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Abstract
Porcine aortic valve leaflets are comprised of three layers, each of which has a different composition and consequently, different
mechanical properties. Each layer exhibits non-linear stress-strain behaviour and is modelled using a hyperelastic material
model. Our objective is to determine the mechanical properties of each layer from experimental force-indentation depth data,
ensuring that the material model parameters in each layer are unique and have converged to their correct values. To achieve
this objective, material model parameters are calculated using inverse finite element simulations and non-linear optimization
methods. To ensure that these parameters converge to their correct values, mathematical models of the indentation problem
are used to obtain approximate values of these parameters to be used as initial conditions in the finite element simulations.
This paper describes our progress with the development of these mathematical models and numerical simulations, as well as
our ongoing work to achieve our defined objective.
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Introduction

Calcific aortic valve disease (CAVD) is the most common dis-
ease of heart valves, affecting 25% of the population over of the
age of 65 years [1]. It is a progressive disease, in which the aor-
tic valve leaflets stiffen and eventually calcify. Currently, there
is no medical treatment for this disease and when leaflets be-
come severely calcified, valve replacement is the only treatment.
The progression of CAVD in the early stages is not well under-
stood, particularly at the cellular level. It has previously been
shown [2, 3] that cells in the valve leaflets, known as valve inter-
stitial cells, differentiate to pathological cell types in response
to changes in their mechanical environment and this cell differ-
entiation contributes to the progression of CAVD. Furthermore,
the cells sense these changes in their mechanical environment
at the microscale. It is therefore essential that more detailed
information be obtained concerning the microscale mechani-
cal properties of the extracellular matrix (ECM) surrounding
valve interstitial cells in leaflets in both healthy and pathological
states.

Porcine aortic valve leaflets, considered in this study, are used
in the Simmons Cellular Mechanobiology Laboratory as models
for human leaflets because they are similar in size, have similar
structure, and display similar structural and cellular changes
during early disease [4]. The leaflets are made up of three lay-
ers, which are, from the aorta side to the left ventricle side,
the fibrosa, the spongiosa, and the ventricularis. Each of these
layers has a different ECM composition, with the fibrosa being
a collagen-rich layer, the spongiosa being a proteoglycan-rich
layer, and the ventricularis containing collagen and elastin. Dif-
ferences in ECM composition lead to differences in mechanical
properties, with the fibrosa being the stiffest layer, followed by
the ventricularis, and the spongiosa [5, 6]. Further, the leaflet
layers are heterogeneous, with a strong spatial variation in their
mechanical properties, and the microscale mechanical proper-
ties of the fibrosa and ventricularis layers are nonlinear [6].

The objective of this study is to determine the local microscale
mechanical properties of each of the porcine aortic valve leaflet
layers from experimental data obtained from intact excised
leaflets. To achieve this objective, an inverse finite element
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approach is used in conjunction with non-linear optimization.
With a single set of force-displacement data per measurement lo-
cation, the inverse problem is ill-posed for a multilayer material.
To address this issue, mathematical models are used to approxi-
mate the material parameter values, and these approximations
are used as initial conditions for the finite element simulations
to ensure that the simulations converge to a solution that is both
unique and correct. Work on these mathematical models began
in July 2012 at the MBI Math Biosciences Problem-Solving
Workshop [7] and the work presented in this paper is the result
of ongoing collaborations amongst several of the participants
from this workshop.

1. Methods
This project is divided into four main parts: indentation experi-
ments, ultrasound imaging, mathematical models, and numeri-
cal simulations. Figure 1 is a flow chart illustrating the workflow
for the overall project. Because the focus of this paper is on
the mathematical and numerical parts of this study, the first two
parts, indentation experiments and ultrasound imaging, are only
briefly described in the following sections.

Figure 1. Project workflow diagram

1.1 Indentation experiments
Porcine hearts were obtained from a local abattoir (Quality
Meat Packers, Ltd., Toronto, ON, Canada). Aortic valve leaflets
were isolated and pinned to a silicone substrate, which was
embedded in a Petri dish. The leaflets were covered with a
small amount of phosphate buffered saline (PBS) and placed on
a sample stage for indentation. A purpose-built microindenter
was used to indent the leaflets with a cylindrical indenter tip
having a diameter in the range of 50-150 µm. Figure 2 is a
schematic of the leaflet-indenter system. Indentation forces and
the corresponding indentation depths were measured using this
system. The measured indentation depths were used as input
boundary conditions in the numerical simulations. An example
of an indentation force versus indentation depth data for two
locations on each of two leaflets is shown in Figure 3.

Figure 2. Schematic of leaflet indentation

Figure 3. Typical indentation force versus depth curves

1.2 Ultrasound
Following a method proposed by Qiu et al. [8], a pre-clinical
ultrasound system (Vevo 770; Visualsonics, Inc., Toronto, ON,
Canada) was used to obtain B-mode ultrasound images of the
aortic valve leaflets. These images, such as the one shown in
Figure 4, show a cross-sectional view of the leaflet, including
the three layers. Using image processing functions in MATLAB
(The MathWorks, Inc., Natick, MA, USA), these images were
filtered and segmented. The thicknesses of the layers were then
calculated from the segmented images and these thicknesses
were used to define the geometry in the numerical simulations.

1.3 Material models
Nonlinear stress-strain (or force-displacement) data can be mod-
elled by a hyperelastic material model, defined by a strain energy
density function W. In this study, we have chosen an exponential
form of W, which has previously been used to model soft tissues,
including aortic valve leaflets [9]. The incompressible form of
this material model is defined as

W =
C1

2

(
eC2(I1−3)−1

)
, (1)
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Figure 4. Segmented B-mode ultrasound image of the three
aortic valve leaflet layers

where C1 and C2 are material parameter values, I1 = ∑i λ 2
i is the

first invariant of Green’s strain tensor, λi = li/li,0 are the princi-
ple stretches, li is the material length, and li,0 is the undeformed
material length.

1.4 Mathematical models
Mathematical models are used to estimate the material proper-
ties of the leaflet layers from the experimental data, and these
estimated properties are used as initial conditions in the inverse
finite element simulations. This section describes the formu-
lations of these models. To simplify the models considerably,
contact effects between the indenter and the leaflet have been
neglected.

1.4.1 One-dimensional model
Starting from Equation (1), we consider a special case where
the only non-zero stress is in the x = x1 direction. In this case,
we have λ2 = λ3, and assuming incompressibility, we have

λ2 = λ3 =
1√
λ1

. (2)

The strain energy density function is now written as

W =
C1

2

(
eC2(λ

2
1 +2λ

−1
1 −3)−1

)
. (3)

The stress in the x direction can be obtained as

σ =−p+λ1
∂W
∂λ1

=−p+C1C2(λ
2
1 −λ

−1
1 )eC2(λ

2
1 +2λ

−1
1 −3), (4)

where p is the hydrostatic pressure.

1.4.2 One-layer problem
Let us consider a single leaflet layer of thickness h, where x = 0
is the bottom surface, and x = h is where the force F (per unit
area) is applied. From the equilibrium condition ∂σ/∂x = 0,
we have

−p+C1C2(λ
2−λ

−1)eC2(λ
2+2λ−1−3) = F. (5)

To simplify notation, we have dropped the subscript for λ1.
The value of p depends on the side boundary condition and for
simplicity we assume that p = 0. Equation (5) indicates that for
a given force, the stretch is a constant.

Equivalently, for a given indentation depth U , we can com-
pute the stretch λ = (h−U)/h. From Equation (5), we can
compute the force F . If we have a pair of indentation depth-
force values U(1)/F(1) and U(2)/F(2), we can easily back out
the material parameters C1 and C2 by solving for C2 first from
the ratio F(1)/F(2). Figure 5 is a plot of a force-indentation
depth curve for this one-layer model.

Finally, we note that if we take a third pair of measurement
U(3)/F(3), we can use it to find the thickness h. However, we
cannot do it using the simple approach outlined above. Instead,
we need to solve a coupled system of nonlinear equations for
C1, C2, and h.

Figure 5. Force-indentation depth curve for Equation (5) with
h = 1, C1 = 1, and C2 = 10. The symbols are the sample values
that were used to estimate the value for C2

1.4.3 Two-layer problem
Let us now consider two layers with different material parame-
ters Ci1 and Ci2 (i = 1, 2) and thicknesses h1 and h2, as shown
in Figure 6. Because stress is the same in each layer, we have

F = −p1 +C11C12(λ
2
1 −λ

−1
1 )eC12(λ

2
1 +2λ

−1
1 −3) (6)

= −p2 +C21C22(λ
2
2 −λ

−1
2 )eC22(λ

2
2 +2λ

−1
2 −3). (7)

For a fixed force F , Equations (6) and (7) indicate that both
stretches λi (i = 1, 2) are constants. Note that the subscript
for λ is now used to represent the different layers.

At the bottom x = 0, we have u1(0) = 0; on the interface
between two layers x = h1, we have u1(h1) = u2(h1); and at the
top x = h1 +h2, we have u2(h1 +h2) =U , where u1 and u2 are
the displacements in layers 1 and 2, respectively and U is the
indentation depth. The stretches are

λ1 = 1− u1(h1)

h1
, (8)

λ2 = 1−U−u1(h1)

h2
= 1+

h1

h2
− U

h2
− h1

h2
λ1. (9)
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Figure 6. Diagram of two-layer problem

For simplicity, we assume that the far field side conditions
are such that p1 = p2 = 0. For each force F , we have three
equations

h1λ1 +h2λ2 = h1 +h2−U (10)

and

F = C11C12R(λ1)eC12S(λ1) (11)

= C21C22R(λ2)eC22S(λ2). (12)

To simplify notation, we have used

R(λ ) = λ
2−λ

−1, S(λ ) = λ
2 +2λ

−1−3.

In Figure 7, we have plotted the force-λ curve to illustrate the
nonlinear behaviour.

Figure 7. Force-λ curve for Equation (12) with h1 = h2 = 1,
C11 =C21 = 1, C12 = 10, and C22 = 2C12

In general, the procedure for finding the material parameter
values is more complicated for multilayer problems. When de-
formation is small, λ = 1+δ with δ � 1. In this case, R(λ )∼
δ +δ 3 and S(λ )∼ 2δ 2, from which we have R(λ )exp(C2S(λ ))∼
δ +(1+ 2C2)δ

3. Thus, depending on relative sizes of δ and
C2, we might have a linear or cubic nonlinearity as two special

cases. In Section 2.1, we will use these two special cases to
illustrate the non-uniqueness for the linear case and a solution
procedure for the cubic nonlinear case.

1.4.4 Two-dimensional model
The one-dimensional model described in the previous section
provides some useful information. However, its ability to accu-
rately predict the material parameters is limited, so we consider
a model that will be used to provide reasonable approximations,
while being less computationally expensive than the ANSYS
finite-element model discussed in detail in Section 1.5. The
goal is to use this simpler model to obtain good first estimates
of the material parameters, which will ultimately enable faster
convergence of the optimization process when using the more
physically accurate material model (Equation 1). The results
from this model will also provide a means of verifying the
results of the ANSYS simulations.

For a general strain energy density function W = W (F),
where F is the deformation gradient, the Cauchy stress T can be
related to the deformation by

T = J−1F · ∂W
∂F
− pI, (13)

where p is as previously defined and J is the determinant of F.

We introduce a Lagrangian measure of the stress, specifically
the first Piola-Kirchoff stress tensor P given by

P = JTF−T , (14)

which relates forces with respect to the current configuration to
those with respect to the reference configuration. The reference
configuration is defined to be the configuration of the layers
when no external force is applied, and the coordinates of the
reference configuration are defined as the Cartesian coordinates
(X ,Y,Z).

The equation for the balance of linear momentum in terms of
P is

DivP = 0, (15)

where the operator Div is the divergence with respect to the
reference configuration.

Now, in order to produce a tractable model, we make the
following assumptions. First, we consider the two-dimensional
problem, i.e. we consider that all dependent variables are inde-
pendent of Y . Second, we assume incompressibility, in which
case we have J = 1. We also will ignore the contact problem of
the indenter with the material. Finally, we consider a simplifica-
tion of the material model. From the previous section, we know
we must consider a nonlinear model. As a first consideration,
we will assume a neo-Hookean material model, which may be
considered as a weakly nonlinear version of the exponential
model of Equation (1). In particular, we consider the strain
energy density function W =C(I1−2), where C is a material
constant and I1 is as in Equation (1). Below, we will see that this
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model is not able to reproduce the force-deformation data of
the experiments. However, the assumption provides significant
simplification, while it is still expected to provide a reasonable
first approximation.

With these assumptions, in the case where there is a single
layer, Equation (15) becomes

∂PXX

∂X
+

∂PXZ

∂Z
= 0, (16a)

∂PZX

∂X
+

∂PZZ

∂Z
= 0, (16b)

uX +wZ +uX wZ−uZwX = 0, (16c)

where u = (u,w) is the displacement vector and

PXX = [2C((1+uX )
2 +u2

Z)− p](1+wZ)

−2C[(1+uX )wX +uZ(1+wZ)]uZ , (17a)

PXZ =−[2C((1+uX )
2 +u2

Z)− p]wX

+2C[(1+uX )wX +uZ(1+wZ)](1+uX ),
(17b)

PZX = 2C[(1+uX )wX +uZ(1+wZ)](1+wZ)

− [2C(w2
X +(1+wZ)

2)− p]uZ , (17c)
PZZ =−2C[(1+uX )wX +uZ(1+wZ)]wX

+[2C(w2
X +(1+wZ)

2)− p](1+uX ). (17d)

The boundary conditions around the outer walls of the rect-
angular geometry are

u = 0, w = 0, on Z = 0, (18a)
PXX = 0, PZX = 0, on X =±1, (18b)
PXZ = 0, PZZ = τδ (x), on Z = h. (18c)

For the case of a two-layered model, Equations (16)–(18) hold
in each layer and we use the notation u(i),w(i), p(i), i = 1,2 to
denote u,w and p evaluated in the lower and upper layers, re-
spectively. At the interface of the two layers, Z = h1, the associ-
ated tractions need to be equal but opposite, which requires the
stress to be continuous across Z, and the vertical displacement
must be equal, thus

P(1)
ZZ = P(2)

ZZ , w(1) = w(2) on Z = h1, (19)

where Z = h1 is the interface of the layers in the initial configu-
ration.

1.5 Numerical simulations
Finite element simulations were performed using the commer-
cial software ANSYS (ANSYS, Inc., Canonsburg, PA, USA).
The leaflet-indenter system was modelled using a two-dimensional
axisymmetric geometry. The indenter was modelled as a rect-
angle with a filleted bottom corner. This filleted corner mimics
the actual indenter, which has slightly rounded edges. Layer
heights, which were either arbitrarily defined or based on calcu-
lations made from segmented ultrasound images, were assumed
to be constant over the simulation geometry, and the width of

the leaflet geometry was assumed to be sufficiently large to
make edge effects negligible, but not too large as to increase the
computational time for the simulations unnecessarily. The in-
denter was meshed using 6-node triangular elements, while the
leaflet layers were meshed using 8-node quadrilateral elements,
with elements concentrated near the indeter and at the interfaces
between layers. An example of the model geometry and mesh
is shown in Figure 8.

Figure 8. Leaflet-indenter system geometry and mesh

Indentation depths, either representative values or values from
measurements, were applied as input boundary conditions to
the top edge of the indenter. The left edges of the geometry are
axisymmetric boundaries, and the right edges are free bound-
aries. There is no slip between the layers, and no displacement
on the bottom. Contact boundary conditions, defined through
the use of contact and target elements in ANSYS, were applied
to the top edge of the leaflet and the bottom, curved and right
edges of the indenter.

Large displacement static simulations of the leaflet indenta-
tion were performed. The indenter was assumed to be a linear
elastic material with E = 2× 108 kPa and ν = 0.49. Each
leaflet layer was assumed to be slightly compressible (to allow
for numerical convergence), isotropic, and homogenous over the
simulated geometry. Initial simulations were performed using a
neo-Hookean material model, defined as

W =C(Ī1−3)+
1
d
(J−1)2, (20)

where Ī1 is the first deviatoric strain invariant, d is the incom-
pressibility parameter, and J is the determinant of the deforma-
tion gradient tensor F.

It has previously been shown [10] that if the incompressibility
parameter d is selected sufficiently small, the compressibility ef-
fects in the slightly compressible form of a hyperelastic material
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model become negligible and the results for the slightly com-
pressible material model converge to those for the equivalent
incompressible material model. Therefore, material parameter
values calculated from mathematical models that use the incom-
pressible form of W are equivalent to values used in simulations
performed with the slightly compressible form of the same W.

1.6 Nonlinear optimization
To determine the material parameter values for each leaflet layer
from the measured data, an inverse finite element approach was
used in conjunction with nonlinear optimization in MATLAB.
The finite element model has been written in a text-based input
format that allows for straightforward modifications to the input
parameters. By defining the finite element model in this manner,
it allowed the finite element simulations to be modified and run
from within MATLAB. The sequence of steps is as follows:

1. Input values for indentation depths, layer heights, and
material model parameters are defined either arbitrarily
or from measured data and mathematical models.

2. ANSYS input file automatically modified with these val-
ues.

3. Finite element simulations performed and indentaion
force versus indentation depth data is output.

4. Indentation force versus indentation depth data is im-
ported into MATLAB and the least squares error is cal-
culated between the input and output data from the finite
element simulations.

5. If the least squares error is less than a threshold, then
the simulations are complete and the material parameter
values are determined. If the results have not converged,
non-linear optimization, using the fmincon function in
MATLAB, is used to calculate new material model param-
eter values. The simulations are repeated in this manner
until convergence has been reached.

2. Results and Discussion

2.1 Mathematical models
For the two-layer one-dimensional problem, described in Sec-
tion 1.4.3, we have performed numerical tests for the linear and
cubic nonlinear cases. For these tests, we have assumed the bot-
tom layer (1) to have linear material properties and the top layer
(2) to have nonlinear properties. Note that as in Section 1.4.3,
the subscripts in this section represent the different layers. For
the linear case, we have F = C̃1δ1 = C̃2δ2 and h1δ1 + h2δ2 =
−U , where C̃1 =C11C12 and C̃2 =C21C22(1+2C22). These two
relationship lead to

h1

C̃1
+

h2

C̃2
=−F

U
. (21)

Therefore, taking multiple measurements does not help to find
C̃1 and C̃2, and the solution is not unique.

For the nonlinear case, however, things are different. We
consider the simplest possible case with a combination of a
linear elastic layer with a cubic nonlinear elastic layer, F =

C̃1δ1 = C̃2δ 3
2 and h1δ1 +h2δ2 =−U . In this case, we have

1

C̃1
h1F +

1

C̃1/3
2

h2F1/3 =−U. (22)

We can solve for C̃1 and C̃2 using a least squares approach with
multiple measurements F(k) and U(k) by solving the following
over-determined linear system

Ax = y (23)

where the i-th row of A and y are given by

Ai = [h1F(i); h2F1/3(i)], yi =−U(i), (24)

with two unknowns x1 = 1/C̃1 and x2 = 1/C̃1/3
2 . In Figure 9, we

have the force-indentation depth curve for C̃1 = 1 and C̃2 = 50
without, and with, a normally distributed random measurement
error. The material parameter values are estimated as C̃1 = 1
and C̃2 = 50 (without noise) and C̃1 = 0.983 and C̃2 = 56.20
(with noise, σ = 0.015).

Remark. Note that for the more general nonlinear elasticity
F = C′1(δ +C′2δ 3), the procedure is almost the same except
that we need to solve a cubic equation for δ before setting up
the least squares problem. For the more general exponential
elasticity R(λ )exp(C2S(λ )), however, a numerical method is
needed.

Work is ongoing to extend the one-dimensional models to
three layers and to incoroporate nonlinear material properties in
all of these layers. A tailor-made solver is being developed to
study the two-dimensional nonlinear problem. This solver will
initially look at the two layer problem and then will be extended
to three layers.

2.2 Numerical simulations
Numerical simulations of the forward problem have been suc-
cessfully performed with arbitrary indentation depths, layer
heights, and material parameter values, using the neo-Hookean
material model. Figures 10 and 11 are contour plots of the
resulting nodal displacements and von Mises stresses, respec-
tively. These results show the feasibility of performing the finite
element simulations of this indentation problem.

The neo-Hookean material model (Equation 20) was chosen
for initial simulations, because it only has one unknown and is
already implemented in ANSYS. However, the resulting stress-
indentation curves (Figure 12) did not have the same trend as
the indentation force-depth measurements. More specificaly,
the numerical results show a nearly linear stress-indentation
depth relationship, while the measured indentation force-depth
curves had exponential forms. The next step is to perform the
simulations with the exponential hyperelastic material model
(Equation 1), which is not implemented in ANSYS and requires
a user-defined function. Work on this user-defined function is
ongoing, and subsequent simulations will be performed using
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(a) (b)

Figure 9. Force-indentation depth curve for the linear-cubic test case with C̃1 = 1 and C̃2 = 50: (a) without measurement noise
and (b) with normally distributed measurement noise with σ = 0.015.

Figure 10. Contour plot of nodal displacements (in mm)

the slightly compressible version of Equation (1), which is
defined as

W =
C1

2

(
eC2(Ī1−3)−1

)
+

1
d
(J−1)2, (25)

Figure 11. Contour plot of von Mises stresses (in kPa)

2.3 Nonlinear optimization
Steps 1-3 of the sequence defined in Section 1.6 have been suc-
cessfully implemented. That is, the finite element simulations
can be run and modified from within MATLAB. These simu-
lations have so far been run using representative data. Upon
implementation of the user-defined material model based on
Equation (25) in ANSYS, specimen-specific simulations will be
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Figure 12. Stress-indentation depth curves from simulations
with the neo-Hookean material model

performed using the previously described sequence of steps. At
this point, the nonlinear optimization function will be added to
the workflow so that material parameter values can be calculated
from the experimental data.

3. Conclusions
A combined experimental and computational method has been
proposed for determining the microscale mechanical properties
of each of the three layers of porcine aortic valve leaflets. A
microindenter has been built to measure indentation force and
depth, and image processing tools have been developed to calcu-
late leaflet layer heights from ultrasound images. Mathematical
models have been developed for one-dimensional problems for
one and two layer models. Numerical examples have been pre-
sented to illustrate the two cases for a two-layer one-dimensional
problem, linear, which does not lead to a unique solution for
the material parameters, and cubic nonlinear, which does lead
to a unique solution for the material parameters assuming suf-
ficient data points are available. A numerical method for two-
dimensional problems has been proposed and a custom solver
is currently being developed for this problem. Finite element
simulations of the leaflet-indenter system have been performed
for a simple hyperelastic material model and work is presently
underway to implement the proposed exponential hyperelas-
tic material model in ANSYS and repeat the simulations with
this model. Upon completion of these simulations, specimen-
specific simulations will be performed coupled with non-linear
optimization to calculate the material parameter values for each
of the leaflet layers.
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