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Abstract We study one of the important human tubular organs, the tra-
chea, under deformation caused by the disease angioedema. This pathology
can suddenly increase the volume of the trachea and cause serious breath-
ing difficulty. Two popular theories, the swelling theory and morphoelasticity
theory, which generalize classical hyperelasticity to study material deforma-
tion under internal volume change, are integrated into a single model to study
tracheal angioedema. Computational modeling results from various combina-
tions of swelling and morphoelasticity are compared to exhibit the difference
and similarity of the two theories in modeling tracheal angioedema. Nonlin-
ear behaviors of the tubular radius change are also illustrated to show how
the trachea luminal size alteration depends on the swelling/growth parame-
ters and their effect on modifying tissue stiffness. The possibility of complete
tracheal channel closure is also studied to understand if it is possible for the
angioedema to close the airway. This article serves as an exemplary study on
nonlinear deformation behaviors of human tubular organs with multiple layers.
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1 Introduction

The human body incorporates numerous tubular organs (TOs) responsible for
transporting fluids, nutrients and waste products throughout the body. Typical
TOs include blood vessels, lymphatic vessels, the colon, trachea and esophagus
etc. They are mainly composed of soft tissues, and commonly exhibit nonlinear
behaviors in size change [1,31], morphology [2,3], stress distribution [4] etc.
This article uses the trachea under angioedema as an example to illustrate such
behaviors. In particular, we model trachea angioedema (TA) using generalized
hyperelasticity to see how size change and stress distribution demonstrate
nonintuitive nonlinear behaviors.

The trachea is a TO adjacent to the esophagus. It provides a duct for air
flow between the ambient environment and the two lungs. Structurally similar
to many other TOs, it has multi-layers, and two distinct layers have been
observed in it [5]. The inner layer consists of mucous/submucous soft tissue.
A longitudinal fiber family is also shown in this layer [9]. The outer layer
includes numerous incomplete C-shaped hyaline cartilage rings stacking one
over another, with the mouth of the C-rings residing behind the esophagus [5].

TA refers to a disease under which the inner layer of the trachea accu-
mulates fluid from blood vessel leakage through the difference of hydrostatic
and osmotic pressures [10,21,22] and increases its volume rapidly [12]. Such
volume increment is also accompanied by mass addition such as vasoactive
mediators or histamine to the tracheal tissue [11]. This disease is mainly cate-
gorized into two types [11]: acquired angioedema and hereditary angioedema.
The first kind is caused by a deficiency of acquired c1-inhibitor c1-INH, and
the second one is an autosomal dominantly inherited blood disorder [14]. Re-
gardless of types, a rapid occurrence of volume increment on the airway soft
tissue may quickly narrow the opening passage for normal breathing and in-
duce an unexpected emergency [15,16,17]. The pathophysiological principle of
TA has been studied via lab experiments [11] or mathematical simulations[18,
19]. The volume increment of the trachea is a complicated process. Some re-
searchers applied mass conservation [23], transport theory [6], fluid mechanics
[7] etc. to model such process. However, these methods are inadequate for more
accurately describing the luminal area change and stress distribution from a
nonlinear continuum mechanics perspective, which are key factors for evalu-
ation of how TA may generate breathing difficulty and damage the internal
tissue.

Soft tissues exhibit behaviors such as anisotropy, nonhomogeneity, strain-
rate dependence [20]. When subject to physiological loads, soft tissues can be
approximated as elastic materials and are broadly modeled by hyperelasticity
[13]. Presently, two popular theories are employed to model hyperelastic mate-
rial under volume increment. The first one is the swelling theory (see e.g., [36,
37,38,39]). This theory generalizes the classical hyperelasticity to incorporate
the swelling effect with a localized swelling parameter. After a free swelling
for an originally stress-free isotropic material body without any constraint,
the body remains stress free. The strain energy density function is accordingly
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modified to reflect this effect. The second hyperelastic theory called morphoe-
lasticity [26] also bears the capability of modeling material volume change,
and is widely applied in modeling growth of biological tissues [40,41,42,43].
The total deformation gradient tensor is decomposed to include a product of
an elastic tensor and a growth tensor. The elastic tensor is employed as the
deformation gradient in the strain energy function to generate stress distribu-
tion, and its determinant is identical to one when the material is modeled by
incompressibility. All the volume change caused by growth is prescribed in the
growth tensor. Unlike the swelling theory, the strain energy density function is
not modified in any extent. Via the growth tensor, the morphoelasticity theory
is also capable of modeling anisotropic volume change.

In [24,29], Gou and Pence modeled TA employing the swelling theory. In
[24], the trachea is idealized as a closed two-layered cylinder. The top and
bottom ends are taken to be force-freei, and the inner and outer boundary
are taken to be traction-free. Such boundary conditions assume that the de-
formation is completely caused by internal swelling instead of any external
constraint. Angioedema generates residual stress over the tracheal body, and
demonstrates high stress concentration near the interface of the inner and outer
layers. In another article [29], more realistic tracheal geometries are considered
that include the back-side trachealis muscle and two bronchi. Stress distribu-
tion from all levels of modeling are very similar, which justifies that idealized
modeling and more realistic modeling may mutually complement each other
to allow a deeper understanding of TA.

In this article, the swelling theory and morphoelasticity theory are in-
tegrated into a single model. The combined swelling-morphoelasticity model
contains swelling and morphoelasticity as special cases, and thus is more flexi-
ble in accommodating volumetric changes arising from different combinations
of swelling and growth. We can also use the integrated treatment to under-
stand the difference and similarity of tissue deformation under the two theories.
For convenience of analysis and comparison, we idealize the trachea as a two-
layered cylindrical tube following [24]. For TA, another issue deserving great
attention is whether the angioedema-incurred expansion of the trachea can
close the internal channel to completely prevent air flow. By intuition, large
expansion may finally shrink the opening until it is totally closed. However,
problems from nonlinear continuum mechanics can often be counter-intuitive.

The structure of the article is as follows. In Section 2, we briefly intro-
duce the generalized hyperelasticity for both swelling and morphoelasticity.
We also construct the integrated swelling-morphoelasticity model and ana-
lyze its properties. In Sec. 3, we set up models for TA, which occurs in the
inner submucous layer of the two-layered cylindrical geometry. The computa-
tional results are demonstrated in Sec. 4, where we compare modeling results
from several parameter sets showing different swelling and growth combina-
tions. In Sec.5, we illustrate the non-monotonic change of the luminal radius

i Force free boundary conditions are different from traction-free boundary conditions. The
force-free boundary condition means the integration of traction over the related boundary
is annihilated.
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with respect to the volume increment of the trachea, and rigorously analyze
the conditions required for complete closure of the lumen under the swelling-
morphoelasticity model. Then finally a summary discussion is given in Sec. 6
about the nonlinear TO behaviors of the trachea under angioedema.

2 Preliminaries

The undeformed and deformed configurations are denoted by Ω0 and Ω, re-
spectively. Let X be any generic point in Ω0, and it is mapped to another
point x in Ω via a mapping x = χ(X). The deformation gradient tensor is
given by F = ∂χ(X)/∂X. The right Cauchy-Green deformation tensor is then

C = FTF, (2.1)

with the principal invariants

I1 = trC, I2 = I3tr(C−1), I3 = detC. (2.2)

Under any strain energy function W , the Cauchy stress tensor T is derived
via

T = −pI + 2F
∂W

∂C
FT, (2.3)

where p is a constraint parameter and I is the identity tensor. T satisfies the
equilibrium equation

divT = 0, (2.4)

in the deformed configuration.
Soft tissues are usually light, so we ignore the body forces from gravity and

other effects. Below we briefly review theories of swelling and morphoelasticity
and form an integrated model based on them.

2.1 Swelling theory

The swelling theory is mainly applied to study fluid-filled expansion of a body.
It is mainly employed in areas like gel expansion and soft tissue edema [8,29].
The local swelling parameter ν depicts the ratio of the local volume in Ω0

and Ω. For inhomogeneous swelling, ν depends on the position vector X. In
this article, for simplicity we take ν to be homogeneous and thus a constant
throughout the material body. Via the deformation gradient, one has

detF = ν. (2.5)

The right Cauchy-Green deformation tensor is defined by (2.1), and its in-
variants are given by (2.2). This theory can be applied in the context of both
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incompressibility and compressibility. In the first case, we also call it volume-
specified swelling theory. With ν ≡ 1, we recover the classical incompressible
hyperelastic theoryii.

Under a natural free swelling for an isotropic material body, i.e. boundaries
of the body are traction free and no residual stress is generated after the
deformation, there is no elastic energy stored inside the body, and then F =
ν1/3I. The energy function is generalized to reflect this result. We use the neo-
Hookean model as an example to show how such generalization is performed.
The neo-Hookean model is originally given by

W =
µ

2
(I1 − 3), (2.6)

where µ is the shear modulus of the material. To incorporate swelling, it is
generalized to

W =
1

2
µνq−2/3(I1 − 3ν2/3), (2.7)

where q is a parameter to show how swelling impacts on stiffness of the ma-
terial, and the defaulted value q = 2/3 means the swelling keeps stiffness
unchanged. Other strain energy models can be generalized in a similar way to
incorporate swelling.

Under a natural free swelling, the material body is stress free. The gener-
alized relation between the Cauchy stress tensor T and the energy function
W for the volume-specified modeling is [28]

T = −pI +
2

ν
F
∂W

∂C
FT. (2.8)

2.2 Morphoelasticity

Morphoelasticity mainly studies growth of a body through mass addition
to change its volume. The growth process causes stress redistribution in-
side the body, and such stress and growth also demonstrate a complicated
inter-connected relationship. Continuum mechanics plays a fundamental role
in studying growth and its stress effect. Rodriguez et al. [25] proposed that
the deformation of a body is caused by both the growth and elastic response,
and they decomposed the deformation gradient F into two parts. One part is
the growth tensor showing how mass is added into the body, and the other
one is the elastic tensor, a natural response to the external mechanical stimuli
and the growth to keep the body in an equilibrium state. More specifically,

F = FeFg, (2.9)

ii The main features of swelling theory are in (2.5) and (2.8). We call it volume-specified
theory to avoid confusion with the incompressible theory. Also notice that (2.5) is always
satisfied in the analysis, different from compressible theory in the fact that detF can change
after computation.
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where Fe is the elastic tensor and Fg is the growth tensor. The right Cauchy-
Green deformation tensor is defined to be on Fe only, i.e.,

Ce = FT
e Fe. (2.10)

One can also define the three invariants Ie1 , Ie2 and Ie3 of Ce according to (2.2).
All the volume change is incorporated in the growth tensor. The material

is taken to be incompressible after growth, and then

detFe = 1. (2.11)

The Cauchy stress is only caused by the elastic deformation part. The classical
strain energy functions need not to be updated, but the invariants used in
the energy functions are from Ce now. Particularly, the neo-Hookean model
becomes

W =
µ

2
(Ie1 − 3). (2.12)

Under any strain energy function W , the Cauchy stress tensor is derived as

T = −pI + 2Fe
∂W

∂Ce
FT
e . (2.13)

If Fg = εI, where ε is a growth parameter, the growth is isotropic. Other-
wise, we call it anisotropic growth. Partial or planar isotropic growth can also
be defined. Under the cylindrical coordinate system with three coordinates (r,
θ, z), if the growth over the radial and angular directions are identical, we call
it r-θ isotropic growth. Similarly, we can have θ-z or r-z isotropic growth.

2.3 Swelling-morphoelasticity

Swelling and morphoelasticity can also be incorporated into a single model.
The deformation includes both the growth part Fg and elastic part Fe as in
(2.9). In this integrated model, however, the volume change contribution is
from both the growth and elastic parts. The growth part is for the volume
change caused purely from growth, while the elastic part is responsible for the
volume change caused by swelling satisfying

detFe = ν. (2.14)

A deformation cartoon is shown in Fig. 1 to show such structure. The Cauchy-
Green tensor is identical to that defined in (2.10). The corresponding strain
energy function is modified to include swelling represented by (2.14). When
the neo-Hookean model is used, the updated one is

W =
1

2
µνq−2/3(Ie1 − 3ν2/3). (2.15)

The Cauchy stress tensor is derived via

T = −pI +
2

ν
Fe

∂W

∂Ce
FT
e . (2.16)
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Fig. 1: Deformation cartoon for swelling-morphoelasticity. The original configuration is Ω0.
Then after growth with the growth tensor Fg , we get a visual growth configuration Ωg . An
elastic deformation Fe is imposed on Ωg to generate the final configuration Ω. Swelling is
also incorporated in this step, and detFe = ν. The deformation gradient F from Ω0 to Ω
satisfies F = FeFg .

We call such integration the swelling-morphoelasticity model. This treatment
can easily reduce to either pure swelling hyperelastic theory via Fg = I or
morphoelasticity via ν = 1.

3 TA modeling via swelling-morphoelasticity

The trachea is idealized to be a two-layered cylinder (Fig. 2). We work in a
cylindrical coordinate system with the z−axis being the longitudinal direc-
tion of the trachea and the origin being the center of any of its horizontal
cross section. The radii of the undeformed inner boundary, interface and outer
boundary towards the central axis are denoted by Ri, Rm and Ro, respectively.
Denote the three unit basis vectors of this coordinate system by eR, eΘ and
eZ for the undeformed configuration. Any point X in the undeformed config-
uration is denoted by (R, Θ, Z). We take the same set of basis vectors for the
deformed configuration due to axisymmetry of the geometry and deformation.
The point X is mapped into another point x on the deformed configuration
via an axisymmetric deformation function χ

x = χ(X) = r(R)eR + ZλzeZ , (3.1)

where r(R) is the radial function and λz is the axial stretch parameter. The
radii of the deformed inner boundary, interface and outer boundary are ri =
r(Ri), rm = r(Rm) and ro = r(Ro), respectively. The deformation gradient
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Fig. 2: An idealized two-layered trachea geometry. The inner thin layer is for submucous
tissue where angioedema occurs. The red dots represent the vertically aligned collagen fibers
in this layer in support of the stability of the tracheal structure. The outer thicker layer is
the cartilaginous layer. This layer is mainly composed of a stack of harder cartilage rings
and does not supply angioedema occurrence.

tensor is thus

F = r′(R)eR ⊗ eR +
r

R
eΘ ⊗ eΘ + λzeZ ⊗ eZ , (3.2)

where the prime means differentiation.

3.1 Inner layer

The growth tensor is taken to be in the three principal directions as

Fg = greR ⊗ eR + gθeΘ ⊗ eΘ + gzeZ ⊗ eZ , (3.3)

where gr, gθ and gz are growth parameters in the three principal directions,
respectively.

By (2.9), (2.14) and (3.2)

Fe =
1

α
eR ⊗ eR +

νgz
λz

αeΘ ⊗ eΘ +
λz
gz

eZ ⊗ eZ , (3.4)

where,

α =
gr
r′
,

νgz
λz

gθα =
r

R
. (3.5)

It then follows from (2.14) that

(r2)′ =
2νgrgθgzR

λz
, (3.6)

and so

r =

[∫ R

Ri

2νgrgθgzR

λz
dR+ r2

i

]1/2

, Ri ≤ R ≤ Rm. (3.7)
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The parameters such as ν and gr may be functions of R instead of constants,
and thus (3.7) cannot be further simplified at this step. By (3.7), we can also
derive the relation between rm and ri

r2
m = r2

i +

∫ Rm

Ri

2νgrgθgzR

λz
dR, (3.8)

which further generates another identical formula to (3.7)

r =

[
r2
m −

∫ Rm

R

2νgrgθgzR

λz
dR

]1/2

, Ri ≤ R ≤ Rm. (3.9)

The strain energy density function of the inner layer is taken to be the
addition of the generalized neo-Hookean strain energy and longitudinal fiber
energy as

Wi =
µiν

q−2/3

2
(Ie1 − 3ν2/3)︸ ︷︷ ︸

neo-Hookean energy

+
γ

2
(Ie4 − 1)2︸ ︷︷ ︸

fiber energy

, (3.10)

where µi is the shear modulus of the inner submucous layer, and γ is the fiber
elastic modulus. In (3.10), Ie4 is defined as a pseudo-invariant as

Ie4 = Nfib ·CeNfib, (3.11)

where Nfib = eZ is the unit direction of the longitudinal fibers embedded in
the submucous layer of the trachea. By (2.16), the Cauchy stress tensor is

Ti = −piI + µiν
q−5/3Be +

2γ

ν
(Ie4 − 1)EeeZ ⊗EeeZ , (3.12)

where Be = FeFe
T is a left Cauchy-Green tensor, and pi is a constraint

parameter dependent on R. Detailed computation gives the Cauchy stress in
its component-wise form to be

T irr = −pi +
µiν

q−5/3

α2
, Ri ≤ R ≤ Rm, (3.13)

T iθθ = −pi +
µig

2
zν
q+1/3α2

λ2
z

, Ri ≤ R ≤ Rm, (3.14)

T izz = −pi +
µiλ

2
zν
q−5/3

g2
z

+
2γλ2

z

νg2
z

(
λ2
z

g2
z

− 1), Ri ≤ R ≤ Rm. (3.15)

The three equilibrium equations in (2.4) for this axisymmetric model reduces
to only one equation in the radial direction

∂T irr
∂r

+
1

r
(T irr − T iθθ) = 0. (3.16)
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By (3.13), (3.14) and (3.16), one has

pi(R) = pi(Ri)+

µi

∫ R

Ri

νq−5/3
( (q − 5/3)ν−1

α2

dν

dR
− 2α−3 dα

dR
+

1

r
(

1

α2
− g2

zν
2α2

λ2
z

)
dr

dR

)
dR.

(3.17)

3.2 Outer layer

There is no growth or swelling in the outer cartilaginous layer. Thus Fg = I
and ν = 1. By the incompressibility constraint detF = 1, via (3.2)

r′rλz
R

= 1. (3.18)

Integration of (3.18) from R to Ro gives

r =

√
r2
o −

1

λz
(R2

o −R2), Rm ≤ R ≤ Ro. (3.19)

By (3.19), we can obtain the relation between rm and ro as

r2
m = r2

o −
1

λz
(R2

o −R2
m), (3.20)

which gives another formula for r as

r =

√
r2
m +

1

λz
(R2 −R2

m), Rm ≤ R ≤ Ro. (3.21)

The strain energy density function is taken to be the original neo-Hookean
model

Wo =
µo
2

(I1 − 3), (3.22)

where µo is the shear modulus of the outer cartilaginous layer. The Cauchy
stress tensor To for this layer is derived via Wo as

To = −poI + 2F
∂Wo

∂C
FT = −poI + µoB, (3.23)

where B = FFT is the left Cauchy-Green tensor for the outer layer, and po is
a constraint parameter for this layer. Detailed computation gives the Cauchy
stress in its component-wise form to be

T orr = −po + µo(r
′)2, Rm ≤ R ≤ Ro, (3.24)

T oθθ = −po + µor
2/R2, Rm ≤ R ≤ Ro, (3.25)

T ozz = −po + µoλ
2
z, Rm ≤ R ≤ Ro. (3.26)
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As in (3.16), we get one equilibrium equation in the radial direction

∂T orr
∂r

+
1

r
(T orr − T oθθ) = 0. (3.27)

By virtue of (3.24), (3.25) and (3.27), we get

po(R) = po(Ro)− µo
∫ Ro

R

r′
(

2r′′ + r−1
(
(r′)2 − r2

R2

))
dR. (3.28)

3.3 Boundary conditions and solution procedure

The inner boundary of the tracheal tube is subject to aerial flow to and from
the two lungs. The pressure is close to the atmospheric pressure which can be
balanced by the pressure inside the tracheal tissue. We thus ignore the effect
on the inner boundary of the trachea exerted by the air flow inside the lumen,
and take the inner boundary of the trachea tube to be traction free. The outer
boundary of the trachea tube is surrounded by light soft tissue, and taken to
be traction free as well. The traction-free inner and outer boundary conditions
are given by {

T irr(ri) = 0 (traction-free inner boundary),

T orr(ro) = 0 (traction-free outer boundary).
(3.29)

By (3.13) and (3.29)1, we get

pi(Ri) =
µiν

q−5/3

α2


R=Ri

, (3.30)

and by (3.24) and (3.29)2, we have

po(Ro) = µo(r
′)2|R=Ro . (3.31)

At the interface, the traction is taken to be continuous, which gives

T irr(rm) = T orr(rm) (traction continuous at the interface), (3.32)

or by (3.13) and (3.24)

− pi(Rm) +
µiν

q−5/3

α2

∣∣∣
R=Rm

= −po(Rm) + µo(r
′)2
∣∣
R=Rm

. (3.33)

The radial function r(R) is also continuous throughout the interface in the
domain [Ri, Ro] automatically by our formulation. Namely, r(R) in (3.9) for
the inner submucous layer and r(R) in (3.21) for the outer cartilaginous layer
are equal when both estimated at R = Rm. Using (3.9) and (3.21), (3.33) is
an equation for the unknown rm. This nonlinear equation can be solved by
numerical techniques. With the value of rm, we can obtain the Cauchy stress
distribution T and radial function r(R) for the two layers.



12 Kun Gou et al.

Radius values (unit:mm)
Notation Inner boundary Interface Outer boundary

Original size: R Ri=8.85 Rm=9.15 Ro=11.45
After deformation: r ri rm ro

Table 1: Radius values before and after deformation caused by angioedema. The radius
values before deformation for the inner boundary, interface and outer boundary are taken
from [24,29]. The corresponding boundary radii after deformation are unknowns and their
values are calculated from the present model.

Tracheal stiffness parameters (unit: MPa)
Inner layer shear modulus Outer layer shear modulus Fiber stiffness

µi=0.0429 µo=0.58 γ=0.0429

Table 2: Tracheal tissue stiffness values used in the model. These value are kept to be
identical to those used in [24,29] for consistency.

4 Modeling results and comparison

The radius values for Ri, Rm and Ro are taken from [24,29] as shown in
Table 1. The material stiffness values are illustrated in Table 2 iii. We use the
defaulted value q = 2/3 for the computation in this section, i.e., the volume
increment shall not change the stiffness of the tissue. The product of all growth
and swelling parameters ν, gr, gθ and gz is fixed for convenience of comparison.
This makes the total volume change under the collective effect of growth and
swelling of the submucous layer after TA identical. The product

νgrgθgz = 4, (4.1)

is used, where the number 4 is randomly chosen for a clearer view and compar-
ison of the solutions. This large parameter is for the purpose of mathematical
study only. More realistic parameters for volume change of the trachea under
angioedema can be found in references, e.g. [45], where they found a more
conservative parameter around 1.2. As to the authors’ best knowledge, no
literature has been found to make any experimental or clinic study on the
proportions of swelling and growth in TA. Because the swelling theory is for
volume change in 3-D, first we consider 3-D isotropic growth in the swelling-
morphoelasticity model and then 2-D isotropic growth.

4.1 3-D isotropic growth

Isotropic growth means growth in the three principal directions eR, eΘ and
eZ are identical, i.e., g1 = g2 = g3 = g, where g is a constant. Then we have

iii These values were calculated from experimental data via justified mathematical formu-
las. See [24].
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Fig. 3: Radius change and stress distribution as functions of R for various combinations of

swelling and 3-D isotropic growth parameters ν, gr, gθ, and gz satisfying gr = gθ = gz = g.

Here R is normalized by Ri. The product of all growth and swelling parameters is kept to

be a constant 4, i.e., g3ν = 4. There is no stretch in the axial direction (λz = 1), and the

defaulted value q = 2/3 is used. The plots illustrate that increased g or decreased ν generates

increased ri (decreased trachea opening constriction) and increased stress magnitude at each

fixed R.

g3ν = 4 by (4.1). We use four sets of parameters as a demonstration:

S1 : {g = 1, ν = 4}, S2 : {g = 3
√

4/3, ν = 3},

S3 : {g =
3
√

2, ν = 2}, S4 : {g =
3
√

4, ν = 1}.

Set S1 shows only swelling without growth (g = 1), and Set S4 shows only
growth without swelling (ν = 1). They are the two extreme ends of the
swelling-morphoelasticity modeling. The other two sets are mix of both swelling
and growth.

Figure 3 illustrates the results under an axial stretch λz = 1. First we give
a summary for the general patterns of all curves. Due to the volume increment
of the inner submucous layer from TA, Figure 3a shows that the inner radius ri
is reduced and the outer radius ro is increased for the parameter set choice. We
also remark that in this panel the curves over the inner layer or outer layer are
almost straight, but they are nonlinear curves. Figure 3b shows that the radial
stress Trr is compressive, and reaches its maximum at the interface, which
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makes the tissue more vulnerable at this location. The curves also show cusps
indicating non-smoothness at the interface because only traction continuity
condition is prescribed at this location. Figures 3c and 3d for Tθθ and Tzz vs.
R, respectively, show compressive stress in the inner layer, tensile stress in the
outer layer, and stress discontinuities at the interface. According to Fig. 3,
over the range for R from Ri to Ro the variation for Trr is much smaller than
Tθθ and Tzz.

Then we compare the curves in each subfigure for the four sets S1-S4.
Figure 3a shows that Set S1 for pure swelling gives the lowest r vs. R curve,
while Set S4 gives the highest, or more generally, more growth or less swelling
makes the curve higher. Therefore, under the same volume change, modeling
TA using more swelling produces more inner opening shrinkage. In Figures
3b-3d, at a fixed R location, Set S1 generates the smallest stress magnitude
and Set S4 generates the largest, or more generally, more growth generates
larger stress magnitude. One possible explanation for this phenomenon is that
more growth makes the trachea expand more outward, and thus the inner
submucous layer pushes the outer cartilaginous layer more outward resulting
in bigger stress production. More growth hence may more seriously hurt the
tracheal tissue bearing stronger stress.

Computation for λz = 1.3 is also taken. For each set of parameters, the
inner opening is more constrained, and smaller stress intensity is produced.
However, the results show no different pattern compared with Fig. 3, and the
graph is thus skipped.

4.2 2-D isotropic growth

We study how the results will differ when the isotropic growth is constrained
in 2-D. Three types are studied: isotropic r-θ growth, isotropic r-z growth,
and isotropic θ-z growth.

4.2.1 Isotropic r-θ growth

We consider planar isotropic growth over the radial and angular directions.
Here we take gr = gθ and gz = 1 satisfying g2

rν = 4 according to (4.1). λz = 1
is also used. Four sets of parameters are used:

S5 : {gr = gθ = 1, gz = 1, ν = 4}, S6 : {gr = gθ = 2
√

1/3, gz = 1, ν = 3},

S7 : {gr = gθ =
√

2, gz = 1, ν = 2}, S8 : {gr = gθ = 2, gz = 1, ν = 1}.

The general pattern of the results for these four parameter sets shown in
Fig. 4 are similar to that in Fig. 3. For all four sets, Fig. 4 demonstrates iden-
tical curves for r(R), Trr(R) or Tθθ(R). For the axial stress Tzz, all four curves
are the same over the outer cartilaginous layer and disagree over the inner sub-
mucous layer (Set S8 for pure growth with ν = 1 generates the least Tzz inten-
sity over the inner layer). Therefore, in the swelling-morphoelasticity model,
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Fig. 4: Radius change and stress distribution of various combinations of swelling and 2-D

isotropic growth (gr = gθ, gz = 1), where the growth is constrained to be on the radial

and angular directions. The product of all growth and swelling parameters is kept to be a

constant 4, i.e., grgθgzν = 4. Here λz = 1 and q = 2/3. The graphs show that the four

sets generate the same results for radius change and Trr and Tθθ distributions, and Tzz is

identical only in the outer layer.

computational results are identical regardless of how swelling and growth are
mixed. Nonzero Tzz values also suggest that planar r-θ growth is not com-
pletely constrained in the r-θ plane, and also generates stress in the axial
direction outside of the r-θ plane.

In order to test how different axial stretch can affect the deformation, we
also used λz = 1.3 in the computation for the four sets S5-S8. The same
pattern is maintained as in Fig. 4, and hence the graphs are not displayed
here for the sake of brevity. It is also found that larger λz may generate all
tensile stress over the two layers for Trr and Tθθ instead of being compressive
over the inner layer and tensile over the outer layer for smaller λz. Larger λz
also produces smaller ri giving more constrained inner opening and causing
more difficulty for breathing.

4.2.2 Isotropic r-z and θ-z growth

The computational results of isotropic r-z or θ-z growth do not show a nice
overlap for different combinations of swelling and growth as those for isotropic
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Fig. 5: Graph of how ri(normalized by Ri) changes based on total volume increment for
various q values indicating how volume increment alters stiffness of the material. The label
for the horizontal axis “volume increment ratio” (vir) means the pointwise volume ratio after
and before angioedema satisfying vir = detF = detFedetFg . Isotropic r-θ growth is used in
the swelling-morphoelasticity model with growth parameters satisfying gz = 1 and gr = gθ.
For each value of vir, the contributions from swelling (with the swelling parameter ν) and
total growth are the same, i.e., ν =

√
vir and grgθ =

√
vir. Each curve is non-monotonic.

The function ri(vir) decreases and then increases.

r-θ growth. Generally the plots are similar to Fig. 3 and therefore not shown
here for the sake of brevity.

5 Luminal shrinkage

When the trachea is under angioedema, the volume of the inner layer expands.
Quantitative and qualitative understanding of the expansion is necessary for
accurate description of severity of the disease. Based on the model setup in
Sec. 3, we graphically obtain relations between inner radius change and volume
increment amount. Then we study when it is possible for the angioedema to
totally close the luminal area to obstruct air flow.

5.1 Dependence of ri on volume increment

The idealized modeling for the tracheal geometry allows us to quantify the
luminal area in terms of the deformed inner radius ri. We study the rela-
tion between ri and the volume increment from both swelling and growth so
that we can know how luminal area changes. From Sec. 4, we see that the
swelling-morphoelasticity model with r-θ isotropic growth shows almost iden-
tical modeling results regardless of how much volume change contribution is
from swelling or growth as far as the total volume change is fixed. Such 2-D r-θ
isotropic growth also closely matches the axisymmetric deformation formula-
tion in (3.1). We also use such isotropic growth in this section for convenience
of analysis. Figure 5 shows several curves of ri (normalized by Ri) vs. volume
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Fig. 6: Anticavitation cartoon for the inner submucous layer with completely closed luminal
area under pressure from the outer cartilaginous layer.

increment ratio for several q values indicating how volume change alters the
shear modulus of the tissue. For each curve, it shows the inner radius first
decreases and then increases. This implies that the lumen does not always
shrink but can also expand when ri reaches a minimum value. Larger q makes
the minimum value larger.

5.2 Further anticavitation analysis

We analyze if it is possible for the outer cartilaginous layer to push the in-
ner submucous layer using only finite force such that the inner opening is
completely collapsed under TA, which we call anticavitation (Fig. 6). Similar
problems have been examined by other researchers. Abeyaratne and Hou stud-
ied void collapse for an incompressible spherical elastic solid [33], and Moulton
and Goriely studied anticavitation and differential growth in elastic shells by
morphoelasticity [34]. The present work takes swelling and growth together to
study the possibility of tubular collapse. For this purpose, we only consider the
deformation of the inner layer, and the effect of the outer layer is to impose
a traction on the inner layer. Denote the traction imposed by the outer layer
through the interface to the inner layer by

− Ptr = T irr|R=Rm , (5.1)

where Ptr > 0.
For any strain energy function W (not only the neo-Hookean model), con-

sider it depends on the three principal stretches Λr, Λθ and Λz associated
with the elastic tensor Fe as W (Λr, Λθ, Λz). We remark that usually an en-
ergy function is considered to depend on the invariants I1, I2 and I3 etc., and
such stretch dependence of the energy function is solely for convenience of the
present analysis. Under the swelling-morphoelasticity model in Sec. 2.3 and
the axisymmetric deformation in (3.1)

Fe = ΛreR ⊗ eR + ΛθeΘ ⊗ eΘ + ΛzeZ ⊗ eZ , (5.2)
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and by virtue of (3.4),

Λr =
1

α
, Λθ =

νgzα

λz
, Λz =

λz
gz
. (5.3)

By (2.14),

Λr =
νgz
λzΛθ

,
dΛr
dΛθ

= − gzν

λzΛ2
θ

. (5.4)

We consider Ptr as a function of Λθ, and analyze under what condition

lim
Λiθ→0

Ptr <∞,

where Λiθ = Λθ|r=ri .
Generalizing the function W to include swelling with the swelling param-

eter ν for the inner layer generates

Wi = νqW (ν−1/3Λr, ν
−1/3Λθ, ν

−1/3Λz). (5.5)

Notice that if W is of the neo-Hookean model incorporating the fiber energy,
then (5.5) gives (3.10), the generalized neo-Hookean model. Under (2.16),

T irr = −pi +
2

ν
Λ2
r

∂Wi

∂Cerr
= −pi +

Λr
ν

∂Wi

∂Λr
, (5.6)

T iθθ = −pi +
2

ν
Λ2
θ

∂Wi

∂Ceθθ
= −pi +

Λθ
ν

∂Wi

∂Λθ
, (5.7)

where Cerr and Ceθθ are the first two principal components of Ce.
It is convenient to use (5.4)1 to eliminate Λr from the right hand side

of (5.5) and define the resulting expression as Ŵi(Λθ), where dependence of
the reduced energy function Ŵi on Λz is not shown explicitly for the sake of
brevity since Λz is always assumed to be fixed in our calculations. It can then
easily be shown that

T irr − T iθθ = −Λθ
ν

dŴi

dΛθ
, (5.8)

and so the equilibrium equation (3.16) can be written as,

dT irr
dr

=
Λθ
rν

dŴi

dΛθ
. (5.9)

Integrating (5.9) with respect to r from ri to rm produces∫ rm

ri

dT irr
dr

dr =
1

ν

∫ rm

ri

Λθ
r

dŴi

dΛθ
dr. (5.10)

Traction free inner boundary T irr|r=ri = 0 and (5.1)applied to (5.10) give

Ptr = −1

ν

∫ rm

ri

Λθ
r

dŴi

dΛθ
dr = −1

ν

∫ Λmθ

Λiθ

Λθ
dŴi

dΛθ

d(lnr)

dΛθ
dΛθ. (5.11)
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By (3.7) with constant ν, gr, gθ, gz and λz, we get

r =
(νgrgθgz

λz
(R2 −R2

i ) + r2
i

)1/2

or R =
(λz(r2 − r2

i )

νgrgθgz
+R2

i

)1/2

. (5.12)

Then by (3.5)2, (5.3)2 and (5.12),

Λθ =
r

gθR
= rg−1

θ

(λz(r2 − r2
i )

νgrgθgz
+R2

i

)−1/2

. (5.13)

Solving for r from (5.13) generates

r = Λθ

(gθ(λzr2
i −R2

i νgrgθgz)

Λ2
θgθλz − νgrgz

)1/2

. (5.14)

By (5.14),

d(lnr)

dΛθ
=

−νgrgz
Λθ
(
Λθ
√
gθλz +

√
νgrgz

)(
Λθ
√
gθλz −

√
νgrgz

) . (5.15)

Plugging (5.15) into (5.11) brings

Ptr =

∫ Λmθ

Λiθ

dŴi

dΛθ

grgz(
Λθ
√
gθλz +

√
νgrgz

)(
Λθ
√
gθλz −

√
νgrgz

)dΛθ. (5.16)

Lemma 1 For an r-θ isotropic (isotropy over the r-θ plane) one-layered TO
under swelling (with the swelling parameter ν) and isotropic growth (with three
principal growth parameters gr, gθ and gz satisfying gr = gθ), the following
inequality holds

dŴi

dΛθ

(
Λθ
√
gθλz −

√
νgrgz

)
> 0. (5.17)

Proof For a planar r-θ isotropic material under r-θ isotropic growth and
swelling, the Baker-Ericksen inequality [35] holds due to the strong ellipticity:

(T irr − T iθθ)(λr − λθ) > 0, (5.18)

where λr and λθ are two principal stretches associated with F in the r and θ
directions, respectively, satisfying λr = Λrgr and λθ = Λθgθ. By the definition
of Λr and Λθ in (5.3) and Eq. (3.4), one has α = Λθλz

νgz
. Accordingly,

λr − λθ =
gr
α
− νgzαgθ

λz

=

(√
grgzν − Λθ

√
gθλz

)(√
grgzν + Λθ

√
gθλz

)
Λθλz

. (5.19)

By (5.8) for T irr − T iθθ and Eq. (5.19), one thus obtains (5.17) for the lemma.

Lemma 2 For Λiθ ≤ Λθ ≤ Λmθ , we have Λθ
√
gθλz −

√
νgrgz < 0 as ri ap-

proaches 0 and is sufficiently small.
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Proof By (5.3)2 and (3.5)1,

Λθ
√
gθλz −

√
νgrgz =

√
gθλz

νgz
λz

α−√νgrgz

=
√
gθλz

νgz
λz

gr(
dr

dR
)−1 −√νgrgz

=

√
λzr√
gθR

−√νgrgz. (5.20)

By the volume relation between the reference configuration and the deformed
configuration,

(R2
m −R2

i )νgrgθgz = (r2
m − r2

i )λz, (5.21)

we can obtain

rm =

√
(R2

m −R2
i )νgrgθgz
λz

+ r2
i . (5.22)

By (5.20) and (5.22),

lim
ri→0

(Λθ
√
gθλz −

√
νgrgz)

∣∣∣
r=rm

=
√
νgrgz

(√
1− R2

i

R2
m

− 1
)
< 0. (5.23)

Therefore, as ri → 0 and is sufficiently small, we have Λθ
√
gθλz −

√
νgrgz < 0

for all Λiθ ≤ Λθ ≤ Λmθ .

By Lemmas 1 and 2 applied to (5.16), one has

0 < Ptr <

√
grgz
ν

∫ Λmθ

Λiθ

dŴi

dΛθ

dΛθ

Λθ
√
gθλz −

√
νgrgz

<

√
grgz
ν

1

Λmθ
√
gθλz −

√
νgrgz

∫ Λmθ

Λiθ

dŴi

dΛθ
dΛθ

=

√
grgz
ν

1

Λmθ
√
gθλz −

√
νgrgz

(
Ŵi|Λθ=Λmθ

− Ŵi|Λθ=Λiθ

)
= K

(
Ŵi|Λθ=Λiθ

− Ŵi|Λθ=Λmθ

)
, (5.24)

where K =
√

grgz
ν

1√
νgrgz−Λmθ

√
gθλz

> 0.

Theorem 3 The inner submucous layer can be completely collapsed under
finite pressure from the outer cartilaginous layer if and only if the following is
true

lim
Λiθ→0

Ŵi|Λθ=Λiθ
= L <∞, (5.25)

where L is any positive finite number.
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Proof If (5.25) holds, then by (5.24), Ptr|Λiθ=0 is bounded, and finite pressure
is possible to totally collapse the lumen of the trachea.

Instead, if Ptr|Λiθ=0 is bounded, we show (5.25) is true. By Lemma 2,

0 > − 1
√
νgrgz

>
1

Λθ
√
gθλz −

√
νgrgz

, (5.26)

for Λiθ ≤ Λθ ≤ Λmθ . Thus by (5.16)

Ptr > −
1

√
νgrgz

∫ Λmθ

Λiθ

dŴi

dΛθ

grgz(
Λθ
√
gθλz +

√
νgrgz

)dΛθ

>
−√grgz√

ν
(
Λmθ
√
gθλz +

√
νgrgz

) ∫ Λmθ

Λiθ

dŴi

dΛθ
dΛθ

=

√
grgz√

ν
(
Λmθ
√
gθλz +

√
νgrgz

)(Ŵi|Λθ=Λiθ
− Ŵi|Λmθ

)
, (5.27)

where we also used dŴi

dΛθ
< 0 obtained from Lemmas 1 and 2. Since Ŵi as an

energy function is always non-negative and lim
Λiθ→0

Ptr is bounded, we get

∞ > lim
Λiθ→0

Ŵi|Λθ=Λiθ
≥ 0, (5.28)

which gives (5.25).

Corollary 1 For the generalized neo-Hookean model (2.7) incorporating swelling,
the anticavitation of the inner submucous layer cannot occur under finite pres-
sure from the outer cartilaginous layer.

Proof By (5.2) and (5.3), I1 = trCe = Λ2
r + Λ2

θ + Λ2
z and I4 = Λ2

z (fiber
direction parallel to the ez direction). And then (2.14) gives Λr = ν

ΛθΛz
. The

generalized neo-Hookean model (3.10) becomes

Ŵi =
µiν

q−2/3

2

(
(

ν

ΛθΛz
)2 + Λ2

θ + Λ2
z − 3ν2/3

)
+
γ

2
(Λ2

z − 1)2, (5.29)

which easily shows that

lim
Λiθ→0

Ŵi|Λθ=Λiθ
=∞. (5.30)

Therefore, by Theorem 3, the present generalized neo-Hookean model is inca-
pable of closing the inner channel through finite pressure imposed on the inner
submucous layer by the outer cartilaginous layer.

For the neo-Hookean model coefficient µiν
q−2/3

2 in (3.10), lim
q→−∞

µiν
q−2/3

2 =

0 means that the updated shear modulus of the tissue is annihilated due to
swelling, and thus

lim
Λiθ→0

(Ŵi|q→−∞,Λθ=Λiθ
) = 0.

So by Theorem 3 the total collapse is possible with finite pressure from the
outer layer under this extreme case.
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6 Summary and discussion

The trachea is one of the most important human tubular organs. When an-
gioedema occurs in this organ, the normal size of the inner lumen may change,
which can cause serious breathing difficulty. In this paper, the trachea is ide-
alized as a two-layered cylinder. Angioedema is taken to occur in the inner
softer layer, and the outer cartilaginous layer is modeled as being incompress-
ible. Since we neglected air flow in the duct and the effect of supporting tissues
around the trachea, the inner and outer boundaries of the tube are assumed
to be traction free.

TA is modeled employing an integrated nonlinear swelling-morphoelasticity
treatment. Both swelling and morphoelasticity generalize hyperelasticity to ac-
count for volume changes in a continuum body. However, they are designed
from different perspectives. In swelling, the deformation gradient from the
undeformed to the final deformed configuration is used in the updated strain
energy function to derive the stress distribution, and the volume change is used
to constrain the determinant of the deformation gradient tensor. In morphoe-
lasticity, the deformation gradient is decomposed into the product of a growth
tensor and an elastic tensor, but only the elastic tensor is employed to generate
the stress distribution. Volume change is included through the growth tensor.
The swelling-morphoelasticity treatment combines the two theories into a sin-
gle model. It is more versatile for modeling deformations induced by volume
changes, since the volume increment can be distributed between swelling and
growth: the exact contributions from each component can be specified by the
user or dictated by the pathophysiology of TA. For example, volume changes
in TA could arise from swelling caused by fluid from leaky blood vessels and
from solid growth caused by mass addition to the tracheal tissue [11]. The
integrated treatment can also be employed in compressible models [27] for
finite-element computational need. We also remark that a complete thermo-
mechanics and constitutive relation analysis for the swelling-morphoelasticity
model deserves study to build up a stronger theoretical foundation for it. A
thorough analysis for this aspect is needed in future research.

Computational results are given for the deformed radius r vs. the unde-
formed radius R, and the three principal Cauchy stress components Trr, Tθθ,
and Tzz vs. R. The graphs of Trr vs. R show that residual stress concentrates
near the interface of the two layers. Graphs for Tθθ vs. R and Tzz vs. R are
discontinuous through the interface, indicating that the tissue is under com-
pression in the inner layer and under tension in the outer layer. Theories of
morphoelasticity and swelling are structurally different, but we found that the
computational results for the swelling, morphoelasticity and their combina-
tions are qualitatively similar to each other. Interestingly, we also found that,
for a given volume change, any combination of swelling and 2-D r-θ isotropic
morphoelastic growth gives almost identical results for the deformation and
stress profiles, but different combinations of swelling and 3-D morphoelastic
growth (again, for a fixed volume change) generally give different profiles. A
summary of the computational results from Sec. 4 is given in Table 3. Fur-
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r |Trr| |Tθθ| |Tzz |
3-D i.g.: Growth dom. Growth dom. Growth dom. Growth dom.
r-θ i.g.: The same The same The same The same over [Rm, Ro]
r-z i.g.: Swelling dom. Swelling dom. Swelling dom. Swelling dom.
θ-z i.g.: Growth dom. Growth dom. Growth dom. Growth dom.

Table 3: Summary of computational results comparison for the swelling-morphoelasticity
model. The same amount of volume increment caused by a combination of swelling and
growth is used for all the comparisons. Here “i.g.” stands for isotropic growth, and “dom.”
is the abbreviation of “dominate”. The symbol | • | means the absolute value of the quantity
inside. For the row of 3-D isotropic growth, “Growth dom.” means more growth and less
swelling generate larger material radius change and magnitude of Trr, Tθθ, and Tzz under
the same R location. So does the row for θ-z isotropic growth. For the r-z isotropic growth,
the trend is the opposite. For the r-θ isotropic growth row, the results are always the same
(except Tzz) regardless of how combination of swelling and growth contribution to the
volume increment is made.

ther investigation is needed to understand why deformation and stress are so
insensitive to different combinations of swelling and r-θ growth.

We also show that the inner radius is non-monotonic with respect to vol-
ume change. The deformed inner radius ri decreases as the inner layer vol-
ume increases in the beginning, but after the volume increment reaches some
threshold, ri unexpectedly increases, generating a larger lumen. This nonlin-
ear characteristic is also exhibited in other TOs. For example, Glagov et al.
[32] experimentally found that coronary arteries with atherosclerotic plaques
along the inner arterial wall initially increase their luminal area, but later as
the stenosis increases, the luminal area decreases. Fok [30] employed morphoe-
lasticity theory to model plaque growth and successfully captured this non-
monotonic trend. He also found that the monotonicity depended on whether
vessels were pressurized or not. However, the behavior of ri with respect to vol-
ume increment in the trachea is concave up, rather than concave down, which
is due to mechnical and structural differences between arteries and tracheae.

To further explore the nonlinear inner radius change and check if complete
lumen closure is possible, an anticavitation analysis is made based on gen-
eral strain energy density functions for the swelling-morphoelasticity model.
Realistically, anticavitation under effects such as irregular geometry, buckling
behavior, air flow, and mucosal membrane adhesive should be considered in
the analysis for more practical application. For the sake of brevity we skip
these effects in this analysis. The theoretical analysis focuses on the inner
layer, assuming the outer layer imposes an inward pressure on the boundary.
We rigorously show that the lumen can be completely closed with finite force
from the outer layer if and only if the strain energy remains finite as the an-
gular stretch goes to zero. The commonly used neo-Hookean model does not
satisfy this requirement. Therefore in our idealized model of angioedema, it is
theoretically impossible to completely close off a trachea no matter how much
growth or swelling occurs. The result in Theorem 3 is similar to the require-
ments for the collapse of an incompressible spherical elastic solid studied in
[33,34] for materials modeled by classical hyperelasticity and morphoelasticity,
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respectively. It indicates that the more generalized hyperelasticity model does
not change the requirements for the collapse of a solid body with an internal
void under limited pressure imposed on the outer boundary.

The present article is based on an idealized cylindrical geometry for which
the inner surface is always smooth under axisymmetric deformation. In reality,
when under volume increment from either growth or swelling, the inner wall
of soft tissues may demonstrate an asymmetric buckling behavior [2,3,38,44].
One can study these instabilities for an axisymmetric base state, and finite
element approaches can be employed for more general settings. Even in the
axisymmetric setting, it would be interesting to see how the classical buck-
ling analysis changes under the swelling-morphoelasticity model. As shown in
[46] by Li et al, the angioedema pathology generally induces non-uniform vol-
ume increment along the circumferential direction, so further study should be
performed to model this nonuniform volume change on TA applying swelling-
morphoelasticity.

Although the present work focuses on a particular organ (the trachea),
our results are indicative of multi-layer TOs modeled using hyperelasticity,
and the framework in this paper can be used to understand TO deformation
problems arising from other physiological conditions. Because different layers
of the TO have different stiffness parameters, thicknesses and fiber properties,
we expect deformations and stress distribution in general to be non-smooth
and non-monotonic with respect to the radial coordinate. Stresses may con-
centrate near the interface between different layers, making the tissue there
more vulnerable to damage or dislocation. Finally, we predict that in general,
TOs will not close their lumens completely when their inner layers experience
growth and/or swelling.
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