons in a nucleus are even, such as 12C and 16O, the overall nuclear spin is zero

and no NMR absorption effect is exhibited; hence these nuclei are not used in practice.

The most commonly studied nuclei in NMR include 1H, 13C, 17O, etc, which possess a

non-zero spin, as well as other nuclei with an odd number of neutrons and/or protons.

Relaxation is the decay of magnetized nuclei to their initial orientations and

states. If a sample of nuclei is exposed to a pulse of RF energy, the magnetization

vectors are pushed away from the B0 axis, after which they begin to precess. Volt-

age signals are induced in the receiver coil by these precessing magnetization vectors,

according to Faraday’s law of induction. Generally, NMR signals deteriorate with

time after the RF pulse is turned off; this phenomenon is called “free induction de-

cay” (FID). This deterioration in NMR signal arises from the nuclear magnetization

and over-population of nuclei in high-energy spin states. As a result, an NMR signal

is only observed when the RF pulse causes precession, or when (3.1.3) is satisfied.

Relaxation experiments mainly measure two useful quantities T1 and T2, namely the
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Figure 3.3: Activated by RF pulse, the spin orientation of a nucleus changes. The magneti-
zation vector M precesses and finally returns to its initial orientation parallel to the magnetic
field. The relaxation time of Mz in longitudinal direction is measured by T1, and that of
transverse component Mxy is measured by T2.

“spin-lattice” and “spin-spin” relaxation times [41]. T1 measures the time it takes

for nuclei to release the absorbed energy to their ambient environment, and relax to

their initial low-energy distribution. Dephasing exists simultaneously, due to loss of

alignment of spin directions, and is measured by T2. Formally, let M be the nuclear

spin magnetization vector in R3. T1 is the relaxation time of the component Mz that

is parallel to the magnetic field, usually defined as the longitudinal direction (z-axis),

whereas T2 is the relaxation time of the transverse component Mxy that is perpen-

dicular to the magnetic field (xy-plane): see Figure 3.3. T1 is much larger than T2 in

general.

3.1.2 Introduction to Magnetic Resonance Imaging

MRI, one of the most important applications of NMR, is a medical imaging

technique [66, 38], which is prominently used in diagnostic medicine and biomedical

research [77, 63, 71]. Multidirectional and high-contrast images of organs in human

73



bodies, for example, are generated by MRI scanners equipped with strong magnetic

fields, electric field gradients and radio wave emitters. These images help diagnosis

based on compositional changes in the organ, and assist physicians with appropriate

treatments and therapies. Compared to computed tomography (CT) and Positron-

Emission Tomography (PET), MRI is often considered as a better choice in medical

diagnosis, because it doesn’t expose patients to X-rays and ionizing radiation which

could potentially lead to cell abnormalities and cancer development. However, MRI

operates at a high cost, and its usage remains controversial on patients with implanted

devices such as pacemakers [42].

The largest component in a MRI scanner is the main magnet. It is usually made

from a superconducting solenoid which generates a homogeneous and stable magnetic

field in the scanner. By themselves, the main magnet and RF system only produce

signals of a single frequency by equation (3.1.3). Therefore, MRI scanners are also

equipped with another component, namely the gradient coils, that modulate the main

magnetic field at different spatial points [96]. In practice, three orthogonal magnetic

fields Gx,Gy and Gz are generated in addition to the main magnetic field B0. The

strength of these magnetic fields vary linearly along each direction, thus forming the

gradient system. After the RF pulse is applied, the gradients act on the precessing

nuclei. With the gradients, signals from different locations exhibit different frequencies

and phases, thus making spatial localization possible.

Hydrogen atoms 1H are most frequently used to generate detectable signals

from biological organisms, due to their abundance in water, sharp MR signal, and

fast acquisition time. From these properties, one can essentially map the resonance

frequency of hydrogen atoms to their positions in the tissue. On the other hand,

different tissue types contain different amounts of water and yield MR signals that

decay at different rates.

Our collaborators at the National Institutes of Health use MRI to study os-

teoarthritis [1], a joint disease resulting from breakdown of the joint cartilage and un-

derlying bone [68] and a major cause of disability worldwide. Their goal is to achieve
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greater specificity in MR studies of cartilage macromolecules and develop therapies

from early diagnosis. Cartilage is mainly composed of water, but it stores its water in

different “pools”, for example free water, collagen and proteoglycans. Distinct pools

are expected to have distinct water mobility, and exhibit different magnetic resonance

properties, and different relaxation times T1 and T2. Generally, 1H nuclei in different

tissues resonate at the same frequency, but relax at different rates. Hence we may esti-

mate the composition of tissues by examining the relaxation times of Hydrogen atoms

therein.

The image of tissues normally includes information of both location (coordinates

of each pixel) and composition (intensity of each pixel). Both of them are derived from

the voltage signal, or intensity, assigned to that pixel. The electric field gradient system

in the MRI scanner is responsible for localizing the MR signal. The applied magnetic

field establishes a one-to-one mapping from locations of 1H nuclei to signal frequencies,

and the inverse Fourier transform (IFT) is used in computing the signal frequency

from the voltage in the electric field gradient system. Since IFT is well-posed [11],

the location of points in the tissue that emit signals of a particular frequency can be

accurately determined. On the other hand, the intensity of image at a given pixel is

determined from a series of voltage signals, which is related to the relaxation times T1

and T2 at that pixel. In order to identify the type of corresponding tissue at that pixel,

we need to infer the relaxation times by applying the inverse Laplace transform (ILT).

Unfortunately, ILT is a well-known ill-posed Fredholm equation of the first kind [72, 31],

meaning that the solution from ILT may not be unique, may not exist, or may not

depend continuously on the data [54]. The solution could be highly sensitive to noise

and allow multiple different solutions to a given dataset. For this reason, determination

of relative amounts of proteoglycan, collagen and water in the cartilage is likely to be

uncertain, rendering it difficult to predict the characteristics of different types of tissue.

Hence the focus from here will be on ILT and determining the composition of tissues

from the sizes of water pools they consist of along with their relaxation times.
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3.1.3 NMR Relaxometry Formulation

The main interest in this chapter is two-dimensional relaxometry problems. For

illustration purposes, one-dimensional relaxometry is considered first.

1D relaxometry

For a Fredholm integral equation of the first kind, we define the kernel function

K(u, v) = e−u/v. (3.1.4)

Suppose that the unknown distribution of spin-spin relaxation time is F (T2), which

identifies the composition of the tissue being experimented. The relaxation measure-

ment y is given by

y(t) =

∫ ∞
0

K(t, T2)F (T2)dT2, (3.1.5)

where K(t, T ) is the kernel given in (3.1.4). Discretizing in the domain of T2 with

increments ∆T2,j, (3.1.5) can be written in matrix form as

y = Kf , (3.1.6)

where yi = y(ti), Kij = K(ti, T2,j)∆T2,j and fj = F (T2,j). The goal is to recover F (T2)

given measurement y(t).

2D relaxometry

In two-dimensions, the same kernel (3.1.4) is used. The joint distribution of

spin-lattice and spin-spin relaxation times F (T1, T2) of various 1H atoms characterizes

the composition of tissue under investigation. The measurement data Y has expression

Y (t1, t2) =

∫ ∞
0

∫ ∞
0

(1− 2K(t1, T1))F (T1, T2)K(t2, T2)dT1dT2, (3.1.7)

Although the integrand contains 1− 2K(t1, T1), a simpler version will be considered:

Y (t1, t2) =

∫ ∞
0

∫ ∞
0

K(t1, T1)F (T1, T2)K(t2, T2)dT1dT2, (3.1.8)
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Equation (3.1.7) can be solved in the same manner as (3.1.8). However, there needs

to be a separate one-dimensional analysis on the marginal Y =
∫∞

0
F (T2)K(t2, T2) dT2.

In general, this requires an additional control experiment with a sufficiently large t1

value, in which K(t1, T1) ≈ 0 and data is sampled from the marginal distribution.

In matrix form, upon discretizing in t1 and t2, equation (3.1.8) becomes

Y (t1,i, t2,j) =
∑
n

∑
m

K(t1,i, T1,m)F (T1,m, T2,n)K(t2,j, T2,n), (3.1.9)

or

Y = K1FKT
2 . (3.1.10)

Note that the discretizations in T1 and T2 are usually different experimentally so that

K1 6= K2 in general. The matrix components are given by

Yij = Y (t1,i, t2,j), (3.1.11)

(K1)ij = K(t1,i, T1,j)∆T1,j, (3.1.12)

(K2)ij = K(t2,i, T2,j)∆T2,j, (3.1.13)

Fmn = F (T1,m, T2,n). (3.1.14)

The relaxation times T1 and T2 distinguish different tissue types. The goal is to infer

F (T1, T2) from measurements Y (t1, t2).

3.1.4 Ill-posedness of Inverse Laplace Transform

The inverse Laplace transform often arises in exponential analysis to deal with

signals related to decaying functions of time y(t). When the decay is described by a

continuous distribution (spectral function) x(ξ), the problem can be formulated as a

Fredholm equation of the first kind:

y(t) =

∫ ∞
0

K0(t, ξ)x(ξ)dξ. (3.1.15)

where K0(t, ξ) = e−ξt. In special cases when the spectral function is a sum of delta

functions

x(ξ) =
n∑
i=1

αiδ(ξ − ξi), (3.1.16)
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the problem (3.1.15) reduces to multi-exponential analysis,

y(t) =
n∑
i=1

αie
−ξit. (3.1.17)

which will be discussed in Chapter 4.

In theory, one can solve the ILT problems via the inversion formula:

x(ξ) =
1

2πi

∫ c+i∞

c−i∞
y(t)eξtdt, (3.1.18)

where c lies to the right of all the poles of y(t) in the complex plane. This inversion is

feasible only if y(t) is given analytically. In practice, however, signals are only measured

in real time (not complex), and hence the Bromwich integral (3.1.18) in the complex

plane cannot be computed from experimental data. For this reason, the ILT must be

solved from the integral equation (3.1.15), which is known to be ill posed.

The ill-posedness of ILT can also be explained in terms of eigenfunctions of the

integral equation (3.1.15). Suppose that φ±ω (ξ) are two sets of orthogonal eigenfunc-

tions corresponding to eigenvalues λ±ω , where the plus (minus) sign stands for positive

(negative) eigenvalues, i.e. ∫ ∞
0

K0(t, ξ)φ±ω (ξ)dξ = λ±ωφ
±
ω (t). (3.1.19)

which is introduced in [72]. Both data signal y and spectral function x can be expanded

in these eigenfunctions as

x(ξ) =

∫ ∞
0

x+
ωφ

+
ω (ξ)dω +

∫ ∞
0

x−ωφ
−
ω (ξ)dω. (3.1.20)

Substituting (3.1.20) into (3.1.15), the data can be expressed as

y(t) =

∫ ∞
0

x+
ωλ

+
ωφ

+
ω (ξ)dω +

∫ ∞
0

x−ωλ
−
ωφ
−
ω (ξ)dω. (3.1.21)

where the coefficients are given by orthogonality:

x±ω =
1

λ±ω

∫ ∞
0

y(t)φ±ω (t)dt, (3.1.22)
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and therefore one can represent the spectral function as

x(ξ) =

∫ ∞
0

dω φ+
ω (ξ)

1

λ+
ω

∫ ∞
0

dt y(t)φ+
ω (t)+

∫ ∞
0

dω φ−ω (ξ)
1

λ−ω

∫ ∞
0

dt y(t)φ−ω (t). (3.1.23)

It can been shown that the eigenvalues λ±ω decrease very rapidly to zero as ω →∞, so

that the accuracy of coefficients x±ω in (3.1.22) become extremely susceptible to noise in

y(t). As a consequence, one can never obtain the exact solution to (3.1.15) in practice,

and the integral limits of ω in (3.1.23) must be truncated to [0, ωmax] for a certain

threshold ωmax in order to avoid larger errors.

Fortunately, in many real experiments, one can take advantage of a priori infor-

mation about the function x(ξ) to extract more meaningful solutions from all possible

candidates. This is known as regularization of the inverse problem. A general problem

setting is that we have two functionals A and B, where A measures the agreement

between data and solution, and B is concerned with the smoothness or stability of the

solution with possible prior information taken into account. If only A is minimized,

the solution agrees with the data to high accuracy, but it is prone to be unstable and

physically unrealistic. For a rudimentary example, one can fit a high-order polynomial

to noisy data, achieving 100% accuracy and minimizing the discrepancy from solution

to data, while the data could just be generated from an underlying linear function. On

the other hand, minimizing B alone yields a solution that is smooth, stable, or consis-

tent with the prior information, but is unrelated to the measured data. For instance,

if one believes the solution is nearly linear, then B may be chosen as a integral of the

norm of second derivative.

Most inverse problem methods involve a trade-off between the optimization of

A and B:

min A+ µB (3.1.24)

for some regularization parameter µ ∈ (0,∞), and the selection of “best” value of µ

may be based on some criterion or be entirely subjective. This regularization parameter

makes a compromise between a priori expectation in B with a posteriori knowledge in
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A [86]. Inverse problems can be solved by different choices of A,B and µ. We shall

discuss some possible regularization methods in the following context.

3.1.5 Regularization Methods

We now discuss regularization methods in a discrete setting, and define t =

{t1, . . . , tm} and ξ = {ξ1, . . . , ξn}. The Laplace kernel K0(t, ξ) is represented in the

matrix form K such that Kij = K0(ti, ξj). Without regularization, the goal is to solve

min
x
‖Kx− y‖2, (3.1.25)

where x and y are the discretized solution vector and data vector, respectively. Suppose

the (real) singular value decomposition (SVD) of K is given by

K = UΣVT (3.1.26)

where U = [u1, . . . ,un] and V = [v1, . . . ,vn] are orthogonal matrices, and Σ =

diag[σ1, . . . , σn] with singular values σ1 ≥ σ2 ≥ · · ·σn ≥ 0. Then the least squares

solution is given by the Moore-Penrose pseudo-inverse [83] formula

xLS = (KTK)−1KTy =
n∑
i=1

〈ui,y〉
σi

vi. (3.1.27)

Unfortunately, similar to (3.1.23), the least squares solution is problematic in practice

because the errors are significantly amplified when singular values become too small.

A necessary condition for obtaining good regularized solutions is to satisfy the discrete

Picard condition [46], i.e. the Fourier coefficient 〈ui,y〉 must on average decay to zero

faster than the generalized singular values.

A regularization method imposes a filtering factor {ri} in order to damp the

effect from division by small singular values in its SVD expansion,

xreg =
n∑
i=1

ri
〈ui,y〉
σi

vi, (3.1.28)

where we assume 0 ≤ ri ≤ 1 for damping purposes. From this perspective, a large

class of regularization methods differ in their filtering factors. Nevertheless, there are

also other regularization methods that cannot be described by filtering factors.
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Tikhonov regularization

Tikhonov regularization [85, 101] is one of the most popular regularization meth-

ods for solving inverse problems. This method searches for an approximate solution

that solves the following optimization problem as in integral equation (3.1.15):

min

∥∥∥∥∫ ∞
0

K0(t, σ)x(σ)dσ − y(t)

∥∥∥∥+ µB[x(σ)], (3.1.29)

where B is the smoothing functional containing a priori information (or subjective

conjecture), and µ ≥ 0 is the regularization parameter. In the discrete case, the

objective is usually in the following form:

min
x
‖Kx− y‖2

2 + µ‖x‖2
2. (3.1.30)

A useful method for choosing µ is called the “L-curve” introduced in [47]. With an

appropriate choice, (3.1.30) could be solved by many optimization techniques [35] such

as gradient descent, quasi-Newton, Nelder-Mead, differential evolution [98], etc. It can

be shown that the solution to (3.1.30) is given by normal equation

xreg = (KTK + µI)−1KTy =
n∑
i=1

ri
〈ui,y〉
σi

vi, (3.1.31)

with filtering factor

ri =
σ2
i

σ2
i + µ

. (3.1.32)

Given a fixed µ, it is clear that the filtering factors for larger singular values are closer

to 1, while the ones corresponding to smaller singular values are close to 0, which

diminishes the noise amplification effect.

Truncated SVD (TSVD)

The TSVD method [45] is simply obtained by truncating least squares solu-

tion (3.1.27) as singular values decrease to some threshold σmin. The solution is given

by (3.1.28) with filtering factor

ri =

1, for σi ≥ σmin

0, for σi < σmin

(3.1.33)
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and the 1-norm of the residual is minimized in this method. The challenge in this

method is where to truncate the series.

Lasso

Lasso [100], short for “least absolute shrinkage and selection operator”, is a pop-

ular modern regularization method that uses the 1-norm as the smoothing functional

compared to the Tikhonov regularization. Its objective function is

min
x
‖Kx− y‖2

2 + µ‖x‖1. (3.1.34)

Because of the nature of the 1-norm constraint, the Lasso method produces a sparse

solution vector x and gives easily interpretable models. It exhibits the interpretability

property of subset selection techniques and stability like Tikhonov regularization. The

Lasso method essentially finds the first point where the contours of residual hit the

constraint region defined by the 1-norm, which are rhomboids in multi-dimensional

space. If the intersection is at a corner, then one estimated parameter becomes zero,

hence producing sparsity in the solution.

Furthermore, another method called elastic net [109] is an extension to both

Lasso and Tikhonov regularization, which outperforms Lasso when the number of pre-

dictors (n) is much larger than the number of observations (m). However, the choices

of two tuning parameters would be challenging.

3.2 Regularization in 2D NMR Relaxometry

In this section, regularization methods are applied to NMR relaxation problems.

First, we discuss the simple one-dimensional case in which we want to solve Kf = y.

In order to obtain the spin-spin time distribution f(T2), a direct method such as L2

Tikhonov regularization can be used. The residual to be minimized is

r(f) = (y −Kf)T (y −Kf) + µfTf (3.2.1)

and the Tikhonov regularization solution is given by solving dr/df = 0 in (3.2.1):

f = (KTK + µI)−1KTy, (3.2.2)
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where µ is the regularization parameter, and I is the identity matrix. In fact, [17] points

out that extension to two-dimensional relaxometry framework followed by projection

onto the T2 axis would yield more stable results than direct inference in one dimension.

3.2.1 One-Parameter Regularization

In two dimensions, one can also use the Tikhonov regularization with only one

tuning parameter µ to solve for F in (3.1.10). The problem setup is the following:

min
F
‖K1FKT

2 −Y‖2
F + µ‖F‖2

F , (3.2.3)

with Frobenius norms. First, the vectorization of a matrix Xm×n is defined as stacking

the columns of that matrix:

vec(X) =


X1

X2

...

Xn


(mn)×1

, (3.2.4)

where Xi is the i-th column of the matrix X. When implementing the minimization

problems numerically, it is always convenient to convert matrices to vectors instead.

This involves the Kronecker product in the following relation:

vec(ABCT ) = (C⊗A)vec(B). (3.2.5)

With vectorization, an equivalent problem to (3.2.3) is

min
F
‖(K2 ⊗K1)vec(F)− vec(Y)‖2

2 + µ‖vec(F)‖2
2 (3.2.6)

with 2-norms, or combining two terms together:

min
F

∥∥∥∥∥∥
 K2 ⊗K1

µI

 vec(F)−

 vec(Y)

0

∥∥∥∥∥∥
2

2

. (3.2.7)
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SVD structure of one-parameter regularization

Now we shall analyze this optimization problem in its SVD form1. Define the

dimensions for the discretized 2D NMR problem as following:

K1 ∈ RN1×M1 ,K2 ∈ RN2×M2 ,F ∈ RM1×M2 ,Y ∈ RN1×N2 ,

y = vec(Y), f = vec(F), I = identity of size M1M2 ×M1M2.

The reduced SVD for Ki is defined as

Ki = UiΣiV
T
i , i = 1, 2, (3.2.8)

where Ui ∈ RNi×Mi ,Σi ∈ RMi×Mi and Vi ∈ RMi×Mi . By the properties of the Kro-

necker product [103], we have

K2 ⊗K1 = (U2Σ2V
T
2 )⊗ (U1Σ1V

T
1 ) = (U2 ⊗U1)(Σ2 ⊗Σ1)(V2 ⊗V1)T . (3.2.9)

Suppose that Σ1 and Σ2 are given as

Σ1 =


σ1,1

σ1,2

. . .

σ1,M1

 , Σ2 =


σ2,1

σ2,2

. . .

σ2,M2

 , (3.2.10)

then the singular values of K2 ⊗K1 are all pairwise products of singular values of K1

and K2. Define

Ũ = U2 ⊗U1, K̃ = K2 ⊗K1, Ṽ = V2 ⊗V1, (3.2.11)

with the singular values of K̃ sorted in descending order σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃M1M2 ≥ 0.

The columns of Ũ = [ũ1, . . . , ũM1M2 ] and Ṽ = [ṽ1, . . . , ṽM1M2 ] are also rearranged

accordingly. From (3.1.31), the solution of (3.2.6) can be written as

fµ =

M1M2∑
i=1

r̃i
〈ũi,y〉
σ̃i

ṽi, (3.2.12)

1 This calculation follows from the one presented in the following unpublished article
by Hasan Celik, Ariel Hafftka, Wojtec Czaja, Richard G. Spencer. “Singular Value
Decomposition Analysis of the Stabilization of the Inverse Laplace Transform of Mul-
tiexponential Decays through Extension into a Second Dimension”.
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with filtering factor

r̃i =
σ̃2
i

σ̃2
i + µ

. (3.2.13)

3.2.2 Two-Parameter Regularization

One parameter regularization is simple and fast in reconstructing the underlying

distribution, but it only does so by minimizing the 2-norm of residual. In cases that

the distribution F (T1, T2) is anisotropic with specific directions, one parameter alone

may not be enough to recover this information. This motivates our investigation into

two-parameter regularization below. Without pretending to be too rigorous, one can

try to apply pseudo-inverses on both sides of (3.1.10) to obtain

F = (KT
1 K1 + µ1I1)−1KT

1 YK2(KT
2 K2 + µ2I2)−1. (3.2.14)

This equation has, in general, two regularization parameters µ1 and µ2 which could be

different since the kernels K1 and K2 don’t have to be the same.

To show this, we start with equation K1FKT
2 = Y as in (3.1.10) and introduce

the new variable

X = FKT
2 . (3.2.15)

Then Tikhonov regularization of equation K1X = Y is given by

min
X
‖K1X−Y‖2

F + µ2‖X‖2
F , (3.2.16)

or

(KT
1 K1 + µ1I1)X = KT

1 Y. (3.2.17)

The equivalence between (3.2.16) and (3.2.17) is demonstrated in Lemma 3.1. Min-

imizing (3.2.16) or solving (3.2.17) yields X. This matrix is then used to solve the

regularized version of (3.2.15) for F:

min
F
‖FKT

2 −X‖2
F + µ1‖F‖2

F , (3.2.18)

or

F(KT
2 K2 + µ2I2) = XK2. (3.2.19)
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The procedure to find the regularized F involves first minimizing (3.2.16), then (3.2.18).

It’s clear that this process is equivalent to (3.2.14) because (3.2.17) implies

(KT
1 K1 + µ1I1)XK2 = KT

1 YK2 (3.2.20)

or

(KT
1 K1 + µ1I)F(KT

2 K2 + µ2I) = KT
1 YK2, (3.2.21)

using (3.2.19). We then recover (3.2.14) by taking inverses on both sides.

Lemma 3.1 (Normal equation). The least squares problem with Frobenius norm

arg min
X

‖MX−B‖2
F + µ‖X‖2

F (3.2.22)

is equivalent to the normal equation

(MTM + µI)X = MTB, (3.2.23)

where M,X,B are all matrices, I is the identity matrix, and µ is the regularization

parameter.

Proof. Vectorizing (3.2.22), we get

arg min
X

‖(I⊗M)vec(X)− vec(B)‖2
2 + µ‖vec(X)‖2

2. (3.2.24)

Let x = vec(X) and b = vec(B). Next, we take the derivative with respect to x and

set it to zero:

0 = xT (I⊗M)T (I⊗M)x− 2((I⊗M)x)Tb+ bTb+ µxTx (3.2.25)

so that

[(I⊗M)T (I⊗M) + µI′]x = (I⊗M)Tb. (3.2.26)

Notice that the sizes of identity matrices I and I′ are different. Since

(I⊗M)T (I⊗M) = diag(MT · · ·MT ) diag(M · · ·M) = I⊗ (MTM), (3.2.27)

we can “unvectorize” (3.2.26) to get

(MTM + µI′)X = MTB. (3.2.28)
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SVD structure of two-parameter regularization

Again, we analyze this optimization problem in its SVD form. Recall the di-

mensions for the discretized 2D NMR problem are

K1 ∈ RN1×M1 ,K2 ∈ RN2×M2 ,F ∈ RM1×M2 ,Y ∈ RN1×N2 ,X ∈ RM1×N2 ,

y = vec(Y), f = vec(F), x = vec(X),

I1 = identity of size N2 ×N2, I2 = identity of size M1 ×M1.

The reduced SVD for Ki is already defined in (3.2.8). The two-parameter regularization

consists of two separate steps

(1) K1X = Y ⇒ (I1 ⊗K1)x = y, (3.2.29)

(2) FKT
2 = X⇒ (K2 ⊗ I2)f = x. (3.2.30)

Step (1)

The first step is to optimize the following

arg min
x
‖(I1 ⊗K1)x− y‖2

2 + µ1‖x‖2
2, (3.2.31)

with the regularization parameter µ1, and the solution can be written

x†µ1 =

M1N2∑
k=1

σ
(1)
k(

σ
(1)
k

)2

+ µ1

〈w(1)
k ,y〉z(1)

k , (3.2.32)

where w
(1)
k is the k-th column of I1 ⊗U1, z

(1)
k is the k-th column of I1 ⊗V1, {σ(1)

k }

are the singular values of I1 ⊗ K1, and U1 is defined in (3.2.8). If we denote U1 =[
u

(1)
1 , . . . ,u

(1)
M1

]
, then

I1 ⊗U1 =



U1

U1

U1

. . .

U1


(3.2.33)
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with

w
(1)
k =



0
...

0

u
(1)
k%N1

0
...

0


, (3.2.34)

where % is the modulo operator. The first and last indices of u
(1)
k%N1

in w
(1)
k are

bk/M1cN1 + 1 and dk/M1eN1, respectively. The vector z
(1)
k follows the same pattern

as w
(1)
k .

Step (2)

In the second step, we use the result of x†µ1 computed from the previous step to

optimize

arg min
f
‖(K2 ⊗ I2)f − x‖2

2 + µ2‖f‖2
2, (3.2.35)

with the solution

f †µ2 =

M1M2∑
k=1

σ
(2)
k

(σ
(2)
k )2 + µ2

〈w(2)
k ,x†µ1〉z

(2)
k , (3.2.36)

where w
(2)
k is the k-th column of U2⊗ I2, z

(2)
k is the k-th column of V2⊗ I2, and {σ(2)

k }

are the singular values of K2 ⊗ I2. If we denote U2 =
[
u

(2)
1 , . . . ,u

(2)
M2

]
, then

U2 ⊗ I2 =



u
(2)
1,1I2 u

(2)
2,1I2 · · · u

(2)
M2,1

I2

u
(2)
1,2I2 u

(2)
2,2I2 · · · u

(2)
M2,2

I2

...
...

. . .
...

u
(2)
1,N2

I2 u
(2)
2,N2

I2 · · · u
(2)
M2,N2

I2


(3.2.37)
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with

w
(2)
k =



0
...

u
(2)
dk/M1e,1
...

0

...

...

0
...

u
(2)
dk/M1e,N2

...

0



. (3.2.38)

The nonzero elements in the wk are all elements of the vector u
(2)
dk/M1e, and they are

in the (k%M1)-th diagonal position in each small block. The right vector z
(2)
k has a

similar pattern.

Result of two steps

Substituting the result of (3.2.32) into (3.2.36), we get the following formula for

the two-parameter regularization:

f †µ1,µ2 =

M1M2∑
k=1

M1N2∑
j=1

 σ
(2)
k(

σ
(2)
k

)2

+ µ2


 σ

(1)
j(

σ
(1)
j

)2

+ µ1

 〈y,w(1)
j 〉〈z

(1)
j ,w

(2)
k 〉z

(2)
k .

(3.2.39)
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We further explore the structures of Σ1 and Σ2 in (3.2.8) such that

I1 ⊗Σ1 =


Σ1

Σ1

. . .

Σ1

 , Σ2 ⊗ I2 =


σ2,1I2

σ2,2I2

. . .

σ2,M2I2


(3.2.40)

This leads to the following mappings:

σ
(1)
j = σ1,(j−1)%M1+1 (3.2.41)

σ
(2)
k = σ2,dk/M1e (3.2.42)

Alternatively, we may rewrite the two parameter regularization formula (3.2.39) as

f †µ1,µ2 =

M1M2∑
k=1

M1N2∑
j=1

(
σ2,dk/M1e

σ2
2,dk/M1e + µ2

)(
σ1,(j−1)%M1+1

σ2
1,(j−1)%M1+1 + µ1

)
〈y,w(1)

j 〉〈z
(1)
j ,w

(2)
k 〉z

(2)
k .

(3.2.43)

In practice, y will be noisy; all other quantities such as σ1,i, σ2,j,w
(1)
j ,w

(2)
k , z

(1)
j and

z
(2)
k come from SVD decompositions of the exact kernels.

3.2.3 Numerical Results

In this section, we demonstrate some numerical results for one and two-dimensional

NMR relaxometry problems.

1D NMR

The 1D Picard coefficients with one parameter are the unregularized coefficents

of the vector vi in series expansion (3.1.27), given by

1D Picard coefficients =
〈ui,y〉
σi

. (3.2.44)

By examining the Picard coefficient, we can see how fast the solution blows up with

error in the data.

We first graph the Picard coefficients of one-dimensional NMR problem for

different levels of signal-to-noise ratio (SNR) in Figure 3.4. Without regularization,
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Figure 3.4: Picard plots for one-dimensional NMR. The Picard coeffients are plotted against
the percentage of series taken in expansion (3.1.27) for different levels of SNR. Lines with
same color has same SNR. Solid line: without regularization. Dashed line: with regularization
parameter µ = 0.001.

it is clear that the Picard coefficient blows up quickly when the noise is present, and

the effective percentage of series that can be used to approximate solution is only a

few percent. On the contrary, when a single parameter is used as a filter, the Picard

coefficients stay small and thus the noise is controlled.

2D NMR

In 2D problems, we compare the one-parameter and two-parameter regulariza-

tion results. The 2D 1-parameter Picard coefficients are the unregularized coefficients
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in (3.2.12):

2D 1-parameter Picard coefficients =
〈ũi,y〉
σ̃i

. (3.2.45)

The 2D 2-parameter Picard coefficients are the unregularized coefficients in (3.2.39):

2D 2-parameter Picard coefficients =
〈y,w(1)

j 〉〈z
(1)
j ,w

(2)
k 〉

σ
(2)
k σ

(1)
j

. (3.2.46)

The SVD analysis for the two-dimensional NMR problem is shown in Figures 3.5

and 3.6. We graph the Picard coefficients with or without regularization subject to

SNR = 1×103. One-parameter regularization (3.2.12) is compared with two-parameter

regularization (3.2.39). For the one-parameter regularization, the singular values {σ̃i}

are pairwise products of singular values of K1 and K2, whose size is M1M2. In Fig-

ure 3.5, the series (3.2.12) has been sorted in decreasing order of the singular values σ̃i.

On the other hand, the singular values {σ(2)
k σ

(1)
j } are also calculated as the pairwise

products of singular values of K1 and K2. However, duplicates exists in these singu-

lar values, due to the Kronecker products with identity matrices. In Figure 3.6, the

series (3.2.39) is also sorted according to decreasing order of singular values.

In both graphs, the regularized Picard coefficients are bounded for all terms

taken in the series, while the unregularized coefficients grow exponentially with more

terms in the series. In addition, while the two-parameter regularization SVD formula

provides more flexibility over the parameter choices, it results in an explosion in the

number of terms in the expansion and a much more oscillatory result compared to the

one-parameter method. The duplicates in two-parameter series expansion accounts

for the oscillation in the result: the terms with the same singular value are grouped

together in one chunk, but the sorting within this chunk is not specified. The behaviors

of both methods are similar given the same percentage of series used, and it clearly

shows that two-parameter regularization is not as good as one-parameter regularization.

In view of simplicity and efficiency, we choose one-parameter Tikhonov regularization

for inference in the two-dimensional problem.

Futhermore, we show some numerical results for the reconstruction of the two-

dimensional distribution F (T1, T2) in Figures 3.7, 3.8, 3.9. They are similar to the
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Figure 3.5: Picard plot for two-dimensional NMR with one-parameter regularization. The
Picard coeffients in (3.2.45) are plotted against the percentage of series taken in expan-
sion (3.2.12) for SNR = 1 × 103. Solid blue line: without regularization. Dashed red line:
with one regularization parameter µ = 1× 10−2.
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Figure 3.6: Picard plot for two-dimensional NMR with two-parameter regularization. The
Picard coeffients in (3.2.46) are plotted against the percentage of series taken in expan-
sion (3.2.39) for SNR = 1 × 103. Solid blue line: without regularization. Dashed red line:
with two regularization parameters µ1 = 1× 10−2 and µ2 = 8× 10−3.
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plots given in [17]. The graph on the left is the input peak representing the underlying

distribution F (T1, T2). The simulated data Y (t1, t2), an exponential surface, is then

generated by sampling from this distribution according to (3.1.8). With the simulated

data, we attempted to reconstruct the original distribution F (T1, T2) with both one-

parameter and two-parameter Tikhonov regularization methods.

Our main interest is in peak locations, because this information indicates the

type of tissue from magnetic imaging. On the contrary, two parameters regularization

method as described in Section (3.2.2) cannot resolve the two peaks. The regulariza-

tion parameter for the one-parameter method can be chosen by the L-curve method

[47] mentioned earlier. For the two-parameter method, we have tried many different

regularization parameters similar to the value used in the one-parameter regulariza-

tion, it either results in merged peaks or scattered points. Furthermore, one-parameter

regularization scheme is much faster than the two-parameter scheme.

From physical perspective, the peaks must have positive magnitudes. As a

result, this reconstruction procedure is restricted by the nonnegative nonlinear least

squares (NNLS) method, which is implemented via the KKT condition [64]. This is a

very important constraint, without which the method produces much poorer results.

Aside from this, one should also note that the SVD analysis in the previous section

does not account for the positivity constraint.

3.3 Directional Total Variation Regularization

We now introduce another type of regularization by using the directional total

variation (DTV) as the smoothing functional in (3.1.24). Total variation (TV) is a

measure of the variation in an image [18] that is often used for denoising in images

[105, 5]. In anisotropic images with a dominant direction, the DTV can be used to

obtain higher quality denoised images [4, 59]. The DTV for a function u = u(x, y) with

bounded variation in the domain Ω is defined as

DTVa,θ(u) =

∫∫
Ω

√
(Dθu)2 + (aDθ⊥u)2 dxdy (3.3.1)
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Figure 3.7: Reconstruction of two-dimensional NMR distribution. The horizontal axis is
the spin-spin time, and the vertical axis is the spin-lattice time. (a) Left: The MR signal is
generated by this underlying distribution F (T1, T2) with two major peaks of the same shape.
(b) Middle: One-parameter Tikhonov regularization is used to reconstruct the distribution,
with regularization parameter µ = 2 × 10−4. This method accurately recovers the original
distribution, especially the positions of peaks, which are used to determine the type of tissue
under imaging. (c) Right: Two-parameter Tikhonov regularization is used, with similar
regularization parameters µ1 = 1× 10−4 and µ2 = 5× 10−4. Two peaks cannot be resolved
from this method.
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Figure 3.8: Reconstruction of two-dimensional NMR distribution. (a) Left: The MR signal
is generated by this underlying distribution F (T1, T2) with two major peaks, with different
covariances and orientations. (b) Middle: One-parameter Tikhonov regularization with reg-
ularization parameter µ = 1.5 × 10−4. (c) Right: Two-parameter Tikhonov regularization
with regularization parameters µ1 = 1 × 10−4 and µ2 = 2 × 10−4. Two peaks cannot be
resolved from this method.

where Dθu denotes the directional derivative of u in the direction with unit vector

(cos θ, sin θ), and θ⊥ = θ + π/2. As specified in [59], we focus on the ellipse Ea,θ(0)

(a < 1) whose major axis is in the direction (cos θ, sin θ) with length 2, and minor

axis in the direction (− sin θ, cos θ) with length 2a. In addition, the Laplace transform

operator is defined as

(K̃F )(p, q) =

∫∫
Ω

e−pxF (x, y)e−qydxdy. (3.3.2)

Note that this is the traditional definition of two-dimensional Laplace transform, dif-

ferent from the NMR conventional form in (3.1.8). In order to relate these two different

Laplace transforms, we introduce αi = 1/Ti for i = 1, 2, then the NMR data in (3.1.8)

can be written as

Y (t1, t2) =

∫ ∞
0

∫ ∞
0

e−α1t1f(α1, α2)e−α2t2dα1dα2, (3.3.3)

where

f(α1, α2) =
F (α−1

1 , α−1
2 )

α2
1α

2
2

. (3.3.4)
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Figure 3.9: Reconstruction of two-dimensional NMR distribution. (a) Left: The MR signal
is generated by this underlying distribution F (T1, T2) with three major peaks, with different
covariances and orientations. (b) Middle: One-parameter Tikhonov regularization with reg-
ularization parameter µ = 1.5 × 10−4. (c) Right: Two-parameter Tikhonov regularization
with regularization parameters µ1 = 1 × 10−4 and µ2 = 2 × 10−4. Two peaks cannot be
resolved from this method.
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With the above definition, we define the new regularized objective function as

I(f) =
1

2

∫∫
Ω

(K̃f − Y )2dt1dt2 + λDTVa,θ(f), (3.3.5)

where Ω = [0,∞) × [0,∞), K̃ is the two-dimensional Laplace transform operator, Y

is the input data, λ is the regularization parameter. In addition, a, θ can be chosen

according to prior information. For instance, we may be able to assess the anisotropy

and degree of anisotropy of the distribution f . This is essentially different from the

optimization problem in the Bayram paper [4] in two ways. First, the identity kernel

is used by Bayram whereas the Laplace kernel is used here. On the other hand,

the ultimate goal for Bayram is image denoising in which both input and output are

images. However, in our proposed DTV scheme here, we try to recover the underlying

distribution for relaxation times/rates given measured data on the exponential surface

Y (t1, t2).

Furthermore, define the integrand in (3.3.1) as Ha,θ(u) =
√

(Dθu)2 + (aDθ⊥u)2,

then by definition of the directional derivative,

Ha,θ(u) =
√

(cos2 θ + a2 sin2 θ)u2
x + 2(1− a2) cos θ sin θ uxuy + (a2 cos2 θ + sin2 θ)u2

y.

(3.3.6)

The integrals in (3.3.5) can be combined as

I(f) =

∫∫
Ω

L(f, fα1 , fα2) dα1dα2 (3.3.7)

where

L(f, fα1 , fα2) =
1

2
(K̃f − Y )2 + λHa,θ(f). (3.3.8)

Then the minimum of I(f) is the solution to the Euler-Lagrange equation

∂L

∂f
− ∂

∂α1

(
∂L

∂fα1

)
− ∂

∂α2

(
∂L

∂fα2

)
= 0, (3.3.9)

or

(K̃∗K̃f − K̃∗Y )− λ
{

∂

∂α1

(cos2 θ + a2 sin2 θ)fα1 + (1− a2) cos θ sin θ fα2

Ha,θ(f)

+
∂

∂α2

(a2 cos2 θ + sin2 θ)fα2 + (1− a2) cos θ sin θ fα1

Ha,θ(f)

}
= 0.

(3.3.10)
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Since the Laplace transform operator is self-adjoint, the first two terms in (3.3.10) can

be expressed as

(K∗Y )(α1, α2) =

∫∫
Ω

e−α1t1Y (t1, t2)e−α2t2dt1dt2, (3.3.11)

(K∗Kf)(α1, α2) =

∫∫
Ω

f(α̂1, α̂2)

(α1 + α̂1)(α2 + α̂2)
dα̂1dα̂2. (3.3.12)

The solution to the Euler-Lagrange equation (3.3.10) is found from gradient descent,

implemented through a diffusion equation [93],

∂f

∂t
=
∂L

∂f
− ∂

∂α1

(
∂L

∂fα1

)
− ∂

∂α2

(
∂L

∂fα2

)
, for t > 0, α1, α2 ∈ Ω,

f(α1, α2, 0) is given at t = 0,

∂f

∂n
= 0 on ∂Ω, where n is the outward normal vector.

(3.3.13)

As t increases, the solution f will stabilize and become the minimum of the objective

I(f) in (3.3.5).

We implemented this algorithm with various regularization parameters and nu-

merical schemes. Unfortunately, the numerical results are not satisfactory and do

not recover the original distribution F (T1, T2). One possible problem is the nonlin-

ear diffusion terms make the CFL condition more complicated. By adding another

regularization parameter β in the denominators of (3.3.10), we can reduce the effect

of the nonlinear diffusion and avoid dividing by zero on the boundaries. When β is

small, nonlinear effects dominates and solution shows random block structures as those

related to total variation [93], but the blocks are not at the correct locations. On the

other hand, when β is large enough, the problem stabilizes as it becomes more like

a normal diffusion problem, in which solution flattens and no particular peak is dis-

played. For this reason, we don’t show any result in this section, but it’s still worth

the future work on this method.

3.4 Summary

In summary, we have discussed the reconstruction problems in NMR and MRI.

Given measurements of the experiments, we aim to recover the underlying distribution
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for relaxation times. These problems are ill-conditioned because of the inverse Laplace

transform, and we compared the one-parameter and the two-parameter Tikhonov reg-

ularization methods in order to resolve the ill-posedness of reconstruction. We showed

that the one-parameter regularization method is easy to use and interpret, and it

resulted in accurate reconstruction of original distributions. On the contrary, the two-

parameter regularization method yields more unstable result due to larger matrices

sizes, and the difficult choices for parameters, so that it is even more susceptible to

noise in the data.

We also proposed the method with DTV as regularizer to the NMR problems, in

which formulations are given but numerical results have not been given. Both the two-

parameter Tikhonov regularization and the DTV method use two tuning paramters,

which provides more flexibility to the problem. It has the potential to reconstruct

distributions which are highly anisotropic, and we hope to further investigate this in

the future.
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Chapter 4

ESTIMATION OF PARAMETERS IN EXPONENTIAL FITTING
PROBLEMS

A common problem that arose in the Birth-Death Process (BDP) and Nuclear

Magnetic Resonance (NMR) problems is exponential fitting. In the BDP, we were

trying to find the best parameters in the c.d.f. of extinction times (2.2.19), which

is a sum of exponential functions. The NMR problems, on the other hand, aim at

recovering the underlying distribution of relaxation times in (3.1.15). It reduces to the

same exponential fitting problem as in the BDP if the spectral function x(ξ) in (3.1.15)

is simply a sum of delta functions. In fact, exponential fitting is used in describing

many physical phenomena that can be described through differential equations, such as

radioactive decay, spin relaxometry, and chemical reaction kinetics. With real datasets,

these problems amount to recovering the decay constants and coefficients of exponential

functions for the underlying process. This problem is challenging since inferring the

exponents leads to a nonlinear least squares problem, and is potentially ill-conditioned.

In view of this, we study exponential fitting in more detail in this chapter. Some classic

methods of exponential fitting are introduced first. We then propose the moment

constraint method for two-term exponential fitting in Section 4.3.2, which utilizes the

moments of data points on top of the modified Prony method. The moment constraint

method overcomes some of the difficulties that other methods may have, and it yields

more stable results. The chapter ends with some numerical examples and special

application to four-term exponential fitting problems.
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4.1 Some Classic Methods for Exponential Fitting

Many researchers [54, 50, 84, 49] have investigated a variety of exponential fitting

methods, and we discuss some of them in this chapter. Some of these classic methods

are the basis of our new approach. Formally, a general exponential fitting problem

with p terms estimates parameters ω = (ω1, . . . , ωp) and α = (α1, . . . , αp) from n noisy

measurements y at regular times tk = k × δt for,

yk = y(tk) = εk +

p∑
j=1

αje
ωj(δt)k, for k = 1, . . . , n, (4.1.1)

where εi is the noise in each measurement. In general, the parameters ω and α are

complex, but they are real numbers in the BDP and NMR problems discussed in

previous chapters. In the following sections, we demonstrate some popular methods

for exponential fitting problems. In addition, the Variable projection method and the

modified Prony method are already discussed in Section 2.3.

4.1.1 Prony’s Method

Prony’s method, proposed in 1795 [87], is the foundation of many other linear

methods that identify the exponential coefficients using algebraic methods such as

eigenvalue analysis and polynomial root finding. These methods include Prony least

squares method [48], matrix pencil method [53] and Kung’s method [62]. Prony’s

method assumes an autoregressive model of order p in which yk depends linearly on its

previous p data points

yk = −
p∑
j=1

ap−jyk−j, (k > p) (4.1.2)

and in matrix form it can be written as
y1 y2 · · · yp

y2 y3 · · · yp+1

...
...

...

yp yp+1 · · · y2p−1




a0

a1

...

ap−1

 = −


yp+1

yp+2

...

y2p

 , (4.1.3)

or

Ha = −b (4.1.4)
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where H is referred to as a Hankel matrix. Equation (4.1.2) can be expressed in another

way as


yk−p+1

yk−p+2

...

yk

 =



0 1

0 1

. . .
. . .

0 1

−a0 −a1 · · · −ap−2 −ap−1




yk−p

yk−p+1

...

yk−1

 , (4.1.5)

or

bk = Abk−1, (k > p), (4.1.6)

where bk = (yk−p+1, . . . , yk)
T . The matrix A above is a companion matrix [30]. If it

has distinct eigenvalues {λj}, it is diagonalizable A = VΛV−1, and its characteristic

polynomial is given by

c(t) = tp + ap−1t
p−1 + · · ·+ a1t+ a0. (4.1.7)

Then if ep = (0, . . . , 0, 1)T is of size p× 1, we can express yk as

yk = eTp bk = eTp VΛk−pV−1bp =

p∑
j=1

[λ−pj (eTp V)j(V
−1bp)j]︸ ︷︷ ︸

αj

λkj , (4.1.8)

and according to the assumption in (4.1.1), we let

λj = eωjδt ⇒ ωj =
lnλj
δt

. (4.1.9)

Since the coefficients a are given by (4.1.3), the exponentsw can be obtained by finding

the roots of characteristic polynomial (4.1.7) and using relation (4.1.9). Unfortunately,

due to the high sensitivity of polynomial root-finding, Prony’s method yields biased

estimates if noise is present in the data, but the method has been rectified later by

other authors [52, 79]. Algorithm 7 summarizes the steps for Prony’s method.
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Algorithm 7 Prony’s method

Input: y = {y1, . . . , yn} at regular time nodes tk = k × δt.

1: Build the Hankel matrix H and vector b in (4.1.3), and solve a = H−1b.

2: Form the characteristic polynomial c(t) = tp + ap−1t
p−1 + · · ·+ a1t+ a0. Calculate

its roots λj.

3: Calculate the exponents by ωj =
lnλj
δt

.

Output: ω.

4.1.2 Matrix Pencil Method

The matrix pencil method [53] is a subspace-based method that considers the

model

yk = y(tk) =

p∑
j=1

αjz
k
j , (4.1.10)

where a change of variable zkj = eωjk(δt) is used. The Hankel matrix of size (L + 1) ×

(M + 1) is given by

H =


y0 y1 · · · yM

y1 y2 · · · yM+1

...
...

...

yL yL+1 · · · yN−1

 , (4.1.11)

in which N −M = L + 1 is satisfied. A Vandermonde decomposition can be derived

directly from (4.1.10) as

H = ADBT , (4.1.12)

where A, D and B are Vandermonde matrices as the following

A =


1 1 · · · 1

z1 z2 · · · zn
...

...
...

zL1 zL2 · · · zLn

 , D =


α1

α2

. . .

αn

 , B =


1 1 · · · 1

z1 z2 · · · zn
...

...
...

zM1 zM2 · · · zMn



T

.

(4.1.13)
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The matrix A is shift-invariant. If Z = diag(z), then it is easy to show that

A2:L+1,: = A1:L,:Z, (4.1.14)

where A2:L+1,: and A1:L,: are the submatrices of A formed by truncating its first row

and last row, respectively. On the other hand, H has the SVD

H = UΣVT . (4.1.15)

We can see that U and A represent the same subspace with different bases, and

therefore can be connected via a nonsingular matrix G:

U = AG. (4.1.16)

Note that U inherits the shift-invariance from A:

U2:L+1,: = A2:L+1,:G = A1:L,:ZG = U1:L,:G
−1ZG. (4.1.17)

Given the SVD of the Hankel matrix H, we use the pseudo-inverse to compute

G−1ZG = (U1:L,:)
†U2:L+1,:. (4.1.18)

Therefore we obtain the elements in Z by calculating the eigenvalues of its similar

matrix G−1ZG, and thus recovering the exponential coefficients. Similar subspace-

based methods include Kung’s method (also known as HSVD) [62, 3] and HTLS [44].

Algorithm 8 summarizes the steps for the matrix pencil method.

Algorithm 8 Matrix Pencil method

Input: y = {y1, . . . , yn} at regular time nodes tk = k × δt.

1: Singular value decompostion H = UΣVT , where the size of U is (L+ 1)× (M + 1)

2: Obtain U1:L,: by removing the last row of U, and U2:L+1,: by removing the first

row of U

3: Compute {zj} as the eigenvalues of (U1:L,:)
†U2:L+1,:

4: Exponents are given by ωj =
ln zj
δt

Output: ω.
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4.1.3 Recursive Fitting

We now consider the recursive fitting method [34]. This is used in traffic mea-

surements and communication networks that analyze the long-tail distributions, i.e.,

tails that decay more slowly than exponentials. However, it could potentially be used

for exponential fitting as well.

Examples of long-tail distributions include Perato distribution and Weibull dis-

tribution. Given the c.d.f. F (t), its complement (ccdf) is denoted by F c(t) = 1−F (t).

The goal of this method is to fit a mixture of exponentials Hk to the c.d.f of the long-tail

distribution, accurate within a finite interval [t1, t2] for suitably small t1 and suitably

large t2. Suppose the ccdf of the hyperexponential distribution Hk is

Hc
k(t) =

k∑
i=1

αie
−σit, (4.1.19)

with αi ≥ 0 for all i,
∑k

i=1 αi = 1, and 0 < σ1 < . . . < σk. The main idea is to fit these

exponentials to F (t) recursively on different time scales. Starting with the slowest

decaying pair (α1, λ1), if σ2 is much larger than σ1, then the rest of the sum
∑k

i=2 e
−σit

would be negligible compared to e−σ1t on a sufficiently large time scale t. In this case,

we could find the pair (α1, λ1) by single exponential fitting from the data F c(t), without

considering the remaining exponential terms. We then subtract the term α1e
−σ1t from

both F c(t) and Hc
k(t), and choose the second largest time scale to recover the second

pair (α2, λ2). This procedure is recursively applied until all exponents and coefficients

are obtained.

This recursive fitting procedure will work only if σi+1 is significantly larger than

σi for all i. This only applies to ccdf F c(t) which are log-convex, and equivalently, the

p.d.f. f(t) must have decreasing failure rate (DFR) [34]. Furthermore, this method can

also be applied to fit hyperexponential distribution to data directly. However, it has

been shown that the performance is generally better if a simple long-tail distribution

(with only a few parameters) is fit to the data first, and then a hyperexponential distri-

bution is fit to that long-tail distribution from recursive fitting procedure. Algorithm 9

summarizes the steps for the recursive fitting method.
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Algorithm 9 Recursive procedure for fitting a hyperexponential c.d.f. to a given

long-tail c.d.f.

Input: Long-tail distribution F (t), and its complement F c(t). Let F c
1 (t) = F c(t).

1: Choose the number k of exponential components of the hyperexponential distribu-

tion we want to fit.

2: Choose time scales 0 < ck < ck−1 < . . . < c1, with ratios ci/ci+1 sufficiently large

for all i.

3: Find a suitable b such that 1 < b < ci/ci+1 for all i.

4: for i = 1 : k − 1 do

5: Choose a pair (αi, σi) to match the ccdf F c
i (t) at t = xci for x = 1 and b.

6: σi =
1

(b− 1)ci
ln

F c
i (ci)

F c
i (bci)

7: αi = F c
i (ci)e

σici

8: Subtract the fitted term from the current ccdf, F c
i+1(xci) = F c

i (xci)− αie−σixci

for x = 1 and b.

9: i← i+ 1

10: end for

11: αk = 1−
∑k−1

i=1 αi

12: σk =
1

ck
ln(αk/F

c
k (ck))

Output: The hyperexponential c.d.f. Hk(t) = 1−
∑k

i=1 αie
−σit that approximates the

long-tail distribution F (t)

4.2 The Expectation-Maximization Algorithm

In this section, we consider the expectation-maximization (EM) algorithm, which

is an iterative scheme that arises in many probablistic models. The EM algorithm will

be exploited later in our new method as well. Many probablistic models are used in

modeling physical and biological data. However, the available data are often incom-

plete. The EM algorithm is able to estimate the parameters in probablistic models with

incomplete data. It is especially useful in Gaussian mixture models and clustering.
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4.2.1 Coin Flip Example

We start with an illustrative example from [26] that seeks to estimate the prob-

abilities of head for two coins A and B with unknown biases θ = (θA, θB). This means

that coin A will land on heads with probability θA, and similar for coin B.

The following procedure is repeated 12 times: (1) randomly choose one of the

two coins (equally likely); (2) toss the chosen coin ten times independently, and record

the number of heads. If the identity of the coin is known (the coins are marked), then we

simply aggregate the number of heads in all experiments with coin A (B), and compute

a maximum likelihood estimation (MLE) of θA (θB). Now consider a more challenging

problem when the identity of coins are masked during the whole experiment, and the

only quantities known are the number of heads for each independent coin tosses.

In order to estimate the model parameter, the EM algorithm computes the

probabilities for each possible completion of the missing data, i.e., the identities of each

chosen coin, using the current parameter θ(n) after n iterations. These probabilities are

used to create a weighted training set, and maximum likelihood estimation is applied

on the weighted training data that yields the next parameter θ(n+1).

In summary, the EM algorithm alternates between the following two steps iter-

atively until convergence. (1) E-step: Guess a probability distribution over the com-

pletions of missing data, given current parameters; (2) M-step: Reestimate the model

parameters by maximizing the expected log-likelihood over these completions.

We implemented the coin toss problem with the EM algorithm, started with

initial biases θ = (0.6, 0.5). In each iteration, the E-step calculates the probabilities of

coin identities in 12 trials using Bayes’ rule, and assigns weighted heads and tails to

both coins according to the experiment results. In particular, suppose that the current

bias is (θA, θB), and h heads out of 10 tosses have been observed. Then the probability
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that coin A is chosen is given by Bayes’ rule as

pA = P(A|H = h) =
P(H = h|A)/2

P(H = h|A)/2 + P(H = h|B)/2
(4.2.1)

=

(
10
h

)
θhA(1− θA)10−h(

10
h

)
θhA(1− θA)10−h +

(
10
h

)
θhB(1− θB)10−h

=
θhA(1− θA)10−h

θhA(1− θA)10−h + θhB(1− θB)10−h . (4.2.2)

We then accumulate all weighted heads and tails for both coins and use maximum

likelihood to derive the biases of them. Table 4.1 contains both experiments results of

12 repetitions, and model computations of EM algorithm after one iteration.

4.2.2 Formal Definition

We now present a more formal definition of the EM algorithm given by Dempster

[24]. It is an approach to iterative computation of maximum likelihood estimates when

the observations are regarded as incomplete data. Consider two sample spaces X and

Y , and a many-to-one mapping X → Y between them. The observed “incomplete”

data is y ∈ Y , and the associated “complete” data x ∈ X is not observed directly.

More specifically, x only lies in X (y), the subset of X determined by the equation

y = y(x).

There are two types of densities to consider. First we have the complete-

date sampling densities f(x|φ), which depends on parameter φ. Their corresponding

incomplete-date sampling densities are denoted g(y|φ), and are related by

g(y|φ) =

∫
X (y)

f(x|φ) dx. (4.2.3)

Notice that many f(x|φ) could generate the same g(y|φ). The EM algorithm finds a

value φ that maximizes g(y|φ) given the observation y. However, it is actually related

to the complete-data specification f(x|φ). We consider the simplest and most useful

case where the complete-data density f(x|φ) is in the regular exponential family:

f(x|φ) = b(x) exp(φt(x)T )/a(φ), (4.2.4)
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Experimental Results Model Computations

Trial H T pA
Coin A Coin B

H T H T

1 9 1 0.80 7.20 0.80 1.80 0.20
2 4 6 0.35 1.40 2.10 2.60 3.90
3 7 3 0.65 4.55 1.95 2.45 1.05
4 5 5 0.45 2.25 2.25 2.75 2.75
5 8 2 0.73 5.84 1.46 2.16 0.54
6 3 7 0.27 0.81 1.89 2.19 5.11
7 1 9 0.14 0.14 1.26 0.86 7.74
8 4 6 0.35 1.40 2.10 2.60 3.90
9 4 6 0.35 1.40 2.10 2.60 3.90
10 5 5 0.45 2.25 2.25 2.75 2.75
11 9 1 0.80 7.20 0.80 1.80 0.20
12 6 4 0.55 3.30 2.20 2.70 1.80

Subtotal - - - 37.74 21.16 27.26 33.84

θ(1) - - - 0.64 0.45

Table 4.1: Left of bold vertical line: In each trial, one of the two coins A and B is
randomly chosen (and remains anonymous) and tossed ten times in a row. This procedure
is repeated 12 times and number of heads (H) and tails (T) are recorded. Right of bold
vertical line: Result of coin toss experiment after one iteration in EM algorithm, i.e., after
one E-step and one M-step. Coin biases are initially set to θ(0) = (0.6, 0.5). For each trial, we
calculate the probability that the chosen coin is A with Bayes’ rule given current parameter
θ(0), and denoted this probability pA. This probability is then multiplied into the total heads
and tails in that trial, so that we get weighted heads and tails for both coins A and B. At
the end of this iteration, a cumulative count of heads and tails are calculated for both coins,
and MLE is used to get the next parameter θ(1) = (0.64, 0.45). If the EM iterations proceed
until convergence, the final parameter we get is θ(n) = (0.76, 0.39), which is close to the true
biases (0.4, 0.8) up to permutations. It is important to note that the EM does not distinguish
the biases between A and B.
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where φ is a 1× r vector parameter in a convex set Ω, t(x) denotes a 1× r vector of

complete-data sufficient statistics 1 Suppose that φ(p) is the current value of φ after

p iterations, the EM algorithm is presented in Algorithm 10 for exponential family

distributions.

Algorithm 10 Expectation-Maximization algorithm

Input: An initial guess of parameter φ(0), and a tolerance ε.
1: while ‖φ(n+1) − φ(n)‖ > ε do
2: E-step: Estimate the complete-data sufficient statistics t(x):

t(n) = E[t(x)|y,φ(n)]. (4.2.5)

3: M-step: Use maximum likelihood to determine φ(n+1) as the solution to

E[t(x)|φ] = t(n). (4.2.6)

4: end while
Output: The parameter φ(n+1) after convergence.

Recall that the goal of EM algorithm is to maximize the incomplete-data density

g(y|φ) over all possible parameters φ ∈ Ω. We now explain why reiteration of EM

steps eventually leads to the best parameter φ∗ of φ.

Under the exponential-family assumption, the problem is equivalent to maxi-

mizing its log-likelihood function

L(φ) = log g(y|φ). (4.2.7)

Let k represent the conditional density of x given data y and parameter φ, and notice

that f is independent of the data y. Then

k(x|y,φ) =
f(x|φ)

g(y|φ)
, (4.2.8)

1 A statistic t = T (X) is sufficient for an underlying parameter θ if the conditional
probability distribution of data X, given the statistics t = T (X), does not depend on
θ [16], i.e. P(x|t, θ) = P(x|t). For example, the sample mean is sufficient for the mean
µ of a normal distribution with known variance, since the data and µ are independent
once sample mean has been calculated. In contrast, the sample median is not sufficient
for the mean, because the sample data X can provide extra information about the
population mean.
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so that (4.2.7) can be written as

L(φ) = log f(x|φ)− log k(x|y,φ). (4.2.9)

Since the term a(φ) is a normalization term, it is automatically determined once other

terms are known. For exponential families, we have

k(x|y,φ) = b(x) exp(φt(x)T )/a(φ|y), (4.2.10)

where

a(φ|y) =

∫
X (y)

b(x) exp(φt(x)T ) dx. (4.2.11)

The analogous expression for a(φ) in (4.2.4) is

a(φ) =

∫
X
b(x) exp(φt(x)T ) dx, (4.2.12)

with the only difference being in the sample spaces. Then, the likelihood function (4.2.7)

simplifies to

L(φ) = − log a(φ) + log a(φ|y). (4.2.13)

Differentiating (4.2.12) and denoting t(x) by t, we get

∂

∂φ
log a(φ) =

1

a(φ)

∫
X
t(x)T b(x) exp(φt(x)T ) dx =

∫
X
tTf(x|φ) dx = E[t|φ].

(4.2.14)

Similarly, differentiating (4.2.11) results in

∂

∂φ
log a(φ|y) = E[t|y,φ]. (4.2.15)

Therefore, the derivative to the log-likelihood (4.2.7) can be written as the difference

of an unconditional and a conditional expectation of the sufficient statistics

∂

∂φ
L(φ) = −E[t|φ] + E[t|y,φ]. (4.2.16)

If the EM algorithm converges to φ∗, then φ(n) = φ(n+1) = φ∗ in the limit as n →

∞. Combining the E-step (4.2.5) and M-step (4.2.6) yields E[t|φ∗] = E[t|y,φ∗], or

∂
∂φ
L(φ) = 0 at φ = φ∗. Thus the repeated application of EM algorithm leads to

maximization of the log-likelihood L(φ). Dempster also extends this proof to a less-

restricted case when f(x|φ) is not in the exponential family, and later removes all

reference to exponential families. We will skip these cases here.
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4.3 Modified Osborne’s Method with Moment Constraints

We now present a new method for estimating the parameters {αk, σk}, 1 ≤ k ≤

N in a hyperexponential probability distribution, whose survival probability function

(i.e., complement of the cumulative distribution function) can be represented by

S(t) =
N∑
k=1

αke
−σkt, (4.3.1)

from M samples of the distribution. It is important to notice that these are samples for

survival times, instead of direct samples of S. For this reason, this exponential fitting

problem may also be seen as a kernel density estimation problem. The coefficients

αk and the exponents σk satisfy
∑N

k=1 αk = 1, αk > 0, and σk > 0. The problem

above is one typical example of mixture density estimation problems, which have been

studied since the 1980s [39]. The predominant methods [88] to tackle these problems

include the method of moments [82], the method of maximum likelihood [106], and the

expectation-maximization (EM) algorithm [24, 26].

Our technique implements a modified version of Osborne’s least-squares method

[81] but uses the sample moments from the data to improve stability, along with ideas

from the EM algorithm and Tikhonov regularization. One main difficulty with esti-

mating σk arises when two of the σk are of similar size, and the sample moments help

to alleviate this problem to a certain extent.

4.3.1 Osborne’s Method for N = 2

We now review Osborne’s method for exponential fitting for N = 2. The data

{y1, . . . , yM} is sampled from the survival probability function S(t) ≡ 1−W (t) at ran-

dom times, where W (t) is the corresponding cumulative distribution function (c.d.f.).

Then we construct the numerical survival function S from the data on the interval

(0, 1] with n regular time nodes. Let w(t) = W ′(t) be the probability density function

(p.d.f.) and assume that it is the solution to the differential equation

Lw(t) = 0, (4.3.2)
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with

L = D2 + ξ2D + ξ1, (4.3.3)

for some constants ξ1 and ξ2, and D ≡ d

dt
is the differential operator. Let σ1 and σ2

be the roots of the characteristic equation. Then ξ2 = −(σ1 + σ2) and ξ1 = σ1σ2.

The modified Prony algorithm [81], instead of using the operator L, works with

discretized data and discretized coefficients (γ1, γ2) corresponding to the following dif-

ference equation:

(∆2 + γ2∆ + γ1)w(t) = (∆− ζ1)(∆− ζ2)w(t) = 0. (4.3.4)

It is well-known that the original Prony method yields biased estimates for the

exponential fitting problem and is very sensitive to noise. Unfortunately, the modified

Prony method, unlike its description in [81], is also very sensitive to the initial iteration

point when there is noise in the data. The modified Prony method is described in

Section (2.3.3), and the main goal is to minimize the variable projection functional:

ψ(γ) = STPXS = STX(XTX)
−1

XTS, (4.3.5)

where S is the vector of discretized survival function values on (0, 1], and X = X(γ)

is a matrix defined as in eq (2.3.20). Specifically for p = 2, X is an n× (n− 2) matrix

X(γ) =



c1

c2 c1

c3 c2

. . .

c3

. . . c1

. . . c2

c3


, (4.3.6)

where each column of the above matrix is

c =


1 −1 1

1 −2

1




1

n

n2



γ1

γ2

γ3

 , (4.3.7)

with γ3 = 1.
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4.3.2 Moment Constraint Method

This is our main contribution to the exponential fitting problem. The Laplace

transform w̃(u) of the p.d.f. satisfies

(u2 + ξ2u+ ξ1) w̃(u) = (u+ ξ2)w(0) + w′(0). (4.3.8)

Let Tk be the k-th moment of the data W (t), then

Tk =

∫ ∞
0

tkw(t) dt. (4.3.9)

Consider the Laplace transform of w(t), if we differentiate it k times,

w̃(k)(u) =
dk

duk

∫ ∞
0

e−utw(t) dt = (−1)k
∫ ∞

0

tke−utw(t) dt, (4.3.10)

and therefore

w̃(k)(0) = (−1)k Tk. (4.3.11)

We thus get constraints by differentiating eq. (4.3.8),

−ξ0 − T1ξ1 + ξ2 = 0, (4.3.12)

T2ξ1 − 2T1ξ2 = −2, (4.3.13)

where ξ0 = α1σ1 + α2σ2.

In order to improve the result using nonlinear least squares methods, we pro-

pose to add a certain number of constraints to the optimization. The roots of the

characteristic equation of (4.3.4) are denoted {ζk}, and they are related to {σk} by

ζk = n(1− e−σk/n) = σk −
σ2
k

2n
+

σ3
k

6n2
+O(1/n3), k = 1, 2 (4.3.14)

Then,

γ1 = ζ1ζ2

= n2(1− e−σ1/n)(1− e−σ2/n),

= σ1σ2

(
1− σ1 + σ2

2n
+
σ2

1 + σ2
2

6n2

)
+O(1/n3),

= ξ1 −
ξ1ξ2

2n
+
ξ1ξ

2
2 − 2ξ2

1

6n2
+O(1/n3).

(4.3.15)
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Similarly,

γ2 = ζ1 + ζ2

= n(1− e−σ1/n) + n(1− e−σ2/n),

= σ1 + σ2 −
σ2

1 + σ2
2

2n
+
σ3

1 + σ3
2

6n2
+O(1/n3),

= ξ2 −
ξ2

2 − 2ξ1

2n
+
ξ3

2 − 3 ξ1ξ2

6n2
+O(1/n3).

(4.3.16)

Instead of minimizing with respect to (γ1, γ2) in the objective function ψ in (4.3.5), we

directly minimize with respect to the parameters (ξ1, ξ2) in (4.3.2) by defining a new

objective function

ψ̃(ξ1, ξ2) = ψ(γ1, γ2) ≈ ψ

(
ξ1 −

ξ1ξ2

2n
, ξ2 −

ξ2
2 − 2ξ1

2n

)
(4.3.17)

This comes from the second order relations in (4.3.15, 4.3.16), and is accurate to order

O(1/n2), where n is the size of S in (4.3.5). Consider the constraints matrix for the

two exponential problem by rewriting (4.3.12)(4.3.13),

−1 −T1 1

0 T2 −2T1



ξ0

ξ1

ξ2

 =

 0

−2

 (4.3.18)

or Cξ = b. This is an underdetermined linear system, so we may find a solution (with

smallest 2-norm) such that Cx0 = b. Suppose the singular value decomposition of C

is C = USV ∗, then the last column v1 of V will be the basis for the nullspace of C.

Then ξ = x0 + cv1 is a solution to (4.3.18). We can then find the coefficient c such

that ψ̃ is minimized. We ignore ξ0 and the true solution is just the last two elements

in ξ.

When we search for the coefficient c, having the gradient improves the conver-

gence. By equation (4.3.17), we have

∂ψ̃

∂c
=
∂ξ

∂c

∂γ

∂ξ

∂ψ

∂γ
, (4.3.19)
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where

∂γ

∂ξ
=


0 0

1− ξ2

2n
−ξ1

n

− ξ1

2n
1− ξ2

n

 , (4.3.20)

∂ξ

∂c
= vT1 . (4.3.21)

where n is the number of time nodes used in (0,1], and the last derivative term in the

product ∂ψ̃
∂γ

was derived in Osborne’s paper and is given by (2.3.25).

In summary, our method for estimating σ1 and σ2 essentially finds (ξ1, ξ2)

that minimizes Osborne’s objective function (4.3.17) subject to the linear constraints

(4.3.18). T1 and T2 are the first and second moments of the p.d.f. which are estimated

from the sample data. Once (ξ1, ξ2) are found, σ1, σ2 are calculated as the roots of

characteristic polynomial with coefficients (ξ1, ξ2) and α1, α2 are obtained from least

squares:

α = A(σ)†S, (4.3.22)

where Aij = e−σjti .

Furthermore, in order to improve performance when the sizes of exponents are

very different, we can sample the data on different time scales. All the calculations

above remain unchanged and the variable projection functional (4.3.17) is also un-

changed. Define t′ = t/λ ∈ (0, 1/λ], where λ � 1 and the survival function (4.3.1)

becomes

S(t′) = α1e
−σ′

1t
′
+ α2e

−σ′
2t

′
, (4.3.23)

where

σ′k = λσk. (4.3.24)

Then

ξ′1 = σ′1σ
′
2 = λ2ξ1 (4.3.25)

ξ′2 = σ′1 + σ′2 = λξ2 (4.3.26)

117



Specifically, we have the following relations

γ′1 = ξ′1 −
ξ′1ξ
′
2

2nλ
+ · · · = λ2

(
ξ1 −

ξ1ξ2

2n
+ · · ·

)
= λ2γ1 (4.3.27)

γ′2 = ξ′2 −
ξ
′2
2 − 2ξ′1

2nλ
+ · · · = λ

(
ξ2 −

ξ2
2 − 2ξ1

2n
+ · · ·

)
= λγ2 (4.3.28)

(4.3.29)

Therefore, the variable projection functional is

ψ̃(ξ′1, ξ
′
2) = ψ(γ′1, γ

′
2) = ψ(λ2γ1, λγ2). (4.3.30)

Now the matrix from (2.3.20) is

c′ =


1 −1 1

1 −2

1




1

nλ

(nλ)2



γ′1

γ′2

γ′3

 = λ2c, (4.3.31)

and since X ′ = λ2X, we have

X′(X
′TX)−1X

′T = λ2X(λ4XTX)−1λ2XT = X(XTX)−1XT . (4.3.32)

Hence the variable projection functional is unchanged under a different sampling time

scale

ψ̃(ξ′1, ξ
′
2) = ψ̃(ξ1, ξ2). (4.3.33)

Note that, however, the constraint matrix is different because the new moments satisfy

T ′k = Tk/λ
k. The new constraints are given by

−1 −T ′1 1

0 T ′2 −2T ′1



ξ′0

ξ′1

ξ′2

 =

 0

−2

 (4.3.34)

The moment constraint method is summarized in Algorithm 11.
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Algorithm 11 Moment constraint method for N = 2

Input: Random samples y = {y1, . . . , yM} from the target survival function S(t) =∑2
k=1 αke

−σkt with unknown parameters.

1: Choose a suitable value of λ either using Tikhonov regularization to determine the

approximate position of exponents, or using prior knowledge.

2: Generate the numerical survival function S on the interval (0, 1/λ] from data y.

3: Form the constraint matrix C as in (4.3.34) using moments of data y, such that

Cξ = b.

4: Find a solution x0 of least 2-norm such that Cx0 = b. Then ξ = x0 + cv1 is a

solution to (4.3.34) for any c.

5: Search for the constant c∗ that minimizes variable projection functional ψ̃ as

in (4.3.17) using minimization techniques.

6: ξ = x0 + c∗v1.

7: Find roots of characteristic polynomial D2 + ξ2D + ξ1 = 0, denoted by σ1 and σ2.

8: Find linear coefficients by least squares α = A(σ)†S, with Aij = e−σjti .

Output: Exponents σ and linear coefficients α in the target survival function S(t).

4.3.3 Numerical Results

In all the results for this section, we compare our method to four other methods.

For illustrative purposes, we list our method as method (1), and index the other meth-

ods as the following: (2) Maximum Likelihood Estimation with moments, (3) Matlab’s

fit function with the option exp2, (4) Maximum Likelihood Estimation without mo-

ments, and (5) Osborne’s Method (which does not use sample moments).

(1) This is the Moment Constraint Method proposed in this Chapter.

(2) MLE with moment constraints. We can write the log-likelihood function for (4.3.1)
as

lnL(c1, c2, σ1, σ2; t1, . . . , tn) =
n∑
i=1

ln(c1e
−σ1ti + c2e

−σ2ti) (4.3.35)
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subject to the constraint
c1

σ1

+
c2

σ2

= 1, (4.3.36)

because ci = αiσi for i = 1, 2. We include the first two moment constraints to
the constraint problem, so that the log-likelihood function becomes

G(c1, c2,σ1, σ2, µ0, µ1, µ2; t1, . . . , tn) =
M∑
i=1

ln(c1e
−σ1ti + c2e

−σ2ti)

+ µ0

(
c1

σ1

+
c2

σ2

− 1

)
+ µ1

(
c1

σ2
1

+
c2

σ2
2

− T1

)
+ µ2

(
2c1

σ3
1

+
2c2

σ3
3

− T2

)
,

(4.3.37)

where Tk is the k-th moment of the data {ti}Mi=1.

(3) Matlab fit with ’exp2’ option. Directly fit a two-exponents model to data using
Matlab’s built-in fit function. In particular, we take the samples from S(t) =
1−W (t) on the interval (0, λ], and Matlab will yield all unknown parameters.

(4) MLE with no moment constraints. Similar as method (2), we optimize the log-
likelihood function:

G(c1, c2, σ1, σ2, µ0; t1, . . . , tn) =
M∑
i=1

ln(c1e
−σ1ti + c2e

−σ2ti) + µ0

(
c1

σ1

+
c2

σ2

− 1

)
.

(4.3.38)
Then the maximum is obtained when the following equations are satisfied:

M∑
i=1

e−σ1ti

c1e−σ1ti + c2e−σ2ti
− µ0

σ1

= 0 (4.3.39)

M∑
i=1

e−σ2ti

c1e−σ1ti + c2e−σ2ti
− µ0

σ2

= 0 (4.3.40)

c1

M∑
i=1

tie
−σ1ti

c1e−σ1ti + c2e−σ2ti
− µ0c1

σ2
1

= 0 (4.3.41)

c2

M∑
i=1

tie
−σ2ti

c1e−σ1ti + c2e−σ2ti
− µ0c2

σ2
2

= 0 (4.3.42)

c1

σ1

+
c2

σ2

− 1 = 0 (4.3.43)

(5) Osborne’s method (without moments). Direct minimization of the variable pro-
jection functional

ψ(γ) = STPXS = STX−1(XTX)XTS (4.3.44)

with respect to the coefficients {γ1, γ2}, where PX is the orthogonal projection
onto the common column space of X and Xδ.
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Two-term exponential fitting

In this example, data is generated by the survival function S(t) = 0.3e−σ1t +

0.7e−σ2t, where σ1 is fixed to be 1, and σ2 taking different values in log-space between

100.1 to 101.5. In specific, 500 sample times are generated by choosing two exponential

distributions according to their occurrence probability (0.3 and 0.7 respectively), and

a c.d.f. is computed from these samples. Here, the moment constraint method is

implemented on a fixed time scale (0, 1].

Our moment constraint method is compared against four other methods on each

of the σ2 used, with a random initial guess of ξ for each value of σ2, but the same guess

was used across all five methods. The comparison results are displayed in Figures 4.1,

4.2, 4.3, 4.4. Since the sample data are noisy, the relative error (defined as absolute

error rescaled by the norm of exponents) is also noisy. For better interpretation, the

30-term moving average is taken on the errors to smooth out these curves.

From these graphs, we can see that method 1 in magenta curves yields better re-

sult than the other four methods in almost all situations. The performance of method 1

is even better when σ1 is very close to σ2. On the other hand, all methods have similar

errors when the ratio σ2/σ1 is relatively large. MLE methods often result in outliers

despite inclusion of moments, whereas the moment constraint method is more stable

in this sense. In addition, including moments constraint generally improves the results.

4.3.4 Scale Detection and Four-term Exponential Fitting

Our method detects a widely disparate σk by first solving a Tikhonov-regulaized

least squares problem [86]. We recast (4.3.1) as a first-kind integral equation∫ 0

−∞
estα(s)ds = 1−W (t) ≡ S(t). (4.3.45)

In other words, we are trying to find the inverse Laplace Transform of the survival

function S(t). This is well-known to be an ill-posed problem [31]. The integral equation
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Figure 4.1: (1) Moment constraint method (magenta) compared with (2) MLE with mo-
ments (blue). Dashed lines are actual relative errors in exponent estimate, and solid lines are
the 30-term moving average of the corresponding error curves. The horizontal black line is
the 10% error for reference.
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Figure 4.2: (1) Moment constraint method (magenta) compared with (3) Matlab ‘exp2’ fit
(blue). Dashed lines are actual relative errors in exponent estimate, and solid lines are the
30-term moving average of the corresponding error curves. The horizontal black line is the
10% error for reference.
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Figure 4.3: (1) Moment constraint method (magenta) compared with (4) MLE without
moments (blue). Dashed lines are actual relative errors in exponent estimate, and solid lines
are the 30-term moving average of the corresponding error curves. The horizontal black line
is the 10% error for reference.
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Figure 4.4: (1) Moment constraint method (magenta) compared with (5) Osborne’s method
(blue). Dashed lines are actual relative errors in exponent estimate, and solid lines are the
30-term moving average of the corresponding error curves. The horizontal black line is the
10% error for reference.
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is discretized on [−L, 0] using {sk}, k = 1, . . . , ν with ∆s = L/(ν − 1) to give

A(σ)α = S (4.3.46)

where Aij = −e−tisj∆s, αj = α(sj), Si = S(ti). Tikhonov regularization proceeds in

the usual way by solving the regularized least squares problem

(ATA+ µI)α = ATS, (4.3.47)

for some small regularization parameter µ.

We try to apply this scale detection in addition to our proposed method, and

it proves useful in some special four-term exponential fitting problems. Consider the

function

S(t) =
4∑
i=1

αie
−σit, (4.3.48)

where σ1 < σ2 < σ3 < σ4, with σ1/σ2 = O(1), σ3/σ4 = O(1) and σ2 � σ3, meaning

that σ1, σ2 are close, and σ3, σ4 are close.

We first use Tikhonov regularization to find the approximate values of the ex-

ponents. A wide range of possible values for the regularization parameters balance

goodness-of-fit with the stability of the result. Since there are two groups of exponents,

we pick an appropriate regularization parameter that yields two estimated exponents

σ̂1, σ̂2 and use them as initial guesses for two separate two-exponential fitting problems:

S(t) =
4∑
i=1

αie
−σit ≈

2∑
i=1

α̂ie
−σ̂it. (4.3.49)

Meanwhile, by least-squares, we also get estimates for the coefficients α̂1, α̂2.

Next, similar to the idea of the EM algorithm, we split the original dataset into

two groups. The first group contains the data that is more likely to be generated by

the slow-decaying exponents, and the second group contains the rest of data belonging

to fast-decaying exponents. Bayes’ rule is applied to compute the probability of each

data point being generated from the slow-decaying exponents. Specifically, if there are
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M random samples, the probability of the data point yi belonging to the first group

(slow-decaying exponents) is

P{yi ∈ Group 1} =
α̂1σ̂1e

−σ̂1yi

α̂1σ̂1e−σ̂1yi + α̂2σ̂2e−σ̂2yi
, for i = 1, . . . ,M. (4.3.50)

Then, we compare it to a uniform random number to determine final group assignment.

If this probability is smaller than this random threshold, we assign the data point to

group 1, otherwise to group 2. Finally, we fit two exponentials for each set of data

(assuming different time scales λ1 and λ2 associated with each set) using our proposed

moment-constraint method.

Four-term exponential fitting numerical results

This is another special application of two-exponential fitting, where we have

two pairs of close exponents with different orders of magnitude. We may treat this

problem as two double exponential fitting problem on two different time scales. Data

is generated from (4.3.49). The inference results are shown in Table 4.2. The estimated

values are followed by exact values of corresponding exponents. The last two columns

are the rough estimates of σ̂1 and σ̂2 for the two groups we have mentioned in the

previous section. Two-term exponential fitting is applied in these two groups at the

end.

Sometimes, the algorithm would lead to complex conjugate solutions and we

may simply rectify it by repeating the algorithm with a different intial guess or another

random number seed, since real exponents are expected. However, when the exponents

are very close together, most of the well-known methods will fail. However, when the

exponents σk (k = 1, 2, 3, 4) are not too close together and σ2 and σ3 are well-separated,

our method can usually recover the four exponents with reasonable accuracy. We

conclude that our method can roughly recover four-term exponential c.d.f.s with this

special format.
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Example σ1 σ2 σ3 σ4 σ̂1 σ̂2

1 1.0 (1) 3.3 (3) 46.9 (40) 53.3 (60) 2 50
2 1.1 (1) 6.3 (5) 80.8 (80) 104.8 (100) 3 92
3 5.4 (5) 11.8 (10) 68.1 (60) 94.0 (110) 8 80
4 11.1 (10) 23.0 (20) 144.0 (100) 171.1 (200) 16 157

Table 4.2: Results of four-exponential fitting. The exponents satisfy σ1 < σ2 < σ3 < σ4,
with σ1/σ2 = O(1), σ3/σ4 = O(1) and σ2 � σ3. In each example, the table shows the
estimated results for all exponents, with their true values in the parentheses. The last two
columns in the table are the estimation for two groups resulted from Tikhonov regularization.

4.4 Summary

In summary, we have studied methods for exponential fitting, which are central

to both the BDP and NMR problems we studied in previous chapters. Most popular

methods fail when exponents are sufficiently close together. We have proposed the

moment constraint method, based on the modified Prony method, to fit two-term

exponential survival probability functions from random sample times. Our method

overcomes some of the difficulties of recovering the exponents when they are close,

yields more stable and reliable results compared with maximum likelihood methods

and Matlab built-in fitting function. However, it doesn’t resolve the exponents when

they are sufficiently close, due to the fundamental limit to the resolution of exponents

[8]. The moment constraint method is potentially useful for kernel density estimation

given the sample times, and we have successfully applied this method in four-term

exponential fitting problems under special circumstances.
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Chapter 5

CONCLUSION

In this dissertation, we have investigated the problem of estimating and inferring

parameters in exponential models that describe phenomena in biophysics and imaging

given measured data. Exponential analysis is often an inverse problem which is highly

ill-conditioned, in a sense that the solution may not exist, may not be unique or may

not be stable. We have carefully studied three different problems related to the central

topic of exponential analysis: birth-death process (BDP), nuclear magnetic resonance

(NMR), and direct exponential fitting.

The BDP is mainly concerned with inferring transition rates of proteins from

their extinction time distributions. To analyze this problem, we model the reaction

coordinate using a BDP. Specifically, we consider a protein with N domains where

every domain that unfolds (folds) increases (decreases) the reaction coordinate by an

integer so that it maps to the set of integers {0, 1, . . . , N}. As input data, our method

uses (i) the extinction time of trajectories, starting from when the protein leaves the

0 state for the first time and finishing when the protein re-enters state 0 for the first

time and (ii) the maximum number of unfolded domains in the said trajectory. Since

the maximum value n reached by each trajectory is known, we use the proportion of

trajectories that do not exceed n and corresponding mean extinction times (ET) to

recover the birth-death rates sequentially from 1 to N . In each step n, we focus on

coefficients of the characteristic polynomial of the matrix that governs the BDP, relate

it to its previous two states, and set up a recurrence relation. In general, the initial error

will propagate with the site number exponentially. However, with sufficient amount of

input data, we can recover the rates with relatively small error. For instance, given 50

million ETs of an 11-site BDP, we can recover the rates with a relative error about 3%.
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Future works in this section include extending the method to transmission problems

where the BDP becomes extinct at the largest state, as well as to more general Markov

chains.

The NMR problem arises from estimating the relaxation time of a particular

tissue in biological organisms from given data measurements. From this, the compo-

sition of that tissue can easily be inferred. Traditionally, this is done by applying the

inverse Laplace transform, which is ill-posed. We proposed and compared Tikhonov

regularization methods with one parameter and with two parameters. Picard coefficient

analysis in singular value decomposition shows that the two-parameter regularization

is not as good as the one-parameter regularization, due to its complexity and noise

amplifying effect. We showed numerical examples of both methods and it was clear

that the one-parameter regularization yielded better result than the corresponding

two-parameter regularization method. In addition, we have proposed a method to use

directional total variation (DTV) as a regularizer to the NMR problem, which essen-

tially requires two tuning parameters. Mathematical formulations have been set up,

but we need more numerical results that support this model. Implementing the DTV

regularization numerically can be a main focus in the future.

Direct fitting of an exponential function to data is a problem with a long history,

in which many researchers have investigated and created effective methods. A common

pitfall for these classic method is that they cannot treat problems in which exponents

are close to each other because of the fundamental resolution limit to such problems.

For a specific type of two-term exponential function, which are survival functions of

some probability distributions, we have proposed the moment constraint method to

resolve the exponents from random time samples. This method is capable of recovering

the exponents with a better accuracy and stability, even if the exponents are close

together, and it beats maximum likelihood estimation, Matlab’s built-in ‘fit’ function,

and the modified Prony method. We have also implemented the moment constraint

method in four-term exponential fitting problems whose exponents can be separated
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into two groups by magnitude. By splitting the problem into two subproblems of two-

term exponential fitting and using Tikhonov regularization with the EM algorithm,

we produced results with reasonable accuracy. In the future, we are interested in

extending this method to three-term and n-term exponential fitting where exponents

are relatively close to each other.
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Appendix

INFERENCE WITH LEVERRIER-FADDDEEV ALGORITHM

In light of lemma 2.7, we can assume the following forms:

ξ
(n)
i = C

(n)
i1 λn + C

(n)
i2 µn + C

(n)
i3 , i = 1, 2, (A.0.1)

η
(n)
j = Ĉ

(n)
j1 λn + Ĉ

(n)
j2 µn + Ĉ

(n)
j3 , j = 2, 3, (A.0.2)

where C(n) and Ĉ(n) are coefficients that depend on λ1, . . . , λn−1, µ1, . . . , µn−1; we

describe how to compute C(n) and Ĉ(n) in Section A. If we plug (A.0.1) and (A.0.2)

into (2.4.32) and (2.4.33), and denote r(n) = Π(n)/µ1, then we get a linear system in

two variables (λn, µn):

F (n)

λn
µn

 = G(n)

where the 2× 2 matrix F (n) and 2-vector G(n) are defined as

F (n) =

 r(n)C
(n)
11 − Ĉ

(n)
21 r(n)C

(n)
12 − Ĉ

(n)
22

r(n)(C
(n)
21 − C

(n)
11 M

(n))− Ĉ(n)
31 r(n)(C

(n)
22 − C

(n)
12 M

(n))− Ĉ(n)
32

 , (A.0.3)

G(n) =

 Ĉ
(n)
23 − r(n)C

(n)
13

Ĉ
(n)
33 − r(n)(C

(n)
23 − C

(n)
13 M

(n))

 . (A.0.4)

This matrix is consistent with equations (2.4.51)–(2.4.54). The rates at current site

are therefore given by [λn, µn]T = (F (n))−1G(n).

Implementation

The method for computing the coefficient matrices C(n) and Ĉ(n) is the Leverrier-

Faddeev (L-F) algorithm [51]. The L-F algorithm computes all coefficients of the
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characteristic polynomial for a given n×n square matrix with time complexity O(n4).

In this problem, it suffices to get only the last three coefficients ξ
(n)
3 , ξ

(n)
2 and ξ

(n)
1 .

Given the expression in (A.0.1), we have
C

(n)
i1 = ξ

(n)
i (λ1, . . . , λn−1, 1;µ1, . . . , µn−1, 0)− ξ(n)

i (λ1, . . . , λn−1, 0;µ1, . . . , µn−1, 0)

C
(n)
i2 = ξ

(n)
i (λ1, . . . , λn−1, 0;µ1, . . . , µn−1, 1)− ξ(n)

i (λ1, . . . , λn−1, 0;µ1, . . . , µn−1, 0)

C
(n)
i3 = ξ

(n)
i (λ1, . . . , λn−1, 0;µ1, . . . , µn−1, 0)

for i = 1, 2. With (A.0.2), we also have
Ĉ

(n)
i1 = η

(n)
i (λ2, . . . , λn−1, 1;µ2, . . . , µn−1, 0)− η(n)

i (λ2, . . . , λn−1, 0;µ2, . . . , µn−1, 0)

Ĉ
(n)
i2 = η

(n)
i (λ2, . . . , λn−1, 0;µ2, . . . , µn−1, 1)− η(n)

i (λ2, . . . , λn−1, 0;µ2, . . . , µn−1, 0)

Ĉ
(n)
i3 = η

(n)
i (λ2, . . . , λn−1, 0;µ2, . . . , µn−1, 0)

for j = 2, 3. A concise and straightforward algorithm containing all steps is presented

in Algorithm 12.

Algorithm 12 Inference of birth and death rates up to site N with L-F algorithm

1: Input: An array of extinction times T along with maximal site of repeated simu-
lation of a birth death process.

2: Initialize: Compute the conditional probabilities of left exit {Π(1), . . . ,Π(N)}, and
mean of conditional extinction times {M (1), . . . ,M (N)}.

3: At site 1, µ1 = Π(1)/M (1) and λ1 = (1− Π(1))/M (1).
4: for j = 2 : N do
5: Compute the coefficients of the characteristic polynomial of A(j) to obtain C

(n)
ij

and Ĉ
(n)
ij in section A. Note the true values of the rates λn and µn are not needed

in this calculation.
6: Form the constraint matrices F (j) and G(j) as in (A.0.3) and (A.0.4);
7: Solve [λj, µj]

T = (F (j))−1G(j).
8: if j == N then
9: λj = 0

10: end if
11: end for
12: Output {µ1, . . . , µN} and {λ1, . . . , λN−1}
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