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ABSTRACT

Karlodinium veneficium is type of dinoflagellate that feeds on planktonic species

such as Storeatula major. It is associated with fish kills due to harmful algae blooms

by releasing a compound called Karlotoxin. This toxin is known to affect their prey’s

bio-locomotion by stunning them and slowing them down. In this dissertation, we

investigate whether the toxin plays a crucial role in aggregating the prey around the

predators. The effect of aggregating prey around the predators is ecologically significant

since it greatly boosts K. veneficium’s feeding and reproduction rate, leading to a

population surge, eluding a possible mechanism for producing algal blooms.

We closely examine the toxin’s influence on the prey’s probability density dis-

tribution under the Goldstein-Kac modeling framework with different assumptions on

their relative speed in 1-D, with either the predator being stationary or swimming at

a constant speed. When the predator is stationary, we fully solve the prey’s density

distribution for all times, and verify the result by a Monte-Carlo simulation. For a

swimming predator, we find the steady-state density distribution of prey analytically.

When the predator’s speed is strictly greater (or less) than the prey, the results are

verified by Monte-Carlo simulations. When their relative speed has roots, singularities

occur in the Goldstein-Kac system, and we perform a local analysis for prey’s density

at steady-state near the roots using the method of Frobenius, and use the result to

derive a scheme for finding the analytical solution. For the relative speed in this case,

assuming a right-swimming Karlodinium, the roots will occur at the left and right of

the Karlodinium and we can get at worst an integrable singularity and at least a local

maximum in the wake (the left root), depending on the flipping rate and the slope

of the relative speed at this root. Near the other root, the prey’s density in either

direction can be represented by a Taylor series and is thus smooth. With the presence
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of roots for the relative speed, the analytical solution is verified by a finite difference

scheme due to poor performance in Monte-Carlo simulations.

For all the cases mentioned above, toxin changes the prey’s distribution and in

most cases leads to aggregation, however the maximum density does not always occur

where the toxin has the highest concentration. In reality, such a result suggests that

toxin density greatly influences the prey’s distribution, however the distribution is also

a result of predator and prey’s relative movement. When their relative speed is of

single sign, the toxin dominates. When their relative speed fluctuates around 0, both

the toxin and their relative movements contributes to prey’s distribution.
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Chapter 1

INTRODUCTION

1.1 Motivation

Karlodinium veneficium is a type of phytoplankton present in coastal regions

in the ocean. K. veneficium are mixotrophic species, capable of photosynthesis and

preying on multiple plankton species such as Storeatula major. Occasionally large scale

algal blooms occur in a coastal environment due to population surge of K. veneficium,

turning the sea water brown. Such algal blooms occur more frequently when their

habitat environment is ideal in terms of temperature, nutrient level, predators etc.

However, it is also known that its photosynthesis is not strong enough to support such a

macro scale algal bloom. Studies have shown that the consumption of prey contributes

largely to their nutrient intake, thereby leading to a population surge (Place et al.,

2012; Sheng et al., 2010).

Some strains of K. veneficium are capable of releasing a toxin, called Karlotoxin,

especially in the presence of prey. The toxin slows down and stuns the prey, potentially

providing the predator with an advantage by aiding the feeding process. Also, this toxin

pollutes the surrounding water and kills fish during large scale algal blooms, resulting in

enormous ecologic and economic impact upon coastal communities (Place et al., 2012;

Sheng et al., 2010). While it is intuitive to suppose that slowing down and stunning

surrounding prey provide an edge for the predator, the standalone impact of toxin on

prey aggregation has yet to be fully explored.

1.2 Literature Review

In a series of studies conducted by Sheng et al, with the aid of digital holographic

microscopy devices, the full 3-D swimming trajectories of K. veneficium and its prey S.
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major were captured and analyzed. In its summary statistics, the prey has relatively

large acceleration value and small radius in its helical trajectory, alongside with the

ability to swim in straight lines in the presence of a predator (Sheng et al., 2010).

Studies that quantitatively examined the legitimacy of the run-and-tumble model

for microswimmers focused mostly around E. coli, with some of the most influential

work done in Berg’s seminal book (Berg, 2008), where the run-and-tumble movement

is described as moving mostly in a straight line, with intermittent sudden directional

changes. The run-and-tumble mechanism specifically is described as the E. coli rotating

their motors clockwise and counterclockwise to control their flagella. Specifically, when

the flagella rotate counterclockwise, they lead to a straight swimming motion; when

they rotate clockwise, E. coli tumbles instead due to its physical shape. The run-and-

tumble behavior leads to those observed zigzagging swimming trajectories (Berg and

Brown, 1972; Berg, 2008). Childs and Keener (2018) modeled the exact bio-mechanism

of the stochastic direction switching between clockwise and counterclockwise rotation

of the motor as a Markov process. They managed to greatly reduce the total states of

the motor to 2 under moderate assumptions with good fit to the available switching

frequency data. They provided justification for the run-and-tumble model, confirming

that such an abstraction is not an over-simplification for micro swimmer movements

driven by flagella, which is the case for the prey species such as S. major (Cerino and

Zingone, 2006).

Swimmers react to their nearby chemical environment. There are two types

of reaction mechanisms: chemotaxis where the swimmer reacts to the chemical gra-

dient, and chemokinesis where swimmer reacts to just the chemical density (Hillen

and Painter, 2009). For both mechanisms, studies of the swimmers’ bio-locomotion

have been conducted under different frameworks, and there are two main types of

models: The Brownian type that is diffusive in nature with independent Gaussian in-

crements for any time interval (therefore infinite speed in the sense of infinite total

variation within any time interval, and infinitely frequent direction changes), which

usually leads to parabolic equations; and the jump-process type such that the tumbles

2



(direction changes) are modeled as a discrete arrival process with the speed of the

swimmer being finite in between adjacent direction changes, which often leads to hy-

perbolic equations derived from the conservation law. There are representative models

such as the Keller-Segel model (Keller and Segel, 1970) and the Goldstein-Kac model

(Goldstein, 1951; Kac, 1974) respectively for the Brownian and the jump-process type,

studying chemotaxis and chemokinesis. Both models aim to capture some key aspects

of the observed random walk from microswimmers, with the jump-process model gen-

erally considered appropriate at relatively smaller temporal and spatial scales, and the

Brownian model suitable for larger scales such as in an ecosystem.

With no further quantitative measurements of S. major’s movements available,

we decide to adopt the commonly used run-and-tumble model under the Goldstein-Kac

framework (Goldstein, 1951; Kac, 1974), as it provides great flexibility for describing

the stochastic nature of their movements. Holmes (1993) conducted a direct compar-

ison between the two frameworks and concluded that the difference is only significant

under fast reproduction or ecological invasion, whereas under moderate biological cir-

cumstances the differences are small. Stevens and Othmer (1997) gave definitions for

population aggregation, blow-up and collapse, for small organisms moving under the

influence of a modulator substance. They showed that finite-time blowup can hap-

pen with superlinear growth of the modulator, and a collapse in population density

happens with only linear growth rates. D’Orsogna et al. (2003) compared and disen-

tangled self-generated chemotaxis and chemokinesis, focusing on a single cell, and had

results verified by agent-based Monte-Carlo simulations. Hillen (2002) started from the

Goldstein-Kac model and derived that under different dimensions and limit conditions,

this model can approach a Brownian motion with different diffusivities. Taktikos et al.

(2011) conducted a thorough analysis on autochemotaxis, studying microswimmers un-

der signaling particles released by themselves, and concluded that even under strong

attractive autochemotaxis the long-time diffusion is still present, and attractive au-

tochemotaxis leads to aggregation. For our analysis, we study the aggregation of prey

assuming that the strength of Karlotoxin is fully described by the toxin’s concentration,

3



and the toxin influences the bio-locomotion of prey by slowing them down.

For finding analytical solutions under the Goldstein-Kac framework, Martens

et al. (2012) fully solved the 2-D run-and-tumble problem under constant speed and

complete randomization of directions after each tumble by comparing it with the

Lorentz kinetic model for electrons. Recently Angelani and Garra (2019) specifically

studied the 1-D version of run-and-tumble with spatially varying speed, under several

boundary conditions in a finite domain.

Aside from achieving analytical solutions, agent-based simulations of microswim-

mers also pose challenges. With simulation, swimmers can react in a more complicated

manner to their environment. Emonet et al. (2005) created the AgentCell platform to

simulate cell motions in 3-D, taking account of various biochemical processes within

the cell. Lushi and Peskin (2013) took into account hydrodynamic flows generated by

swimmers and their effect on aggregation and pattern formation in a confined space,

verified by laboratory observations.

However, few authors have studied the density of microswimmers analytically

under the assumption of a chemical field with evolving concentrations. The evolving

Karlotoxin concentration is suggested by the following key observations: First, toxic

compounds diffuse and decay. Second, the source of Karlotoxin, the Karlodinium

species, are active chasing predators (Place et al., 2012; Sheng et al., 2010). Third, the

near field concentration of toxin around predators is high (Sheng et al., 2010). Therefore

we aim to investigate the influence of toxin upon prey under some assumptions of an

evolving toxin field that are simplifications of such marine environments. This is a first

step toward understanding the more complex dynamic systems that exist in the real

world.

In this thesis, we first propose a variant of Goldstein-Kac PDE system for the

prey’s density to account for the run-and-tumble motions and the speed’s dependence

upon the toxin concentration. Our results are verified by agent-based Monte-Carlo

simulations of the original plankton behavioral model. Then, in the presence of a

single swimming K. veneficium, we discuss the steady-state distributions for the prey’s
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density which depends strongly on the prey’s speed relative to the predator. When

their relative speed has no roots, the global analytical solution is found and verified

by Monte-Carlo. When the prey and predator’s relative speed has roots, various types

of singularities occur in the system that fundamentally change the location of prey’s

maximum density. In addition, the PDE system fails to be strictly hyperbolic at the

roots. We investigate the local behaviors of the solution near the singularities, and

then propose a scheme for finding the global analytical solution of swimmer’s density

and verify it through finite difference. The fact that such richness and complexity

entail from such a simple model holds its own charm and may further lead to potential

abstract studies in the PDE system itself.

1.3 Goldstein-Kac Model Overview

The Goldstein-Kac model originally arises from studying 1-D random walks in

continuous space and time: assuming the random walker can move either to the left

or right at a constant speed s, and the time interval length in between two adjacent

direction changes is distributed exponentially with rate F . Further, assuming the

direction switching is instantaneous, we arrive at the following coupled PDEs:
∂P+

∂t
(x, t) + s∂P+

∂t
(x, t) = FP−(x, t)− FP+(x, t),

∂P−
∂t

(x, t)− s∂P−
∂t

(x, t) = FP+(x, t)− FP−(x, t),

(1.1)

where P+(x, t) is the probability density for a right-moving random walker at (x, t),

and P−(x, t) is the same but for a left-moving random walker.

This model is a great starting point for analyzing the classic run-and-tumble

models in 1-D, and a sizable amount of studies have been conducted on studying its

diffusion limits such as by Hillen (2002) and by Holmes (1993). Further generalizations

can be taken, for example, by having different flipping rate for left-to-right and right-to-

left, or letting random time between two adjacent direction changes following another

distribution that is not exponential.

One may also recognize its similarity to 1-D Broadwell equations that are used

for modeling gas molecules introduced by Broadwell (1964), except that the source
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terms on the right hand side of the equations are from particle collision instead of

spontaneous direction switching. Indeed, both the Broadwell model and the Goldstein-

Kac model come from the overarching conservation law of the following form:

∂

∂t

∫
Ω

udΩ +

∫
Ω

∇ · f(u)dΩ =

∫
Ω

g(u)dΩ, (1.2)

for some quantity u with flux f and source function g.

1.4 Dissertation Outline

The work presented in this dissertation is divided into the following chapters.

Chapter 1 gives the biological background of our work, the qualitative descrip-

tion of the problem and the a short introduction to the Goldstein-Kac model. We

also review different approaches for related topics, especially random walkers under

the influence of chemicals.

Chapter 2 introduces the governing equations we use in our model. At first we

derive the Goldstein-Kac PDEs that we will use in 1-D, starting from a generic 2-D

conservation law. Also we prove the equivalence of two models based on the Goldstein-

Kac PDEs used in Hillen (2002) and Othmer et al. (1988). We then establish the

evolution equation for the toxin’s concentration, and we non-dimensionalize it and

derive its steady-state solution.

Chapter 3 discusses in detail under different situations, how the toxin influences

the concentration of the prey density. Specifically we cover the case when the toxin

concentration is static, and the steady-state case when the predator (source of the

toxin) moves at a constant speed. In some situations singularities occur in the system,

making the prey aggregate not around the predator but at the wake. When the predator

moves, we also discuss the characteristic curves of the system and how they influence

the aggregation. When the relative speed has roots, we present the local analysis near

the roots using the method of Frobenius, and then derive the global analytical solution

using the result. Overall, we manage to find the analytical solutions for all of the

situations.
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Chapter 4 examines the numerical methods that are used to validate our analyt-

ical solutions. Specifically we incorporate a Monte-Carlo scheme when its applicable.

When the predator and prey’s relative speed has simple roots, the Monte-Carlo scheme

performs poorly, and we use a modified finite difference scheme for our result. We ex-

plain in detail of both the Monte-Carlo algorithm and the finite difference scheme of

our choice. In the end, we compare and justify the analytical results from Chapter 3

with our numerical solutions.

Chapter 5 arrives at the conclusions for our work, and discusses the biological

interpretation of our key results. We also briefly summarizes our major analytical and

numerical methods with connections to previous work. We then layout our future work

and discuss the potential research directions.
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Chapter 2

GOVERNING EQUATIONS

2.1 Derivation of Goldstein-Kac Equations

We first present a model for the prey’s probability density P on a 2-D domain,

then focus on the 1-D case. We assume that the prey do not interact with each other

and they move independently. Since the only role of K. veneficium is to release back-

ground toxin, we just need to model the density function of the prey in the presence

of Karlotoxin. Without ambiguity, we can refer to prey as “swimmers”. The concen-

tration of toxin is denoted c(x, t), and the speed of a swimmer, s(c), depends solely

on the spot toxin concentration. The swimmer may run and tumble, and the turning

frequency or turning rate is F , a constant. Suppose further that the time taken to

change direction is zero (i.e., turning is instantaneous). The velocity of the swimmer is

v satisfying |v|= s with an associated angle, or “state” φ ∈ [0, 2π), measured relative

to a fixed positive direction. Thus, as discussed by Othmer et al. (1988); Hillen (2002),

from conservation of the prey’s population we have:

∂

∂t
P (φ,x, t) +∇ · (vP (φ,x, t)) = −FP (φ,x, t) + F

∫ 2π

0
T (φ, φ′)P (φ′,x, t)dφ′. (2.1)

The right hand side of (2.1) represents all possible ways that swimmers can

leave or enter a state φ: The first term represents swimmers tumbling away from the

state φ with rate F (the flip rate); The second term represents swimmers transitioning

from a state φ′ to the state φ, φ 6= φ′, again with rate F . We have further assumed

that when a tumble occurs the speed of the swimmer does not change.

Here, T (φ, φ′) is the angular probability transition kernel of the direction φ in the

new state, given the angle φ′ in the previous state. There are two common approaches
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to reduce (2.1) to 1-D introduced by Othmer et al. (1988) and Hillen (2002). We adopt

Othmer’s form in which the new angle φ after a tumble must be different from the old

angle φ′. In contrast, in Hillen’s derivation, φ = φ′ is allowed for each tumble. We

later will prove the two approaches can indeed describe the same stochastic process

with appropriate flip rates F respectively in Sec. 2.1.1.

Equation (2.1) has been widely used to describe other similar systems such as

bacteria run-and-tumble (Berg, 2008) and gas dynamics (Christlieb et al., 2004). Note

that analytical solutions for (2.1) are quite difficult to achieve in general, even under

moderately simple assumptions on the transition kernel.

To reduce (2.1) to 1-D, introduce the unit radial vector e(φ) = (cos(φ), sin(φ))

for convenience. Specifically, e(0) = (1, 0) and e(π) = (−1, 0). We can then write

v(φ,x, t) = e(φ)s(c) = e(φ)s(x, t),

where the Karlotoxin concentration c(x, t) is assumed to only influence the swimming

speed, not the angle during a tumble. In 1-D, we have only two directions and we can

let φ ∈ {0, π} without loss of generality. We get v = e(φ)s(x, t) = ±s(x, t). Assuming

equal preference in both swimming directions for all tumbles, we must have in 1-D:

T (φ, φ′) = δ(φ′ − φ− π),

because the only angle that φ can come from that is not φ must be φ+ π. Thus (2.1)

becomes

∂

∂t
P (φ, x, t) +

∂

∂x
(e(φ)s(x, t)P (φ, x, t)) = −FP (φ, x, t) + FP (φ+ π, x, t), (2.2)

where e(0) = 1 and e(π) = −1. It is convenient to denote P (φ = 0, x, t) = P+(x, t),

the probability density for right-moving swimmers and P (φ = π, x, t) = P−(x, t) for

the left-moving swimmers. We arrive at the following Goldstein-Kac system with

generalized flux terms:
∂
∂t
P+(x, t) + ∂

∂x
[s(x, t)P+(x, t)] = F (P−(x, t)− P+(x, t)),

∂
∂t
P−(x, t)− ∂

∂x
[s(x, t)P−(x, t)] = F (P+(x, t)− P−(x, t)).

(2.3)
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Indeed, if we further let s(x, t) be a constant, then we reproduce the original Goldstein-

Kac equations in (1.1). To distinguish from the non-dimensional terms that will be

used for the majority of our analysis later, we rewrite all dimensional terms in 1-D that

have dimensionless counterparts with a hat. Therefore (2.3) becomes:
∂
∂t̂
P̂+(x̂, t̂) + ∂

∂x̂
[ŝ(x̂, t̂)P̂+(x̂, t̂)] = F (P̂−(x̂, t̂)− P̂+(x̂, t̂))

∂
∂t̂
P̂−(x̂, t̂)− ∂

∂x̂
[ŝ(x̂, t̂)P̂−(x̂, t̂)] = F (P̂+(x̂, t̂)− P̂−(x̂, t̂)).

(2.4)

All the systems discussed in this dissertation are solved assuming periodic

boundary conditions. We achieve this by equating each probability current’s inflow

and outflow at each end of the domain. If the domain has length L,

ŝ(0, t̂)P̂+(0, t̂) = ŝ(L, t̂)P̂+(L, t̂), (2.5)

ŝ(L, t̂)P̂−(L, t̂) = ŝ(0, t̂)P̂−(0, t̂). (2.6)

2.1.1 The Equivalence of Two Popular Models

Consider a continuous time stochastic process {v(t)}t≥0 with state space {−1, 1}

and time t. With the above setting, Othmer’s approach (Othmer et al. 1988) and

Hillen’s approach (Hillen 2002) can be expressed as the following two models, and we

aim to show their equivalence for a given positive constant F .

Model 1 (Othmer): Consider the homogeneous Poisson counting process N1(t)

with event interarrival time τ1 ∼ Exp(F ), N1(0) = 0. N1 must increase its value by 1

at each event, and v1(t) = (−1)N1(t). Here N1 is the counter for the number of events.

Since in this approach every new swimming direction has to come from a previously

different direction, N1 increases at each event, and therefore is the counter for the

effective number of direction changes.

Model 2 (Hillen): Consider the homogeneous Poisson counting process N2(t)

with event interarrival time τ2 ∼ Exp(2F ), N2(0) = 0. Suppose another stochastic

process N∗2 (t) defined recursively as:
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1. N∗2 (0) = 0;

2. Suppose ti (i ≥ 1) is the time for the i-th increment in N2(t), and set t0 = 0 then

N∗2 (t) =

N∗2 (ti−1), t ∈ (ti−1, ti),

X +N∗2 (t−i ), t = ti,

where X is a Bernoulli random variable with state space {0, 1}, independent from

the stochastic processes N1 and N2, and takes each value with equal probability.

Then we define v2(t) = (−1)N
∗
2 (t). Here N2 is the counter for the number of events

but N∗2 is the counter for the effective number of direction changes. They are not

equivalent under Hillen’s model because at each tumble, the “new” swimming angle

can come from the same angle, where it is not counted towards an effective direction

change.

Figure 2.1: A realization of the N2(t) and an associated N∗2 (t) stochastic process using
F = 1.

To prove the two models’ equivalence, it is sufficient to prove that for all t ≥ 0:

Prob(v1 = 1, t) = Prob(v2 = 1, t). (2.7)

Proof. For model 1,

Prob(v1 = 1, t) = Prob{N1(t) is even} =
∞∑
n=0

(Ft)2ne−Ft

(2n)!
= e−Ft cosh(Ft). (2.8)
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For model 2, the process is equivalent to tossing a fair coin whenever an event occurs

for the process N2: If the result is head then increment N∗2 by 1, if the result is tail

then do not increment N∗2 . Using the result below

Prob{number of heads is even in n tosses} =
1

2
, n ≥ 1, (2.9)

we arrive at

Prob(v2 = 1, t) = Prob{N∗2 (t) is even}

= Prob{N2(t) = 0}

+
∞∑
n=1

Prob{N2(t) = n}Prob{number of heads is even in n tosses}

= e−2Ft +
1

2

∞∑
n=1

(2Ft)ne−2Ft

n!

= e−2Ft

(
1

2
+

1

2

∞∑
n=0

(2Ft)n

n!

)

= e−2Ft

(
1 + e2Ft

2

)
= e−Ft cosh(Ft).

(2.10)

2.2 Evolution of Toxin Concentration

In our model, the speed |v| depends on the toxin concentration because Kar-

lotoxin has the effect of slowing down the swimmers. We propose the following evolu-

tionary model for the toxin concentration c(x, t) for a constantly moving toxin source

(the predator) to pair with (2.1): Assume the predator is moving with a constant ve-

locity v0 in an unbounded domain. The predator secretes toxin at a constant rate α.

The toxin particle diffuses with rate κ and decays with rate β. This whole process is

governed by the following PDE:

ct = κ∇2c− βc+ αδ(x− v0t− γ), (2.11)
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where κ, β are positive constants, and γ is the source’s starting position. δ(x) is the

multi-dimensional dirac-delta function, representing the point source releasing toxin.

We focus on the steady-state solution in the reference frame of the predator

for P± in (2.4) over a periodic domain. In general, the problem for the conservation

system in (2.4) with evolving flux terms is quite difficult to solve analytically. For its

well-posedness and stability, comprehensive analysis is done in the book by Bastin and

Coron (2016). To begin with, we need to find the steady-state solution for the toxin

concentration. In 1-D (2.11) becomes:

ĉt̂ = κ̂ĉx̂x̂ − β̂ĉ+ α̂δ(x̂− s0t̂− γ̂). (2.12)

Its non-dimensional solution is constructed as follows: Set t̂ = t
F

, x̂ = s0x
F

and

ĉ = α̂c
s0

, where the quantities without the hat accent are dimensionless. We have

ct =
κ̂F

s2
0

cxx −
β̂

F
c+ δ(x− t− F γ̂

s0

). (2.13)

Introduce the Galilean transformation x←[ x− t:

ct =
κ̂F

s2
0

cxx + cx −
β̂

F
c+ δ(x− F γ̂

s0

). (2.14)

Then we replace κ̂F
s20

= κ, β̂
F

= β and F γ̂
s0

= γ. See Table 2.1 for a summary of definitions.

Now drop the temporal term for the steady-state solution:

0 = κc′′ + c′ − βc+ δ(x− γ). (2.15)

This moving reference frame approach is also present in the work by Fu et al. (2018)

for analyzing traveling bands of E. Coli in a thin channel. We at first solve (2.15) for

cu over an unbounded domain and then derive the periodic domain solution c from it.

Eq. 2.15 in an unbounded domain can be solved by Fourier transform:

Suppose we define the Fourier transform and its inverse transform as follows:

F [cu](ω) =
1√
2π

∫ ∞
−∞

cu(x)eiωxdx = c̃u(ω),

F−1[c̃u](x) =
1√
2π

∫ ∞
−∞

c̃u(ω)e−iωxdω = cu(x).
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Take the Fourier transform of (2.15) we get

c̃u(ω) =
eiγω√

2π(κω2 + iω + β)
.

Now we take its inverse Fourier transform and for convenience denote r1 = −1+
√

1+4βκ
2κ

,

r2 = −1−
√

1+4βκ
2κ

. Then we have the unbounded domain solution:

(2.16)cu(x) =
−er1(x−γ)(1−H(x− γ))− er2(x−γ)(1−H(γ − x))√

1 + 4βκ
,

where H is the Heaviside step function of x, with H(0) = 1
2
.

We then use the unbounded domain solution cu(x) to construct the solution c(x)

corresponding to the periodic boundary condition with non-dimensionalized domain

length 1. Indeed, cu(x) = cu(x; γ) from (2.15) is a Green’s function. Periodically

extending the source term to
∑
n

δ(x+n− γ), we achieve the solution on this periodic

domain by periodically summing cu(x) up:

c(x) =
∞∑

n=−∞

cu(x+ n), x ∈ [0, 1]. (2.17)

In the absence of more quantitative data, we assume an algebraic dependence of

s on c, with s′(c) < 0. Note that since c came from (2.17), by definition it is periodic,

and thus s should automatically be periodic. It then forces P± to be periodic because

of the periodic boundary condition in (2.5) and (2.6).
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Figure 2.2: Plot of c and cu. Here γ = 0.532154, β = 0.2, κ = 0.2.

Table 2.1: Dimensionless variables and parameters

Dimensionless Variable or Parameter Definition Meaning

x F x̂
s0

Spatial variable

t t̂F Temporal variable

β β̂
F

Decay constant

κ F κ̂
s20

Diffusion constant

γ F γ̂
s0

Initial location of Karlodinium

c s0ĉ
α̂

Karlotoxin concentration

s ŝ
s0

Prey swimming speed

P±
s0P̂±(x̂,t̂)

F
Probability density
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Chapter 3

ONE DIMENSIONAL MODEL PROBLEMS

In 1-D, the Goldstein-Kac model allows one to study in general how the swim-

ming speed ŝ(x̂, t̂) and thus the toxin influences the prey’s density distribution. It is

the first step to understanding the more general 2-D and 3-D models, and the 1-D

structure allows us to do more analysis in depth.

3.1 Modeling Stationary Toxin Concentration

We start our analysis from the generic 1-D model in (2.4) and assume a steady-

state distribution of toxin concentration across the domain, i.e., ĉ = ĉ(x̂) and therefore

we write ŝ(ĉ(x̂)) = ŝ(x̂) when no ambiguity arises. Recalling (2.4),
∂
∂t̂
P̂+(x̂, t̂) + ∂

∂x̂
[ŝ(x̂)P̂+(x̂, t̂)] = F (P̂−(x̂, t̂)− P̂+(x̂, t̂))

∂
∂t̂
P̂−(x̂, t̂)− ∂

∂x̂
[ŝ(x̂)P̂−(x̂, t̂)] = F (P̂+(x̂, t̂)− P̂−(x̂, t̂))

. (3.1)

We are in fact studying the more general case for a spatially dependent swimming

speed.

We still impose the periodic boundary conditions on the probability current flow

as in (2.5, 2.6). Moreover, we impose the following regularity constraints for ŝ(x̂) to

allow further analysis:

(s1) ŝ(x̂) > 0;

(s2) ŝ(x̂) is continuous;

(s3) ŝ(x̂) is analytic in the domain except at finitely many points.

16



3.1.1 Solution Procedure

We aim to solve the system (3.1) analytically. Decoupling P̂+ and P̂− in (3.1)

leads to the following system:
∂2P̂+

∂t̂2
+ 2F ∂P̂+

∂t̂
= ∂

∂x̂

[
ŝ(x̂) ∂

∂x̂

(
ŝ(x̂)P̂+

)]
∂2P̂−
∂t̂2

+ 2F ∂P̂−
∂t̂

= ∂
∂x̂

[
ŝ(x̂) ∂

∂x̂

(
ŝ(x̂)P̂−

)] , (3.2)

with periodic boundary conditions. The full initial conditions of (3.2) need to be

addressed separately as follows: for both equations in (3.1), suppose that we have

the initial probability density functions P̂±(x̂, 0), we also need to find ∂
∂t
P̂±(x̂, 0). We

rearrange (3.1) to obtain
∂P̂+(x̂,0)

∂t̂
= − ∂

∂x̂
[ŝ(x̂)P̂+(x̂, 0)] + F (P̂−(x̂, 0)− P̂+(x̂, 0)),

∂P̂−(x̂,0)

∂t̂
= ∂

∂x̂
[ŝ(x̂)P̂−(x̂, 0)] + F (P̂+(x̂, 0)− P̂−(x̂, 0)).

(3.3)

Thus P̂±(x̂, 0) determine ∂
∂t̂
P̂±(x̂, 0). To solve this problem, we need to further conduct

several transformations: First, We define the flux in the positive and negative direction

at (x̂, t̂) respectively as

M±(x̂, t̂) = ±ŝ(x̂)P̂±(x̂, t̂). (3.4)

Next, define y(x̂) by dx̂ = ŝ(x̂)dy with y(0) = 0. This implies ∂
∂y

= ∂
∂x̂

dx̂
dy

= ŝ(x̂) ∂
∂x̂

and

therefore

y(x̂) =

∫ x̂

0

1

ŝ(z)
dz. (3.5)

Hence y ∈ [0, l], where l =
∫ L

0
1
ŝ(x̂)

dx̂. We effectively defined a bijective mapping

between the original spatial domain in x̂ and another domain in y measured in time.

This domain mapping turns out to be related with the system’s characteristic curves.

Indeed, y(x̂) coincides with the characteristic curve t̂(x̂) starting at x̂ = 0 for P+. The

characteristics will be discussed in detail in Sec. 3.2.1.1 and Sec. 3.2.2.1. We will

also revisit this domain mapping idea in Sec. 4.1.2 for conducting the Monte-Carlo

simulation.

The physical meaning of the y-coordinate is the time taken for a right-moving

swimmer to travel from the origin to x̂(y) with no change in direction. Angelani and
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Figure 3.1: Plot of y(x) when s(x) = cos(2πx) + 1.5 for x ∈ [0, 1].

Garra (2019) conducted this transformation for solving (3.2) under other boundary

conditions.

From now on, we denote M±(x̂(y), t̂) as M±(y, t̂), ŝ(x̂(y)) as ŝ(y), P̂±(x̂(y), 0)

as P̂±(y, 0). Multiplying both equations of (3.2) by ŝ(x̂),
∂2ŝ(x̂)P̂+

∂t̂2
+ 2F ∂ŝ(x̂)P̂+

∂t̂
= ŝ(x̂) ∂

∂x̂

[
ŝ(x̂) ∂

∂x̂

(
ŝ(x̂)P̂+

)]
∂2ŝ(x̂)P̂−

∂t̂2
+ 2F ∂ŝ(x̂)P̂−

∂t̂
= ŝ(x̂) ∂

∂x̂

[
ŝ(x̂) ∂

∂x̂

(
ŝ(x̂)P̂−

)] , (3.6)

and using
∂

∂y
= ŝ(x̂)

∂

∂x̂
, M±(x̂, t̂) = ±ŝ(x̂)P̂±(x̂, t̂),

we arrive at the telegraph equations:
∂2

∂t̂2
M+(y, t̂) + 2F ∂

∂t̂
M+(y, t̂) = ∂2

∂y2
M+(y, t̂)

∂2

∂t̂2
M−(y, t̂) + 2F ∂

∂t̂
M−(y, t̂) = ∂2

∂y2
M−(y, t̂)

. (3.7)

on a periodic boundary domain in y ∈ [0, l], with initial values

M±(y, 0) = ±ŝ(y)P̂±(y, 0). (3.8)
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The initial conditions ∂M±
∂t̂

(y, 0) can be derived similarly from (3.3):
∂M+

∂t̂
(y, 0) = −∂M+

∂y
(y, 0)− F (M−(y, 0) +M+(y, 0))

∂M−
∂t̂

(y, 0) = ∂M−
∂y

(y, 0)− F (M+(y, 0) +M−(y, 0))

. (3.9)

The telegraph equation was historically developed to model the voltage change for long

distance transmission through wire. It also describes the damped vibration of a string

in a medium, where F is the damping factor (Kolesnik, 2018). The original Goldstein-

Kac model is commonly written in its telegraph form to compute its analytical solution

(Goldstein, 1951; Kaplan et al., 1964; Hillen, 2002; Hillen and Painter, 2009).

From the telegraph equation, we can readily compute the analytical solution

M±(y, t̂) of (3.7-3.9) by Fourier series. To recover P̂±(x̂, t̂) from M±(y, t̂) we need to

do the following:

1. Compute M±(x̂, t̂) from M±(ŷ, t̂) by mapping values from y to x̂.

2. Compute P̂±(x̂, t̂) = M±(x̂,t̂)
ŝ(x̂)

.

3.1.2 Fourier Series Solution

Suppose the solution of (3.7-3.9) with the periodic boundary conditions has the

form in Fourier series

M±(y, t̂) =
∞∑

n=−∞

C±n (t̂)e
2πiny
l . (3.10)

Substituting into (3.7) we get the relation in C±n (t̂):

d2

dt̂2
C±n (t̂) + 2F

d

dt̂
C±n (t̂) +

(
2πny

l

)2

C±n (t̂) = 0.

Then

C±n (t̂) = A±n e
(−F+Rn)t̂ +B±n e

(−F−Rn)t̂, (3.11)

with

Rn =

√
F 2 − 4π2n2

l2
.
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Suppose M±(y, 0) and M±
t̂

(y, 0) have their n-th Fourier coefficients as U±n and W±
n

defined respectively:

U±n =
1

l

∫ l

0

M±(y, 0)e−
2πiny
l dy, W±

n =
1

l

∫ l

0

M±
t̂

(y, 0)e−
2πiny
l dy,

then using the initial conditions M±(y, 0) and M±
t̂

(y, 0) we arrive at

A±n =
(F +Rn)U±n +W±

n

2Rn

, B±n = −(F −Rn)U±n +W±
n

2Rn

.

Fig. 3.2 is the plot of the Fourier series solution together with the corresponding

Monte-Carlo simulation result. We will talk more about the details of implementing

the Monte-Carlo simulation in Sec. 4.1.2.

Figure 3.2: The blue histograms represent the results from an agent-based Monte-
Carlo simulation with 500000 agents and the black dashed lines stand for the Fourier
series solution with the same set of model parameters. Here Σ = P+ + P−, s(x) =
cos(2πx) + 1.5 for x ∈ [0, 1], F = 1. The initial condition is P+(x, 0) = P−(x, 0) = 0.5.
At the center of the domain the smaller value of s(x) represents a higher concentration
of toxin, resulting in a higher density of prey.

Indeed, at steady-state, we observe that the presence of toxin leads to the aggre-

gation of prey around the predator position. Moreover, reading from its Fourier series
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solution, the steady-state distribution of the prey is fully characterized by ŝ(x̂), regard-

less of the initial condition. In reality, this effect suggests that Karlotoxin, secreted by

a stationary predator, is able to aggregate the prey around the predator.

3.2 Modeling a Translating Toxin Field

We solved for the case when the toxin field is stationary. In reality, toxin

particles are secreted from the predator and they diffuse and decay in the environment.

As a reminder, in our case, we are interested when the predator moves at a constant

speed in a periodic domain, and the toxin concentration at steady state follows from

(2.15):

0 = κc′′ + c′ − βc+ δ(x− γ), (3.12)

with the periodic solution c(x):

c(x) =
∞∑

n=−∞

cu(x+ n), x ∈ [0, 1], (3.13)

where cu(x) is the unbounded domain solution:

(3.14)cu(x) =
−er1(x−γ)(1−H(x− γ))− er2(x−γ)(1−H(γ − x))√

1 + 4βκ
.

As a reminder,

r1 =
−1 +

√
1 + 4βκ

2κ
, r2 =

−1−
√

1 + 4βκ

2κ
.

After the Galilean translation x ←[ x − t and non-dimensionalization of (2.4)

following Table 2.1, we arrive at the Goldstein-Kac system for a moving predator at

constant speed 1 to the right:
∂P+

∂t
(x, t) + ∂

∂x
[(s(x)− 1)P+] = P− − P+

∂P−
∂t

(x, t)− ∂
∂x

[(s(x) + 1)P−] = P+ − P−.
(3.15)

In Fig. 2.2 we notice that c(x) has a single local maximum in the domain,

representing the spike of concentration of Karlotoxin. Following our general assumption

that s′(c) < 0 (i.e., toxin slows down prey) with smooth s(c), we expect to see local
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minimum of s(x). It turned out that whether s(x) − 1, the relative swimming speed

of predator and prey, has roots, greatly affects how the system behaves, and changes

the nature of the PDE system (3.15). For example, when s− 1 has roots, the system

is not strictly hyperbolic. We need to further divide our discussion into the following

two subcases: whether the relative speed s− 1 has roots, or not.

3.2.1 Steady-State when the Relative Speed Has No Roots

Suppose the relative speed s(x) − 1 has no roots. Note that since we imposed

s(x) to be continuous, we must have either s − 1 > 0 or s − 1 < 0 throughout the

domain.

Figure 3.3: The 3 possible cases for s− 1: s− 1 > 0, s− 1 has 2 roots, and s− 1 < 0.

3.2.1.1 Characteristic Curves

We rewrite (3.15) in the following form:
∂P+

∂t
+ (s− 1)∂P+

∂x
= P− − (1 + s′)P+

∂P−
∂t

+ (−s− 1)∂P−
∂x

= P+ − (1− s′)P−.
(3.16)

Note that the system is in the form of

∂

∂t
P + Λ(x)

∂

∂x
P = S(P), P =

P+

P−

 , (3.17)

22



for some operator S, where Λ(x) is diagonal and non-singular across the domain, i.e.,

this system is already in its characteristic form (Bastin and Coron, 2016). In our case:

Λ(x) =

s(x)− 1 0

0 −s(x)− 1

 . (3.18)

Therefore, the characteristic curves t(x) are simply solutions of the following ODEs:

dt

dx
=

1

s(x)− 1
, for P+, (3.19)

dt

dx
= − 1

s(x) + 1
, for P−. (3.20)

We plot them in Fig. 3.4 and Fig. 3.5.

Figure 3.4: The vector field and associated various solutions for the ODE dt
dx

= 1
s(x)−1

,

where s(x)−1 > 0. This plot corresponds to the characteristics of P+. The magnitude
of a vector is represented by its length in our example.

From an individual swimmer’s point of view, the swimmer follows one charac-

teristic curve (x, t(x)) in its run phase. This can be used to formulate an agent-based

simulation, as used by Fok et al. (2015). Since ±s − 1 has no roots, we can apply
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Figure 3.5: The vector field and associated various solutions for the ODE dt
dx

= − 1
s(x)+1

,

where s(x)− 1 > 0. This plot corresponds to the characteristics of P−.

domain mapping instead by calculating the characteristics of P± starting at x = 0.

That is, ∫ x

0

1

s(z)− 1
dz,

∫ 1

x

1

−s(z)− 1
dz, (3.21)

are well defined for x ∈ [0, 1]. This is the key for a faster Monte-Carlo by avoiding

calculating the characteristics at every step.

We notice that the characteristic curves are well behaved: dt
dx

is bounded, single-

signed, and the solutions t(x) do not cross or originate from the same point, thus

contributing to no shocks or rarefactions waves. This is because s(x) satisfies (s1)-

(s2) and we assumed s−1 > 0. Also dt
dx

is only a function of x, hence all solutions t(x)

from the ODE are the same shape but shifted vertically in t. The numerical algorithms

also benefit from the well-behaved characteristics: Monte-Carlo and finite difference

schemes both work well.
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3.2.1.2 Analytical Solution

To understand this system at steady-state, we transform it by adding and sub-

tracting the two equations in (3.15). Defining

Σ = P+ + P−, (3.22)

∆ = P+ − P−, (3.23)

we get 
∂Σ
∂t

(x, t) + ∂
∂x

(s∆− Σ) = 0

∂∆
∂t

(x, t) + ∂
∂x

(sΣ−∆) = −2∆.

(3.24)

We will focus on the steady-state solution of (3.15):

∂

∂x
(s∆− Σ) = 0, (3.25)

∂

∂x
(sΣ−∆) = −2∆. (3.26)

Further denote

η = s∆− Σ, (3.27)

ξ = sΣ−∆. (3.28)

From (3.23, 3.26) we deduce

ξ′ +
2ξ

s2 − 1
= − 2ηs

s2 − 1
. (3.29)

Thus

ξ(x) = − 2η

µ(x)

∫ x

0

s(z)µ(z)

s2(z)− 1
dz +

a

µ(x)
, (3.30)

where a is a constant coming from integration, and

µ(x) = exp

[∫ x

0

2

s2(z)− 1
dz

]
. (3.31)
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Note that µ and ξ are well-defined since s(x)− 1 is single-signed. From (3.27, 3.28) we

have the solution:

Σ(x) =
1

2

(
ξ(x) + η

s(x)− 1
+
ξ(x)− η
s(x) + 1

)
, (3.32)

∆(x) =
1

2

(
ξ(x) + η

s(x)− 1
− ξ(x)− η
s(x) + 1

)
, (3.33)

P+(x) =
ξ(x) + η

2(s(x)− 1)
, (3.34)

P−(x) =
ξ(x)− η

2(s(x) + 1)
. (3.35)

Here the two constants η and a can be determined by enforcing the normalizing con-

dition
∫ 1

0
Σdx = 1, and the periodic boundary condition that implies ξ(0) = ξ(1). We

have now found the steady-state probability density distribution for P±. Further, we

infer that the steady-state is independent from the initial conditions P±(x, t = 0).

3.2.1.3 Discussion

At first we should notice that µ(x) is always finite under our assumption of s−1

according to (3.31). Therefore ξ(x) is also always finite according to (3.30), and hence

P± are finite at steady-state, meaning there is no blow-up under our assumption of

s(x)− 1 6= 0.

Secondly, we apply part of Theorem A.4. in the book by Bastin and Coron

(2016) to our case to show that the steady-state solution we found exists and is unique:

Theorem (Well-posedness of the Problem). For every initial condition in L2[0, 1], with

periodic boundary conditions, the problem (3.17) has one and only one L2[0, 1] solution.

In conclusion, the steady-state solution we constructed is unique, finite, and

achievable with any L2 initial conditions.
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3.2.2 Steady-State when the Relative Speed Has Roots

Note that µ(x) in (3.31) may not be well defined at the roots of s(x)− 1, since

1
s2(x)−1

in the integrand is singular. From now on, we restrict our discussion to s(x)−1

having two roots. Because we enforce periodicity on s, in effect one root becomes a

“source” and the other a “sink” based on the relative speed’s derivative as shown in

Fig 3.6.

Figure 3.6: A “sink” type singularity corresponds to a downward simple crossing of the
relative speed through the x-axis. Similarly, a “source” type singularity comes from
an upward simple crossing. The grey arrows represent the direction of the relative
speed within each region. In the absence of direction changes, a swimmer following
this relative speed would get permanently trapped around the sink, and the source
would have its local population density decrease to 0.

These roots introduce singularities into the model. As a result, for analytical

solutions, we cannot use the same solution procedure as in Sec. 3.2.1.2. Also the source

root in s − 1 leads to poor convergence for our agent-based Monte-Carlo simulations,

to a point that we will not use them to verify our analysis. This poor performance is

explained in detail in Sec. 4.1.3.

3.2.2.1 Characteristic Curves

Similar to Sec. 3.2.1.1, we rewrite (3.15) into the following form:

∂

∂t
P + Λ(x)

∂

∂x
P =

−1− s′ 1

1 −1 + s′

P,

however

Λ(x) =

s(x)− 1 0

0 −s(x)− 1

 (3.36)
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is singular at the roots, indicating that the system is not strictly hyperbolic. We plot

the characteristic curves in Fig. 3.7 and Fig. 3.8. We conclude the following from the

characteristic curves:

1. The characteristics do not necessarily merge with the sink in infinite time. For

some choice of s(x), the time taken to arrive at the sink for a swimmer is finite:

Denote the sink location as x1, the source location as x3. Since dt
dx

= 1
s(x)−1

,

for a characteristic curve starting at xs that is not the sink or the source, the

characteristic merges with x1 in finite time if and only if t(x1) =
∫ x1
xs

1
s(x)−1

dx

converges.

2. We cannot conclude just from Fig. 3.7 that all the swimmers will aggregate near

the sink eventually as compared to 3.4, since it is only for P+, and the charac-

teristic curves do not consider the direction switches. However, the difference

between Fig. 3.7 and Fig. 3.4 is from the direction change of flux at x1 and

x3, which does need to be taken into account when designing finite difference

schemes. See Sec. 4.2 for the details.

3. In contrast, P− is always well-behaved: dt
dx

is bounded, single-signed, and the

solutions t(x) do not cross or originate from the same point. Indeed, in its

steady-state, P+ at the sink can have an integrable singularity, while P− always

stays finite across the domain. We will discuss the solutions in detail in Sec.

3.2.2.5.

3.2.2.2 The Method of Frobenius

In our case, the PDE system (3.15) is no longer hyperbolic under the presence of

roots for s(x)− 1. Thus most analysis tools designed for hyperbolic systems no longer

work, however the method of Frobenius still allows one to construct series solutions

locally for our ODE system. We list several key results from the method of Frobenius in

this section. Those results are crucial for understanding the local behavior of our system
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Figure 3.7: The vector field and associated various solutions for the ODE dt
dx

= 1
s(x)−1

,

where s(x)− 1 has two roots at 0.25 (the sink) and 0.75 (the source). This plot corre-
sponds to the characteristics of P+. At 0.25 and 0.75 the solutions are vertical lines.
Note the three curves seemingly starting at 0.75 actually start at 0.74999, 0.75, 0.75001
respectively, and they diverge quickly.

around the roots of the relative speed. Specifically, conclusions from the Frobenius

analysis are necessary in our construction of the steady-state analytical solution for

the system. Holubec and Stauffer (1985) and Howell (2019) gave the full details of

the method of Frobenius in the complex domain with iterative formulas on calculating

all the unknown coefficients. We adapt those to our case. With the method of the

Frobenius, one could construct a full series solution for the ODEs that correspond to

the steady-state of our Goldstein-Kac system, though such a solution needs to take

the radius of convergence into account. For this reason, we do not choose the series

solutions from the method of Frobenius as our analytical solution for the system (3.15).

Suppose we have the following general second order linear ODE:

L[y] = (x− x0)2y′′ + (x− x0)α(x)y′ + β(x)y = 0, (3.37)

29



Figure 3.8: The vector field and associated various solutions for the ODE dt
dx

= − 1
s(x)+1

,

where s(x) = cos(2πx) + 1. This plot corresponds to the characteristics of P−. In
contrast to P+ as seen in Fig. 3.7, the characteristics of P− are in the same direction
with bounded slope.

with α(x), β(x) being analytic at x0, i.e.,

α(x) =
∞∑
k=0

αk(x− x0)k,

β(x) =
∞∑
k=0

βk(x− x0)k.

In this case, we call x0 a regular singular point for (3.37). We then obtain the indicial

equation I(σ) = 0 by plugging the following Frobenius series

y(x) = |x− x0|σ
∞∑
k=0

ck(x− x0)k, c0 = 1, (3.38)

for some constant σ into (3.37), then take k = 0:

I(σ) = σ(σ − 1) + α0σ + β0 = 0 (3.39)

The two roots σ1, σ2 can be the same. For our analysis in finding the steady-state

distribution of population densities, we will see that σ1, σ2 ∈ R because β0 = 0 in

(3.64), hence we can further impose σ1 ≥ σ2 without loss of generality.
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Theorem (The Method of Frobenius). The general solution to the differential equation

L[y] = 0 (3.37) around x0 is

y(x) = l1y1(x) + l2y2(x) (3.40)

with arbitrary constants l1, l2. y1(x) always has the Frobenius series form:

y1(x) = |x− x0|σ1
∞∑
k=0

ak(x− x0)k, a0 = 1, (3.41)

and y2(x) must come from one of the three cases listed below:

1. σ1 − σ2 6∈ Z, then

y2(x) = |x− x0|σ2
∞∑
k=0

bk(x− x0)k, b0 = 1. (3.42)

This is the nice case where both y1 and y2 are in the form of Frobenius series.

2. σ1 = σ2, then

y2(x) = y1(x) ln|x− x0|+|x− x0|1+σ1

∞∑
k=0

bk(x− x0)k, b0 = 1. (3.43)

3. σ1 − σ2 = Z for a positive integer Z, then

y2(x) = Ky1(x) ln|x− x0|+|x− x0|σ2
∞∑
k=0

bk(x− x0)k, b0 = 1. (3.44)

For the coefficients in (3.44): K is a constant that can be calculated from bk’s for

k < Z, and might be 0. b0, b1, · · · , bZ−1 are determined, however, bZ is arbitrary

(Often people simply set bZ = 0.) and as a result the value of bk for k > Z

depends on the choice of bZ .

The detailed derivation of the method of Frobenius can be found in Chapter 37

of the book by Howell (2019).
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3.2.2.3 Iterative Formulas for Coefficients

We now demonstrate how to calculate the coefficients for the solutions obtained

from the method of Frobenius for all 3 cases. We present the iterative formulas only,

and the justification is provided also in Chapter 37 of the book by Howell (2019).

Case 1 Here σ1 − σ2 6∈ Z. All coefficients ak, bk for y1(x), y2(x) respectively can be

iteratively calculated from series coefficients of α, β. Generally, for a Frobenius

series of form |x− x0|σ
∞∑
k=0

ck(x− x0)k, the iterative formula for the coefficient ck

is

ck =
−1

I(k + σ)

k−1∑
j=0

cj[αk−j(j + k) + βk−j], k = 1, 2, · · · . (3.45)

Remark: For both case 2 and 3, the iterative formula for ak still follows (3.45).

However the iterative formulas for bk in case 2 and a subcase of case 3 require us to

calculate ε(x) that comes from the proposed solution form

y2(x) = y1(x) ln|x− x0|+ε(x). (3.46)

Case 2 Here σ1 = σ2. We know from (3.43)

ε(x) = |x− x0|1+σ1

∞∑
k=0

bk(x− x0)k. (3.47)

Define

fk = −2(k + 1)ak+1 −
k∑
j=0

ajαk+1−j. (3.48)

The iterative formula for coefficients bk of ε(x) is given by

b0 = f0,

bk =
1

(k + 1)2

(
fk −

k−1∑
j=0

bj[αk−j(j + σ1 + 1) + βk−j]

)
, k > 0.

(3.49)

Case 3 Here σ1−σ2 = Z. Introduce a constant ΓZ below. First calculate the coefficients

bk iteratively for k = 0, 1, 2, · · · , Z − 1 via

b0 = 1,

bk =
−1

I(σ2 + k)

k−1∑
j=0

bj[αk−j(j + σ2) + βk−j].
(3.50)
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Then we calculate ΓZ as

ΓZ =
Z−1∑
j=0

bj[αZ−j(σ2 + j) + βZ−j]. (3.51)

It can be shown that

K = −ΓZ
Z
, (3.52)

and the formula for ε(x) has two subcases depending on whether ΓZ = 0:

If ΓZ = 0, then K = 0, and y2 is directly given by the Frobenius series form

below instead of (3.46):

y2(x) = |x− x0|σ2
∞∑
k=0

bk(x− x0)k, (3.53)

and the coefficients can be calculated via the generic iterative formula (3.45).

Moreover, bZ is arbitrary, and one can simply let bZ = 0.

If ΓZ 6= 0, then it can be shown that y2 still follows (3.46):

y2(x) = y1(x) ln|x− x0|+ε(x).

This is equivalent to dividing the form of y2(x) given in (3.44) by K, since K 6= 0

from (3.52). Thus denote εk = bk
K

and we get

ε(x) = |x− x0|σ2
∞∑
k=0

εk(x− x0)k. (3.54)

Define

fk = ak−Z(Z − 2k)−
k−Z−1∑
j=0

ajαk−Z−j, k > Z. (3.55)

The iterative formula for εk is given as

ε0 = − Z

ΓZ
,

εk =
−1

I(σ2 + k)

k−1∑
j=0

εj[αk−j(σ2 + j) + βk−j], 0 < k < Z,

εk =
1

I(σ2 + k)

(
fk −

k−1∑
j=0

εj[αk−j(σ2 + j) + βk−j]

)
, k > Z.

(3.56)
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Finally

bk = Kεk. (3.57)

Still, bZ is arbitrary, and we can let bZ = 0 without loss of generality. Overall for

case 3 where σ1 − σ2 = Z, K is a constant that can be computed from ΓZ , and

it might be 0.

3.2.2.4 Local Analysis with the Method of Frobenius

System (3.15) in its steady-state can be decoupled as follows:

P ′′+(x) +
p+(x)

x− xi
P ′+(x) +

q+(x)

(x− xi)2
P+(x) = 0, (3.58)

P ′′−(x) +
p−(x)

x− xi
P ′−(x) +

q−(x)

(x− xi)2
P−(x) = 0, (3.59)

where

p±(x) =
2± s′ + 3ss′

s2 − 1
(x− xi) =

∞∑
n=0

p±n (x− xi)n, (3.60)

q±(x) =
(s′)2 + (±1 + s)s′′

s2 − 1
(x− xi)2 =

∞∑
n=1

q±n (x− xi)n, (3.61)

and xi = x1, x3, defined as the only two roots of s− 1. Specifically x1 is a sink and x3

is a source. Notice

s− 1 = s′(xi)(x− xi) +O(x− xi)2. (3.62)

As a reminder, x1 and x3 are simple zeros of s− 1, hence s′(xi) 6= 0. Therefore p±(x)

and q±(x) have removable singularities at x = x1 and x = x3, and (3.58, 3.59) both

have at worst regular singular points at x = xi. We carry out the examination for P+

below, and the case for P− follows similarly.

At xi, at least one solution for (3.58) is in the Frobenius form

P+ = (x− xi)σT (x) (3.63)

for some constant σ and normalized Taylor series T (x) with constant term 1. The

other solution may also follow the Frobenius form, or exhibit a logarithmic structure
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(Holubec and Stauffer 1985). Thus, by expanding p+, q+ into Taylor series around

x = xi we find that the indicial equation for (3.58) is

σ2 + (p+
0 − 1)σ = 0, with p+

0 =
1

s′(xi)
+ 2. (3.64)

Denote

ν(xi) = − 1

s′(xi)
. (3.65)

This important non-dimensional quantity will appear frequently for the rest of our

analysis. Similarly, the indicial equation for (3.59) is

σ2 + (p−0 − 1)σ = 0, with p−0 =
1

s′(xi)
+ 1. (3.66)

The characteristic roots for P± from the indicial equations are therefore

σ1 = 0, σ2 = ν(xi)− 1, for P+, (3.67)

σ1 = 0, σ2 = ν(xi), for P−. (3.68)

The root at 0 represents a regular Taylor series expansion around xi which is referred

as the regular branch. This solution in the form of Frobenius series always exists.

The branch corresponding to the other root needs to be discussed in different cases

depending on σ2.

We denote all normalized Taylor series in the form of T±j,i(x). Here j is an index

for distinguishing purpose, i ∈ {1, 3} indicates if it is used near x1 or x3, and the ±

sign indicates if it is used for P+ or P−.

At x1, for ν(x1) 6∈ Z:

(3.69)P+(x) = G+
1,1T

+
1,1(x) + |x− x1|ν(x1)−1G+

2,1T
+
2,1(x),

(3.70)P−(x) = G−1,1T
−
1,1(x) + |x− x1|ν(x1)G−2,1T

−
2,1(x).

At x3, for ν(x3) 6∈ Z:

(3.71)P+(x) = G+
1,3T

+
1,3(x) + |x− x3|ν(x3)−1G+

2,3T
+
2,3(x),

(3.72)P−(x) = G−1,3T
−
1,3(x) + |x− x3|ν(x3)G−2,3T

−
2,3(x),

with constants G±j,i. Their notation consensus is consistent with that of T±j,i(x).

35



1. At x1, s′(x1) < 0 so ν(x1) > 0. Therefore P+ has at worst an integrable singularity

at x = x1. P+ is continuous if −1 < s′(x1) < 0 (i.e., ν(x1) > 1).

2. At x3, s′(x3) > 0 then ν(x3)−1 < −1 and
∫ 1

0
P+dx will be undefined for G+

2,3 6= 0.

Therefore we must take

G+
2,3 = 0. (3.73)

Using the relation

η = s∆− Σ = (s− 1)P+ − (s+ 1)P−, (3.74)

we have

P− =
−η
s+ 1

+
s− 1

s+ 1
P+, (3.75)

where η is constant throughout the domain, as discussed in Appendix A.1. There-

fore, from P+ being finite at x3, P− should also be finite and therefore

G−2,3 = 0. (3.76)

Thus, both P± are regular at x3 when ν(x3) 6∈ Z.

Now suppose ν(xi) ∈ Z, the indicial roots σ1 − σ2 ∈ Z for both P±. The

Frobenius method always leads to a valid first solution in the Frobenius form (in this

case a Taylor series), however the second solution requires further discussion. For all

the analysis below, the normalized Taylor series Tj,i and T±j,i all have constant term 1

by construction:

1. At x3, for P+, the two roots are 0 and ν(x3)− 1 < −1. According to the method

of Frobenius, P+ can be written as a linear combination of y1 and y2:

y1 = T1,3(x),

y2 = Ky1(x) ln|x− x3|+|x− x3|ν(x3)−1T2,3(x),
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for a known constant K (which might be 0). Since the two indicial roots are

distinct, we must have P+(x) ∝ y1, otherwise y2 would not not integrable at x3.

When combined with (3.75), we can represent

P+(x) = G+
1,3T

+
1,3(x), (3.77)

P−(x) = G−1,3T
−
1,3(x), (3.78)

That is, P± are regular around x3 when ν(x3) ∈ Z. Therefore P± near x3 are

regular for all ν(x3). We can conclude that the prey’s density function Σ near

the source is always regular at steady-state.

2. At x1 we need to further divide our discussion into 2 subcases depending on

whether ν(x1)− 1 = 0 or = 1, 2, . . . .

Case I : Suppose ν(x1)− 1 = 0, then for P+ we have

y1 = T1,1(x), (3.79)

y2 = y1 ln|x− x1|+|x− x1|T2,1(x). (3.80)

Therefore, the solution has the form

P+(x) = G+
1,1T

+
1,1(x) +G+

2,1T
+
1,1(x) ln|x− x1|+|x− x1|G+

2,1T
+
2,1(x). (3.81)

And we get P− via (3.75):

P−(x) = G−1,1T
−
1,1(x) + |x− x1|G−2,1T−1,1(x) ln|x− x1|

+ |x− x1|2G−2,1T−2,1(x). (3.82)

One may also derive (3.82) directly from the method of Frobenius without

using (3.75), but it would fall into the case 3 of the method of Frobenius

theorem in Sec. 3.2.2.2 and would be less specific than (3.82) by introducing

a constant K, since the two indicial roots for P− are 0 and ν(x1) = 1.
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Case II : Suppose ν(x1)− 1 = 1, 2, 3, . . . , then P+ has two independent solutions y1

and y2:

y1 = T1,1(x), (3.83)

y2 = Ky1 ln|x− x1|+|x− x1|ν(x1)−1T2,1(x), (3.84)

for a constant K (which can be calculated and might be 0). Therefore P+

has the form

P+(x) = G+
1,1T

+
1,1(x) +KG+

2,1T
+
1,1(x) ln|x− x1|

+ |x− x1|ν(x1)−1G+
2,1T

+
2,1(x), (3.85)

and we get P− via (3.75):

P−(x) = G−1,1T
−
1,1(x) + |x− x1|KG−2,1T−1,1(x) ln|x− x1|

+ |x− x1|ν(x1)G−2,1T
−
2,1(x). (3.86)

Note that these terms with a logarithm component are locally integrable because the

singularity is at worst ln(x).

3.2.2.5 Analytical Solution

We try to solve the ODE system (3.26, 3.25) with s′(x1) < 0 and s′(x3) > 0.

Let x2 be an arbitrary point such that x0 = 0 < x1 < x2 < x3 < 1 = x4. The

property
∫ 1

0
Σdx = 1 persists, and

d

dx
(s∆− Σ) = 0, (3.87)

d

dx
(sΣ−∆) = −2∆. (3.88)

We start by finding the structure of ξ and its auxiliary function µ. However µ

globally defined as

µ(x) = exp

[∫ x

0

2

s2(z)− 1
dz

]
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in (3.31) is no longer valid in general because we cannot integrate through singularities

of 1
s(x)−1

if it has a pole of order greater than or equal to 1. Therefore to find a general

solution, we subdivide the domain into 4 intervals so that within each interval, s(x)−1

is of single sign: I1 = [x0, x1), I2 = (x1, x2], I3 = (x2, x3), I4 = (x3, x4]. x2 can be

included in either I2 or I3, and it does not affect the analysis. We then aim to solve

µ, ξ on each Ii with proper joining conditions. Note that η is constant across all the

intervals as discussed in Appendix A.1.

For each i,

(µiξi)
′ = − 2ηsµi

s2 − 1
. (3.89)

Then we specify µi and ξi as follows as a generalization from Sec. 3.2.1.2:

µi(x) =


exp

[∫ x

xi−1

2

s2(z)− 1
dz

]
, i = 1, 3; (3.90)

exp

[
−
∫ xi

x

2

s2(z)− 1
dz

]
, i = 2, 4; (3.91)

ξi(x) =


− 2η

µi(x)

∫ x

xi−1

s(z)µi(z)

s2(z)− 1
dz +

ai
µi(x)

, i = 1, 3; (3.92)

2η

µi(x)

∫ xi

x

s(z)µi(z)

s2(z)− 1
dz +

ai
µi(x)

, i = 2, 4. (3.93)

Now from (3.92, 3.93) we have 5 unknown constants a1, a2, a3, a4 and η and hence we

need to find 5 joining conditions. They are:

(I) ξ(0) = ξ(1) since ξ(x) is periodic on [0, 1].

(II) Continuity of ξ(x) at x = x2, because (3.89) is regular at x2.

(III) lim
x→x−3

µ3ξ3 = 0.

(IV) lim
x→x+3

µ4ξ4 = 0.

(V)
∫ 1

0
Σ(x)dx = 1, by conservation of probability.

Here (III) and (IV) are justified in Appendix A.2. Respectively, each condition can

be rewritten in terms of a1, a2, a3, a4 and η.
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(i) a1 = a4.

(ii) a2 = a3.

(iii) a3 = 2
∫ x−3
x2

s(z)µ3(z)
s2(z)−1

dz.

(iv) a4 = −2
∫ 1

x+3

s(z)µ4(z)
s2(z)−1

dz.

(v)
4∑
i=1

[∫
Ii

s(x)ξi(x) + η

s2(x)− 1
dx

]
= 1. Note that after (i)-(iv), every ξi has only η as the

undetermined parameter.

The derivations are shown in the Appendix A.3.

Figure 3.9: The red arrows are the directions of integration for µi and ξi within each
interval Ii.

Through these conditions, we are able to calculate ξ and η, and thus P±. With

a1-a4 and η known, the full solution using (3.34, 3.35) is:

P+ =


− η

µi(s− 1)

∫ x

xi−1

s(z)µi(z)

s2(z)− 1
dz +

ai
2µi(s− 1)

+
η

2(s− 1)
, i = 1,3; (3.94)

η

µi(s− 1)

∫ xi

x

s(z)µi(z)

s2(z)− 1
dz +

ai
2µi(s− 1)

+
η

2(s− 1)
, i = 2,4; (3.95)

P− =


− η

µi(s+ 1)

∫ x

xi−1

s(z)µi(z)

s2(z)− 1
dz +

ai
2µi(s+ 1)

− η

2(s+ 1)
, i = 1,3; (3.96)

η

µi(s+ 1)

∫ xi

x

s(z)µi(z)

s2(z)− 1
dz +

ai
2µi(s+ 1)

− η

2(s+ 1)
. i = 2,4; (3.97)

3.2.2.6 Discussion

We are now able to solve for the steady-state P±(x) analytically given s(x). Still,

the steady-state distributions of P±(x) do not depend on the initial conditions, but the
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solutions are quite different from (3.34, 3.35) when there are roots in the relative speed

s− 1.

From the method of Frobenius, when the slope of s(x) at the sink is “steep”, i.e.,

0 < − 1
s′(x1)

≤ 1, it leads to an integrable singularity and therefore the global maximum

in the prey’s population at the sink. When the slope is “shallow”, i.e., − 1
s′(x1)

> 1, and

− 1
s′(x1)

6∈ Z, P± is bounded at steady-state, and there is a local maximum at x1. When

− 1
s′(x1)

> 1 and − 1
s′(x1)

∈ Z, one can calculate the constant K in the local solution of P+

at x1 given s(x), and if K 6= 0 then there is a logarithmic singularity at x1, otherwise

not. Though from the characteristics and our numerical experiments, it is likely that

K = 0 whenever − 1
s′(x1)

> 1, which implies that likely whenever − 1
s′(x1)

> 1, the prey’s

population is bounded at x1. One can calculate K in this situation in a case-by-case

basis using (3.51) and (3.52), however, the general proof (or disproof) of K = 0 is left

for future work.

Also, although Σ can develop an integrable singularity, realistically it cannot

happen because a few modeling assumptions can break down. For example, in reality

prey have finite sizes and do not move independently. Also instant turning may not be

a good approximation.
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Chapter 4

NUMERICAL SIMULATIONS AND COMPUTATIONS

4.1 Monte-Carlo Simulation

In this section, we describe a Monte-Carlo method to simulate a swimmer’s

location whose density P±(x, t) follows the extended Goldstein-Kac system:
∂
∂t
P+(x, t) + ∂

∂x
[s+(x)P+(x, t)] = F (P−(x, t)− P+(x, t))

∂
∂t
P−(x, t)− ∂

∂x
[s−(x)P−(x, t)] = F (P+(x, t)− P−(x, t)),

(4.1)

where s±(x) have no roots and satisfy the regularity conditions (s2), (s3), and x ∈

[0, L]. We aim to compute the distribution of P± at a given time by running the

simulation with large amounts of swimmers. In this system, a right-moving swimmer

follows the speed s+(x) and a left-moving swimmer follows the speed s−(x). This

system includes both the stationary toxin case as in Sec. 3.1, and the case when the

moving predator and the prey’s relative speed has no roots as in Sec. 3.2.1. Specifically,

Monte-Carlo is not used when the relative speed s− 1 has zeros.

4.1.1 Behavior of Individual Swimmers

In this subsection, we discuss the Goldstein-Kac system from an individual

swimmer’s point of view, as it helps to formulate our Monte-Carlo algorithm later.

Assume the following movement rule: a swimmer moves according to s+(x) or s−(x)

based on its swimming direction, and changes its swimming direction instantaneously.

The random time between two adjacent direction changes is drawn independently from

Exp[F ].

In our agent-based simulation, the central issue lies in how to calculate the loca-

tion of a swimmer accurately given its initial location, swimming direction, swimming
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time and its swimming speed s(x). We achieve this by a domain mapping between x

and y±, as discussed below.

4.1.2 Monte-Carlo Algorithm

When the relative speed has no roots, we can calculate the location of a single

swimmer at a given list of observation times through a domain mapping between x and

y with Algorithm 1. Call this list of observation times {t(i)obs}. Briefly speaking, the

locations at the observation times are calculated as follows:

1. Generate the list of times {t(i)flip} where the swimmer flips its direction.

2. Merge {t(i)obs} with {t(i)flip} into {t(i)merge}, sort and re-index. See Fig. 4.1 for an

illustration.

3. Calculate the exact location xloc of the swimmer at every t
(i)
merge. Note within

any time interval (t
(i−1)
merge, t

(i)
merge), the swimmer does not change its direction. The

final location within this time interval can be calculated exactly once the initial

location, swimming time, swimming direction and swimming speed s(x) are given.

4. Extract the locations at all observation times {xloc(t
(i)
obs)} from the locations at

the merged times {xloc(t
(i)
merge)}.

In the above process, step 3 computes the exact location of the swimmer at the

end of each time interval through domain mapping between x and y± in 4 steps as

illustrated in Fig. 4.2.

We repeat this agent-based process for many agents with randomized initial

direction and initial location according to P±(x, t = 0). Then we compute the density

histogram of left-moving and right-moving swimmers at each observation time in {t(i)obs}

to approximate P−(x, t) and P+(x, t).

Algorithm 2 includes details of generating the initial directions and locations.

Briefly speaking:
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Figure 4.1: Merging the observation time list {t(i)obs} and the flipping time list {t(i)flip} into

{t(i)merge}. The difference between adjacent elements in {t(i)flip} is distributed according to

Exp[F ], and is independent among different swimmers, whereas {t(i)obs} is arbitrary and
is the same for all swimmers. Here {d(i)} is the list for swimming directions according

to {t(i)merge}
.

1. Generate the initial swimming direction knowing that the probability of following

s+(x) is
∫ L

0
P+(x, 0)dx.

2. Once the initial direction is generated, then draw the initial location from the

(re-scaled) quantile function determined by P+(x, 0) or P−(x, 0) accordingly.

The domain mapping functions y±(x), x±(y) and the domain sizes l± > 0 are

defined as

y+(x) =

∫ x

0

1

s+(z)
dz, l+ = y+(L); (4.2)

y−(x) = −
∫ x

L

1

s−(z)
dz, l− = y−(0). (4.3)

x+(y) and x−(y) are then constructed as the inverse functions of y+(x) and y−(x)

respectively. The inverse functions are well-defined because s±(x) are single-signed.

As a reminder, y+ and y− are indeed the system characteristics starting at x = 0
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Figure 4.2: Illustration of calculating the new location x(i+1) by domain mapping
between x and y in 4 steps. Here, the initial location is x(i), swimming time is ∆t,
y = y± depending on the swimming direction.

.

and L respectively. Using similar techniques, in Algorithm 2, the cumulative density

function are computed as

G±(x) =

∫ x

0

P±(z, 0)dz. (4.4)

Then we use the same data to construct the quantile functionsQ+(u) = G−1
+ , u ∈ [0, G+(L)],

Q−(u) = G−1
− , u ∈ [0, G−(L)].

(4.5)

similarly. The actual code is further vectorized for parallel computation performance.

Interpolation Error Analysis

To speed up the computation, we choose to avoid computing y±(x) by integra-

tion (4.2, 4.3) and x±(y) by definition every time when used for the domain mapping.

Instead, we construct the linear interpolated function yN+ (x) by evaluating y+(x) from

definition (4.2) over N evenly spaced sample points in x, and linearly interpolate its

value between two adjacent sample points. Now we use the same data but exchange the
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Algorithm 1 Simulation for One Swimmer

Goal: Find the location of a swimmer at each observation time in {t(i)obs}.
Require: The initial location x

(0)
loc and the initial swimming direction d(0), the speed

s±(x), the turning rate F , domain size L, the time of observations {t(i)obs} where

t
(0)
obs = 0 and the final time t

(n)
obs = T , the domain mapping functions x±(y) and

y±(x), the domain size l± for y±.

1: Construct the flipping time list {t(i)flip} by repeatedly drawing ∆t ∼ Exp[F ], where

t
(i+1)
flip = t

(i)
flip + ∆t, until some t

(i)
flip surpasses T the final time;

2: Merge and sort from small to large the observation time list {t(i)obs} with the flipping

time list {t(i)flip} into one re-indexed time list {t(i)merge};
3: Generate a direction list {d(i)} that has the same dimension as {t(i)merge}, such that

d(i) ∈ {1,−1} indicates the swimming direction right after t
(i)
merge;

4: Generate a location list {xloc(t
(i)
merge)} that has the same dimension as {t(i)merge}, and

initiate xloc(t
(0)
merge)← x

(0)
loc;

5: i← 0;
6: while t

(i)
merge ≤ T do

7: if d(i) = 1 then
8: Calculate y+(xloc(t

(i)
merge));

9: Update ynew ← [y+(xloc(t
(i)
merge)) + (t

(i+1)
merge − t(i)merge)] mod l+;

10: xloc(t
(i+1)
merge)← x+(ynew);

11: else
12: Calculate y−(xloc(t

(i)
merge));

13: Update ynew ← [y−(xloc(t
(i)
merge)) + (t

(i+1)
merge − t(i)merge)] mod l−;

14: xloc(t
(i+1)
merge)← x−(ynew);

15: end if
16: i← i+ 1;
17: end while
18: Extract the list {xloc(t

(i)
obs)} from the list {xloc(t

(i)
merge)};

19: Return The list {xloc(t
(i)
obs)};
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dependent variable and the independent variable to construct the linear interpolated

function xN+ (y) numerically. yN− (x) and xN− (y) are constructed similarly but from (4.3).

Nevertheless, using linear interpolated functions speeds up the computation sig-

nificantly at some cost of accuracy. We now quantify the error introduced through the

linear interpolation by looking at individual swimmers: Consider a swimmer whose lo-

cation is calculated exactly, and another swimmer following the same starting location,

initial direction, and the flipping schedule in the same system, except that its location

is calculated through the linear interpolated mapping functions. Given {t(i)obs}, we aim

to estimate an upper bound of the deviation between the two swimmers at the end of

a simulation for most of the swimmers, and how fast this error upper bound decreases

when we use a finer mesh for the linear interpolation.

To do so, at first we observe from Algorithm 1 that the interpolation error is

only realized when we calculate y±(x) or x±(y) in line 8 and 10, or 12 and 14, i.e., 2

times for each point in {t(i)merge}. In one simulation, denote the total number of times

for realizing such interpolation errors as ne. Firstly, denote

nmerge = number of points in list {t(i)merge}, (4.6)

nflip = number of points in list {t(i)flip}, (4.7)

nobs = number of points in list {t(i)obs}. (4.8)

Then, assuming {t(i)obs} does not overlap with {t(i)flip} (with predetermined list {t(i)obs} they

do not overlap almost surely):

ne = 2nmerge = 2(nflip + nobs). (4.9)

Note that ne is a random variable, since nflip is Poisson distributed with rate λ = FT :

nflip ∼ Poiss(FT ). (4.10)

Further, defining n̄e(α) as follows:

n̄e(α) = inf
N≥0
{N ∈ Z : Prob{ne ≥ N} < α}, α ∈ (0, 1). (4.11)
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For example, if α = 0.05, then the random variable ne falls under n̄e(α) with probability

1− α = 0.95. One can then calculate n̄e(α):

n̄e(α) = inf
N≥0
{N ∈ Z : Prob{nflip ≥

N

2
− nobs} < α}

= 2
(
qPoiss(FT)(1− α) + nobs

)
. (4.12)

Here qPoiss(FT) : (0, 1) → Z is the quantile function for a Poisson-distributed random

variable with rate FT . It returns the smallest integer n, such that

CDF[Poiss(FT ), n] ≥ 1− α.

This quantile function qPoiss(FT) has no closed-form solution to the best of our knowl-

edge. However, it is available in most standard statistical software packages for numer-

ical evaluation.

We then find the maximum deviation of y±(x) from yN± (x):

‖y+ − yN+ ‖∞ = max
0≤x≤L

|y+(x)− yN+ (x)|, (4.13)

‖y− − yN− ‖∞ = max
0≤x≤L

|y−(x)− yN− (x)|. (4.14)

Consider the case for y+: within any interval [xa, xb] formed by adjacent sampling

points xa and xb (thus xb − xa = L
N−1

), y+(x) is only evaluated at the boundary xa

and xb for the linear interpolation. According to the Interpolation Error Theorem for

2 sample points (Shen, 2019):

y+(x)− yN+ (x) =
y′′+(xc)

2
(x− xa)(x− xb), for some xc ∈ (xa, xb). (4.15)

That is, suppose |y′′+(x)|≤ 2Cy+ for some positive constant Cy+ for all x ∈ [0, L], we

have

max
0≤x≤L

|y+(x)− yN+ (x)|≤ 1

2
max

0≤x≤L
|y′′+(x)|

(
L

N − 1

)2

≤ Cy+

(
L

N − 1

)2

≈
L2Cy+
N2

(4.16)

Similarly, suppose

|y′′−(x)|≤ 2Cy− , x ∈ [0, L], (4.17)
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we arrive at

max
x∈L
|y−(x)− yN− (x)|≤ Cy−

(
L

N − 1

)2

≈
L2Cy−
N2

. (4.18)

For x+(y), suppose for an arbitrary interval [xa, xb] with xa and xb being adjacent

sampling points, we denote y+(xa) = ya, y+(xb) = yb. Argued similarly from the

Interpolation Error Theorem

x+(y)− xN+ (y) =
x′′+(yc)

2
(y − ya)(y − yb), for some yc ∈ (ya, yb). (4.19)

By the Mean Value Theorem,

yb − ya =
xb − xa
x′+(yd)

for some yd ∈ (ya, yb). (4.20)

Thus, supposing 1
x′+(y)

≤ Cx+,1 for some positive constant Cx+,1 for all y ∈ [0, l+], we

have

|y − ya|, |y − yb|≤ |yb − ya|≤ Cx+,1|xb − xa|=
LCx+,1
N − 1

. (4.21)

Now suppose |x′′+(y)|≤ 2Cx+ , ∀y ∈ [0, l+], when combined with (4.19, 4.21) it leads to

max
0≤y≤l+

|x+(y)− xN+ (y)|≤ Cx+

(
LCx+,1
N − 1

)2

≈
L2C2

x+,1
Cx+

N2
. (4.22)

Similarly from the bounds

1

x′−(y)
≤ Cx−,1, |x′′−(y)|≤ 2Cx− , ∀y ∈ [0, l−], (4.23)

we conclude

max
0≤y≤l−

|x−(y)− xN− (y)|≤ Cx−

(
LCx−,1
N − 1

)2

≈
L2C2

x−,1Cx−
N2

. (4.24)

See Fig. 4.3 for plot of ‖y± − yN± ‖∞ and ‖x± − xN±‖∞ with respect to N . Denote the

maximum of the four as

EN = max{‖x+ − xN+‖∞, ‖x− − xN−‖∞, ‖y+ − yN+ ‖∞, ‖y− − yN− ‖∞}, (4.25)

and note that by (4.16, 4.18, 4.22, 4.24) we have

EN ∼ O(
1

N2
). (4.26)
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Figure 4.3: Plot of the maximum deviation of y±(x) and x±(y) from their linear in-
terpolated functions yN± (x) and xN± (x) respectively, where N is the number of evenly
spaced points in x used for interpolation. Here we choose s+(x) = cos(2πx) + 2,
s−(x) = − cos(2πx)− 3. We observe that ‖y+ − yN+ ‖∞, ‖y− − yN− ‖∞, ‖x+ − xN+‖∞ and
‖x− − xN−‖∞ all decrease at O( 1

N2 ), as expected.

Therefore, the total error introduced by the linear interpolation for one swimmer

is estimated at most

neEN ∼ neO(
1

N2
). (4.27)

We can further conclude that with probability (1 − α), the total error from linear

interpolated mapping functions for a swimmer is estimated at most

n̄e(α)EN ∼ n̄e(α)O(
1

N2
). (4.28)

For an example such as the Monte-Carlo simulation in Fig. 3.2, we use N = 10001,

T = 10, F = 1, s+(x) = cos(2πx)+1.5 = −s−(x). In this case, it can be calculated from

(4.12) that n̄e(0.0014) ≈ 2000, and E10001 ≈ 9.8× 10−9. Therefore, with probability of

0.9986, the total error introduced by linear interpolation for one swimmer is at most

n̄e(0.0014)E10001 ≈ 1.96× 10−5.

Thus, the interpolation error introduced in this case is small.

50



Algorithm 2 Generate Initial Direction and Location

Goal: Find the random initial location x
(0)
loc and direction d(0) of a swimmer according

to the initial distribution P±(x, 0).
Require: The probability of moving to left or right G±(L), the quantile function

Q±(u).
1: Draw u1 ∼ Unif(0, 1);
2: if u1 ≤ G+(L) then
3: d(0) ← 1;
4: else
5: d(0) ← −1;
6: end if
7: Draw u2 ∼ Unif(0, 1);
8: if d(0) = 1 then Q+(u) = G−1

+ ;

9: x
(0)
loc ← Q+(u2G+(L));

10: else
11: x

(0)
loc ← Q−(u2G−(L));

12: end if
13: Return The initial location x

(0)
loc and direction d(0);

4.1.3 Computational Challenges when s+(x) Has a Root

Notice that this Monte-Carlo algorithm relies on the bijective mapping between

the physical location x and the time domain variable y±: y±(x) is the time taken to

swim from 0 to x in the given swimming direction according to speed s±(x) respectively.

However, there is no bijective mapping between x and y+ if s+(x) has roots.

For example, take s+(x) = cos(2πx) with the sink root at x1 = 1
4

and the

source root at x3 = 3
4
. Fix y+(0) = 0, then y+(x) for x ∈ [x1, 1] becomes undefined,

because the swimmer cannot move across x1 by following s+(x). As a result, we cannot

calculate the swimming time using Algorithm 1.

One may suggest conducting the Monte-Carlo simulation by following the char-

acteristic curves of P±, since the swimmer does not change its direction in the time

interval between adjacent elements in {t(i)merge}. A characteristic curve t(x) can be solved

from the ODE
dt

dx
=

1

s(x)− 1
(4.29)

with an initial condition.
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There are at least two issues one may encounter when adopting this approach:

Sensitivity to initial distributions, and difficulty in calculating the characteristic curve

accurately. The sensitivity issue comes from that the characteristics starting close

to the source can diverge quickly, and the swimmers near the source following the

diverging characteristics may end up far apart, albeit in finite distance. Thus the final

locations are relatively sensitive to the initial distribution of P±. See Fig. 3.7 for an

example: varying the initial location near x3 by just 0.0002 we get drastically different

characteristic curves. Note that the sensitivity to initial conditions can be alleviated by

using more agents in the simulation, and this issue is less significant when compared

to the following accuracy issue in our experiment. The accuracy issue arises from

the practical side: For a starting point near the roots x1 or x3, where 1
s−1

is close to

singularity, accurately integrating 1
s−1

to get the characteristic curve can be challenging

and its performance depends heavily on the integration algorithm, especially when s(x)

does not have a closed form expression.

We also conduct a controlled experiment where s(x) is piecewise linear, so that

the characteristic curves can be calculated exactly, thus eliminating the accuracy issue.

We compare this Monte-Carlo result with the model used in Fig. 3.2, where there is no

roots for s+ and the domain mapping method is employed. See Fig. 4.4 for the plot.

Therefore, given that usually only a small portion of the swimmers appear near

x3 in our simulation at any given time, and we generally use a large number of agents

for running the Monte-Carlo, this sensitivity issue is not a major problem from our

observations. However, in general it is quite difficult to calculate the characteristics

accurately in a Monte-Carlo using arbitrary s(x). In our case where s(x) = s(c(x))

and c(x) being a series solution from (2.17), it is especially so. As a result, we use a

finite difference method instead of a Monte-Carlo algorithm to validate our analytical

solution when the relative speed has roots.
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Figure 4.4: The blue histograms represent the results from agent-based Monte-Carlo
experiments terminated at large time to approximate the steady state, and the black
dashed lines stand for the corresponding analytical solutions at steady state. For plot
(a) and (b), s+(x) = s−(x) = cos(2πx) + 1.5. For plot (c) and (d), s+ = s − 1,
s− = s + 1 with s(x) = (−(x − x1) + 1)10≤x≤0.5 + ((x − x3) + 1)10.5<x≤1, where 1

is the indicator function, x1 = 0.375, x3 = 0.625. s is chosen to be piecewise linear
to calculate the characteristics accurately for this experiment. We observe that both
Monte-Carlo schemes can converge to the analytical solution provided enough agents,
and therefore the diverging characteristics near the source do not impose too much
sensitivity issue, provided that accuracy is not a concern.

4.2 Finite Difference Scheme

To select an appropriate finite difference scheme for solving (4.1), we note that

the swimming direction changes across x1 and x3. Moreover, the Frobenius analysis

indicates a possible blow-up (discontinuity) at the sink, while always having a smooth

solution at the source. To take those into account, we adopt techniques for handling flux

direction changes and producing smooth solutions for rarefaction waves in building our

finite difference scheme. In comparison, characteristic curves of P− are well-behaved

(See Fig. 3.8 for an example.): dt
dx

= 1
s−(x)

is bounded, and P− is known to have

a bounded and continuous analytical solution. Thus we expect its finite difference

scheme to be relatively simple to build. Therefore, we focus our discussion on building

a scheme for calculating P+.

53



We base our numerical scheme on the first order upwind scheme for the follow-

ing reasons: The solutions of P±(x) depend heavily on s±(x). Given that s±(x) are

arbitrary, P± are not necessarily smooth, especially when we have a blow-up. In this

case, higher order methods tend to introduce large non-physical oscillations in our ex-

periments near the blow-up, and sometimes result in an unstable scheme. For example,

in Fig. 4.5, the Richtmyer two-step Lax–Wendroff method with explicit source terms

tends to have oscillations for small value of F and for large value of |s′(x1)|, whereas

in some cases it does produce an answer consistent with our analytical result. For

this reason, we decide not to use this Richtmyer two-step Lax–Wendroff scheme. As a

result, we want to limit ourselves to monotone and total variation diminishing (TVD)

schemes to produce a physical solution. Therefore, we use only first order methods.

We are aware that the Lax-Friedrichs scheme can naturally handle two different flux

directions of P+ and is quite robust, however it introduces too much viscosity, and

does not produce an expected blow-up at x1 even when the analytical result suggests

so. See Fig. 4.6 for an example. In the end, we choose the simple and robust first

order upwind scheme with necessary adaptations discussed below. See Fig. 4.8 for its

performance.

Note that in our case the flux direction of P+ is different inside and outside of

(x1, x3). For the ease of discussion, rewrite the fluxes in (4.1) asM+(x, t) = s+(x)P+(x, t)

M−(x, t) = −s−(x)P−(x, t).

(4.30)

Further, we impose that x1, x3 not on our spatial grid to avoid conducting finite dif-

ferences directly on the singularities. Indeed, the two grid points closest to x1, x3 are

special and the following (4.31, 4.32) do not apply. Fig. 4.7 represents the schematic

diagram of calculating P+ without including the source term F (P− − P+).

For a grid point x ∈ (0, x1) ∪ (x3, L), the flux direction for P+ is to the right,
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Figure 4.5: The numerical solutions of Σ = P+ + P− come from the Richtmyer two-
step Lax–Wendroff scheme, for 3 systems with different F and different piecewise linear
s(x). Let β = |s′(x1)|, x1 = 0.375, x3 = 0.625. Specifically, s(x) = (−β(x − x1) +
1)10≤x≤0.5 + (β(x − x3) + 1)10.5<x≤1, where 1 is the indicator function. This scheme
tends to have non-physical oscillations for small value of F and large value of |s′(x1)|.
Plot (a) is the common initial condition for the 3 systems such that P±(x, 0) = 0.5.
All 3 systems are terminated at t = 10 to approximate the equilibrium. Plot (b) has
s′(x1) = −1, F = 0.5. Plot (c) has s′(x1) = −1.3, F = 1. Both (b) and (c) render non-
physical oscillations. Plot (d) has s′(x1) = −1, F = 1 and produces a result consistent
with the analytical solution.

therefore the upwind scheme is

P+(x, t+ ∆t) = P+(x, t)− ∆t

∆x
[M+(x, t)−M+(x−∆x, t)]

+ F [P−(x, t)− P+(x, t)] ∆t.

(4.31)

Similarly, for a grid point x ∈ (x1, x3) the flux direction for P+ is to the left and thus

the upwind scheme is

P+(x, t+ ∆t) = P+(x, t)− ∆t

∆x
[M+(x+ ∆x, t)−M+(x, t)]

+ F [P−(x, t)− P+(x, t)] ∆t.

(4.32)

Denote the two grid points, x1,l and x1,r, closest to x1 from the left and the side

respectively. The flux for P+ at x1 must be 0 at all time following (4.30): s+(x) has a
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Figure 4.6: The numerical solution of Σ = P+ + P− coming from the Lax-Friedrichs
scheme. Here s(x) is (4.40) and we expect an integrable singularity for Σ at x1 = 0.375
at the steady-state . The Lax-Friedrichs scheme introduces too much viscosity that
smooths out the blow-up.

simple root at x1 and P+ has at worst an integrable singularity. Therefore in the finite

difference scheme, we approximate this zero-flux condition by imposing the flux M+ to

be 0 at x1,l and x1,r:

M+(x1,l, t) = 0 = M+(x1,r, t). (4.33)

Following the upwind principle we arrive at

P+(x1,l, t+ ∆t) = P+(x1,l, t)−
∆t

∆x
[0−M+(x1,l −∆x, t)]

+ F [P−(x1,l, t)− P+(x1,l, t)] ∆t;

(4.34)

P+(x1,r, t+ ∆t) = P+(x1,r, t)−
∆t

∆x
[M+(x1,r + ∆x, t)− 0]

+ F [P−(x1,r, t)− P+(x1,r, t)] ∆t.

(4.35)

At the grid point x closest to x3, the Frobenius analysis suggests a smooth
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Figure 4.7: Schematic diagram of the finite difference scheme described in (4.31 - 4.36)
to calculate P+. The fluxes at x1,l and x1,r are set to be 0, hence the lighter shade of
gray. Here we did not include the source term F (P− − P+) for a clearer view.

solution for P+ near x3, hence we introduce numerical viscosity by using the Lax-

Friedrichs scheme

P+(x, t+ ∆t) = P+(x, t)− ∆t

2∆x
[M+(x+ ∆x, t)−M+(x−∆t, t)]

+
1

2
[P+(x+ ∆x, t)− 2P+(x, t) + P+(x−∆x, t)]

+ F [P−(x, t)− P+(x, t)] ∆t.

(4.36)

For P−, the flux direction is always the left, and the upwind scheme is straight

forward:

P−(x, t+ ∆t) = P−(x, t)− ∆t

∆x
[M−(x+ ∆x, t)−M−(x, t)]

+ F [P+(x, t)− P−(x, t)] ∆t.

(4.37)

Here, suppose

c = max{max
x
|s+(x)|,max

x
|s−(x)|} (4.38)

is the global maximum of swimming speeds for both directions, and we need to choose

∆x and ∆t accordingly so that the Courant-Friedrichs-Lewy (CFL) condition

c∆t

∆x
≤ 1 (4.39)

is satisfied.
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Figure 4.8: The numerical solutions of Σ = P+ + P− come from our modified upwind
scheme, for 3 systems with different F and different piecewise linear s(x). The settings
are identical to that of Fig. 4.5. This modified upwind scheme does not have non-
physical oscillations for all cases considered here when compared to the Richtmyer two
step Lax-Wendroff scheme, and does not introduce too much viscosity to damp the
blow-up when compared to the Lax-Friedrichs scheme. Note that we only have the
closed-form analytical solution for setting (d) available.

4.3 Results

In this section, we compare the analytical solutions against our numerical results

for validation.

4.3.1 s− 1 Has No Roots

4.3.1.1 s(x) > 1, x ∈ [0, 1]

We plot the steady-state analytical solution together with an agent-based Monte-

Carlo simulation in Fig. 4.9 for an example: here we used an s(c) that is a linear

function of c for demonstration, i.e., a higher toxin concentration linearly corresponds

to a lower speed. We observe that the maximum of prey’s density is achieved where

the toxin has the highest concentration, the position of the Karlodinium.
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Figure 4.9: Points represent the result from a Monte-Carlo simulation of the system
(3.15) after it relaxes to being stationary. Lines represent its corresponding analytical
solution. Here c is calculated from (2.17) with γ = 0.532154, β = 0.2, κ = 0.2 and
s = −3c + 17. Note that s(x) reaches its minimum at γ, leading to the maximum
density for both P+ and P−.

4.3.1.2 s(x) < 1, x ∈ [0, 1]

Although the process in finding its analytical solution is identical to the case

when s(x) > 1, the result is quite different. See Fig. 4.10 for an example where we

still use s(c) that is linear with c, but with different coefficients so that 0 < s(x) < 1.

Note that prey’s density Σ stays relatively flat due to the constraint of s(x) and there

is no clear aggregation when s < 1.

4.3.2 s− 1 Has Roots

4.3.2.1 s′(x1) ≤ −1

In this case, P+ has an integrable singularity at x1. First we present the con-

vergence study by comparing the steady-state analytical solution (3.94-3.97) with its

59



Figure 4.10: Points represent the solutions from a Monte-Carlo simulation of the system
(3.15) after it relaxes to being stationary. Lines represent its corresponding analytical
solution. Here c is calculated from (2.17) with γ = 0.532154, β = 0.2, κ = 0.2 and
s = −c+ 5.5.

large-time numerical solution using a finite difference scheme, assuming s(x) is piece-

wise linear. s(x) is chosen to be piecewise linear here since µ(x) in this case has a

closed-form expression that can be evaluated exactly. Specifically, we choose:

s(x) =

−x+ 9
8
, x ∈ [0, 1

2
],

x+ 1
8
, x ∈ (1

2
, 1].

(4.40)

We plot in Fig. 4.11 the number of mesh points against the error in η calculated from

(3.74) in the log-log scale to validate our numerical scheme.

We then plot in Fig. 4.12 the numerical solution for s(x) derived from the toxin

concentration discussed in (2.17), with s(c) = −3c + 16. Note that in this case, the

location of the maximum in prey density does not coincide with the location of the

maximum toxin concentration (x ' 0.532 on the plot). Instead, the spike occurs at x1,

the location of the sink. It is also a global maximum for Σ. Also, near the source x3,

P± stays regular at steady-state.
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Figure 4.11: Plot A is the log-log plot for the averaged error in L1 norm, i.e.,

1

N

N∑
n=0

|ηnum(n) − η∗|, where ηnum(n) is the numerical value for η at the n-th mesh

point, η∗ ' −0.98384 is the analytical value, and N is the number of mesh points.
It shows that our upwind scheme converges at O(∆x), where ∆x = 1

N−1
is the mesh

size. In plot B, the discrete points are from the finite difference scheme at a large
time to approximate the equilibrium, and the solid lines are analytical solutions from
(3.94-3.97). Here s is the piecewise linear function described in (4.40)

4.3.2.2 −1 < s′(x1) < 0

We construct s(x) = −c(x) + 6 such that s′(x1) ' −0.805 in Fig. 4.13. From

the Frobenius analysis, the leading orders terms of P+ = O(1) + O(|x − x1|0.242) for

x ' x1. Hence P+ is finite at x1. It is not differentiable at x1 but it does have a local

maximum there. Again, near x3, P± stays regular at steady-state. See Fig. 4.13 for its

plot.
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Figure 4.12: The discrete points are generated from the finite difference scheme on
(3.15) at a large time to approximate the equilibrium. Solid lines are just connecting
the discrete points. Here c is the same from Fig. 4.9 but s = −3c + 16 in order for
s− 1 to generate two roots. s′(x1) ' −2.41556, leading to an integrable singularity for
P+.

Figure 4.13: The discrete points are generated from the finite difference scheme on
(3.15) at a large time to approximate the equilibrium. Solid lines are just connecting
the discrete points. Here s′(x1) ' −0.80518. In this case, ν(x1)− 1 ' 0.24195 > 0, P+

does not have the integrable singularity and is therefore finite at x1.
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Summary of Results

In summary, for all cases of s ± (x) that we consider, the analytical methods

we proposed in finding the steady-state distribution of the prey yield consistent results

with data from the numerical schemes. Specifically, we see examples of the Monte-Carlo

scheme we proposed in Sec. 4.1 working for single-signed s±(x). Also, we numerically

verified the first order convergence of the finite difference scheme we proposed in Sec.

4.2.

We also directly observe from the plots that the type of aggregation (or no

aggregation at all) from prey depends heavily on the exact form of s±(x): When

s+(x) > 0, the prey aggregates around the predator; When s+(x) < 0, there is not

much aggregation; When s+(x) has two roots where x1 is the sink root and x3 is

the source root, the plots verify the existence of aggregation near x1. Specifically, the

numerical scheme verifies the conclusion from the Frobenius analysis that if s′+(x) ≤ −1

then there is an integrable singularity at x1; if −1 < s′+(x) < 0 and 1
s′+(x)

6∈ Z then

there is only a local maximum of the prey density at x1. Moreover, the numerical

result verifies that at x3, the steady-state density P± is always finite, as suggested by

the Frobenius analysis.
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Chapter 5

CONCLUSION

In this thesis, we have examined in 1-D how prey plankton can form aggregations

under the influence of Karlotoxin, a compound secreted by their predator Karlodinium

that slows down the prey’s swimming speed. Specifically, we studied the density of

prey under the generalized Goldstein-Kac framework, where the prey swims in a run-

and-tumble fashion with varying speed, and the run time between adjacent tumbles

(direction changes) is drawn independently from an exponential distribution. Further,

we assume that the toxin does not influence the tumbling.

In this final chapter, we at first summarize the analysis results from our model

and relate them to their biological impact. Then we dive into the analytical and numer-

ical methodologies that we implement, and the insights they provide for understanding

the model. We specifically mention their contributions to generalizing or expanding

existing research. We end the chapter by discussing future research directions under

this topic.

For the analysis of the model, we start by examining the case when the toxin

concentration is stationary, representing the case when the Karlodinium’s location is

fixed and the Karlotoxin level has reached its steady-state. For this case, we are

able to fully solve for the density of prey at any given time analytically. At steady-

state, the prey aggregate at the location where they swim the slowest due to the high

concentration of toxin, regardless of the initial conditions. We conclude that Karlotoxin

passively emitted from a stationary predator leads to prey aggregation.

Then we suppose that the Karlodinium swims in one direction with constant

speed. We start by finding the steady-state distribution of the toxin concentration in
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a translating reference frame. We analytically find the steady-state density of the prey

under the steady-state toxin field. Here, the relative speed between the predator and

the prey characterizes the model: Whether the relative speed has roots or not leads to

different system dynamics, as discussed below.

When the prey speed is strictly faster than the predator (i.e., s − 1 > 0),

aggregation occurs at the place that minimizes the relative speed. It is the place where

the Karlotoxin has the highest concentration, which is the location of the predator.

When the prey speed is strictly slower than the predator (i.e., s − 1 < 0), there is no

clear sign of aggregation. Such results suggest that the Karlotoxin slows down and

accumulates fast-moving prey, but does not have much effect in aggregation if the prey

is already swimming slower than the predator. This is in agreement with the previous

case’s conclusion when the predator is assumed stationary: The prey always swim

no slower than the predator since the predator speed is 0, and we demonstrated the

presence of aggregation.

When their relative speed has roots, assuming a sink-type root at x1 and a

source-type root at x3, there is always aggregation at the sink root but not at the source

root. Moreover, the prey’s density at the sink can become an integrable singularity,

leading to a population blow-up when the relative speed’s slope at the sink is steep

enough: s′(x1) ≤ −1. Note in this case the maximum density of prey is not achieved at

the predator’s location but at the sink. With the presence of sink and source roots, we

see that the location of the prey aggregation depends not only on the prey’s response

to the toxin, but also on the bio-locomotion of the predator. Overall, depending on

the exact shape of s(x) as influenced by the Karlotoxin, the maximum density of prey

can occur at the location of the predator or in the wake of the predator’s motion.

In the procedure of forming our analytical solutions, we heavily utilize tech-

niques for analyzing linear hyperbolic systems. In the case of having a stationary toxin

concentration, we generalize the original Goldstein-Kac system with constant move-

ment speed to having an arbitrary movement speed s(x). The solution is achieved by
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mapping from the spatial domain in x to another domain in y with units of time. Phys-

ically y is the time to swim from 0 to x under no direction switches. We showed that

the domain mapping is in effect calculating the system’s characteristic curve starting

at x = 0. This mapping technique has been used in previous works for analysis or

conducting agent-based simulations (Kaplan et al., 1964; Angelani and Garra, 2019),

but the physical interpretation of y and its connection with the system characteristics

were not formulated to the best of our knowledge.

The Goldstein-Kac system is commonly written in its telegraph equation form

for finding analytical solutions (Kaplan et al., 1964; Kac, 1974; Hillen, 2002). However,

in existing work, this interpretation was mostly limited to the original Goldstein-Kac

system with a constant or piece-wise constant speed. By representing the extended

system in its flux form M±(y, t), instead of in its density form P±(x, t), we are able to

transform the system into the telegraph equation and solve it using Fourier series. We

also note here that this technique is not limited to only periodic boundary conditions,

and in general should be considered a valid approach when the system has identical

traveling speeds in both directions.

We also examined the system from the perspective of its characteristic curves.

A swimmer follows a characteristic curve t(x) in its run phase, and can instantaneously

switch to another characteristic curve when it tumbles to its next run phase. Although

the characteristic curves for P+ we observe bundle near x1, we should not conclude

just from the characteristics that all swimmers following s+ will aggregate near x1

eventually, due to not taking direction switches into account. We could also formulate

a general agent-based Monte-Carlo for the extended Goldstein-Kac system based on

the characteristics. This interpretation allows us to understand when the agent-based

Monte-Carlo would not perform well: For example, the presence of a source root makes

following an exact characteristic curve starting near the source root an ill-posed prob-

lem, because the characteristics originate closely to the source diverge quickly, making

the simulation highly sensitive to the initial distributions of P±. Since our model does

come from a rather simple physical system, the poor performance of the agent-based
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simulator indicates the system in this case may be modeled differently. We leave the

examination of other models to future work.

Under the presence of roots from the relative speed, the system is no longer

strictly hyperbolic. Since most analysis work for hyperbolic systems assumed no roots

in Λ(x) in their characteristic forms (3.17), our tools for finding the steady-state solu-

tion are limited. In this case, we choose to conduct a local analysis using the method

of Frobenius at the sink root and source root to provide necessary clues on forming

the analytical solution, especially when the Monte-Carlo simulation does not work.

Specifically, we found a possible blow-up at the sink, while the source always has a

smooth solution. Though the method of Frobenius is a commonly used technique for

analysing ODEs, its usage was often limited to the simple case where σ1 − σ2, the dif-

ference of the two indicial roots, is not an integer. We instead have examined in detail

when σ1 − σ2 ∈ Z, and list the iterative formulas for calculating the coefficients in the

Frobenius solution. From the method of Frobenius, the analytical steady-state solution

(3.94-3.97) of the system covers all cases within our modeling assumptions, including

when σ1 − σ2 ∈ Z; Further, one can compute in a case-by-case basis to investigate

whether there is a blow-up under a smooth s(x). We are aware that the method of

Frobenius limits our analysis to systems with smooth s(x), and we would like to see

local analysis methods that are suitable for more generic choices of s(x).

For the numerical methods for validating our analytical solutions, we priori-

tize the agent-based Monte-Carlo because it directly simulates the physical system we

are modeling. This Monte-Carlo scheme introduces no temporal discretization errors

and therefore produces much more accurate locations at the agent level. Also, we

use domain mapping for the Monte-Carlo to effectively avoid repeatedly calculating

the characteristics during each calculation of location, greatly speeding up the compu-

tation. However, when the system introduces singularities, the Monte-Carlo method

becomes highly sensitive to initial conditions of P±, and we switch to finite difference

methods for verification as a result. Because finite difference is based on the model

PDEs, it is not directly influenced by this agent-level ill-posedness, though the scheme
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needs to be adapted accordingly to handle the singularities. We propose a modified

first order upwind scheme with necessary adaptations to handle the change of swim-

ming directions near the sink, and the diverging characteristics near the source for P+.

It is a robust scheme that can handle all situations within our modeling framework,

and it is tested to be numerically consistent with a known steady-state analytical solu-

tion. In our experiment, we find that a second order scheme, the Richtmyer two-step

Lax-Wendroff method, only works in some cases, and otherwise produces non-physical

oscillations. It will be a worthwhile future investigation to find a higher order finite

difference scheme that can generally solve the extended Goldstein-Kac system with

or without singularities. For the computation time, to get approximately the same

level of accuracy, the finite difference approach is in general faster than the Monte-

Carlo. Although by taking advantage of parallel computations in Python and using

vectorization, the Monte-Carlo can be sped up significantly.

For future works, apart from the previously mentioned cases, a natural direc-

tion is to further analyze the Goldstein-Kac system under different or more general

conditions. One can work on quantifying the procedure of forming an aggregation (or

a blow-up whenever present) in the extended Goldstein-Kac system, since we currently

limit mostly to the steady-state. For instance, estimating the time in forming effective

aggregations where the density is above a threshold. Also, how the system behaves

under different boundary conditions is worth the investigation and several meaningful

cases have already been studied by Angelani and Garra (2019). Moreover, we can as-

sume that the swimming speed also takes influence from the toxin’s chemical gradient,

and study the system analytically or numerically under chemotaxis as well. Another

direction is to introduce the predator-prey population dynamics that is observed real-

istically: The prey can be consumed, and both the predator and prey reproduce based

mostly on their nutrient level. In a 2-D or 3-D setting, this could allow us to further

investigate the conditions for population blow-up of the Karlodinium, and could lead to

developing applicable preventive measures to control their harmful algae blooms. Go-

ing beyond 1-D typically requires different modeling techniques, and we expect to see
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heavy use of numerical methods especially Monte-Carlo. Overall, there are still many

open problems in the predator-prey population dynamics to study in 2-D and 3-D.

Tackling them will not only advance the quantitative understanding of the population

dynamics, but also create new tools and insights for conducting stochastic modeling in

general.
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Appendix

DERIVATION AND PROOF

A.1 η as a global constant

We aim to show that η is the same constant across the domain.

Proof. At first it is clear that η is constant within each Ii. Denote the value of η in

each Ii as ηi. Since x2 is arbitrary, we must have η2 = η3. We now prove η1 = η2 and

η4 = η3:

Consider the original integral conservation forms of (3.15) then sum them up

over Ω = [xa, xb] ⊂ [0, 1], a subinterval of the periodic domain:

∂

∂t

∫ xb

xa

Σdx+ (s∆− Σ)
∣∣∣xb
xa

= 0.

Now consider the steady-state: for any Ω the temporal differentiation term is 0. Let

Ω = [x3 − ε, x3 + ε]:

(s∆− Σ)
∣∣∣x3+ε

x3−ε
= η4 − η3 → 0, as ε→ 0. (A.1)

Hence η3 = η4. Similarly one can prove η1 = η2. Thus η is a constant throughout the

domain.

A.2 Proof of lim
x→x1
|µξ|=∞ and lim

x→x3
µξ = 0

Lemma 1. µ near xi = x1, x3 has the form

µ = |x− xi|−ν(xi)GµTµ(x), (A.2)

where Tµ(x) is a Taylor series with constant term 1, Gµ is a non-zero constant.
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Proof. We will perform the analysis for µ1(x) near x1 with x < x1. As a reminder,

µi(x) is defined on (xi−1, xi), i = 1, 2, 3, 4. For the rest of the 3 cases: µ2 near x1, µ3, µ4

near x3 the same procedure follows. Suppose s(x) = 1 +
∞∑
j=1

sj(x − xi)j near xi, we

have the following:

µ1(x) = exp

[∫ x

0

2

(s+ 1)(s− 1)
dz

]
= exp

[∫ x

0

2

(2 + s1(z − x1) + ...) (s1 + s2(z − x1) + ...) (z − x1)
dz

]
= exp

[
1

s1

∫ x

0

1

z − x1

(
1− (

s2
1 + 2s2

2s2

)(z − x1) +O(z − x1)2

)
dz

]
= exp

[
1

s1

ln|x− x1|−
1

s1

ln(x1)− 1

s1

∫ x

0

s2
1 + 2s2

2s2

+O(z − x1)dz

]
= |x− x1|−ν(x1)GµTµ(x) (A.3)

for some Taylor series Tµ(x) with constant term 1, and a non-zero constant Gµ.

Lemma 2. ξ near xi = x1, x3 can be written as

ξ = 2P+(s− 1)− η (A.4)

with the forms below: When ν(xi)− 1 6∈ Z:

ξ =

(
2
∞∑
j=1

sj(x− xi)j−1

)(
|x− xi|G+

1,iT
+
1,i(x) + |x− xi|ν(xi)G+

2,iT
+
2,i(x)

)
− η. (A.5)

When ν(xi) = 1:

(A.6)
ξ =

(
2
∞∑
j=1

sj(x− xi)j−1

)(
|x− xi|G+

1,iT
+
1,i(x) + |x− xi|2G+

2,iT
+
2,i(x)

+ |x− xi|G+
2,i ln|x− xi|T+

1,i(x)
)
− η.

When ν(xi)− 1 ∈ Z− {0}:

(A.7)
ξ =

(
2
∞∑
j=1

sj(x− xi)j−1

)(
|x− xi|G+

1,iT
+
1,i(x) + |x− xi|ν(xi)G+

2,iT
+
2,i(x)

+ |x− xi|KG+
2,i ln|x− xi|T+

1,i(x)
)
− η.
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As a reminder, G+
2,3 = 0 in (A.5-A.7), so that P± stay integrable.

Proof. From (3.34) we get ξ = 2P+(s − 1) − η, together with the Frobenius series

representations of P+ at xi we arrive at the result.

Theorem. lim
x→x1
|µξ|=∞ and lim

x→x3
µξ = 0.

Proof. As a reminder, ν(xi) = − 1
s′(xi)

, with ν(x1) > 0 and ν(x3) < 0. Using (A.3,

A.5-A.7), for ν(x1)− 1 6∈ Z:

(A.8)
µξ =

(
2
∞∑
j=1

sj(x− x1)j−1

)(
G+

2,1GµTµ(x)T+
2,1(x)

+ |x− x1|1−ν(x1)G+
1,1GµTµ(x)T+

1,1(x)
)
− η|x− x1|−ν(x1)GµTµ(x);

for ν(x1) = 1:

(A.9)
µξ =

(
2
∞∑
j=1

sj(x− x1)j−1

)(
|x− x1|G+

2,1GµTµ(x)T+
2,1(x) +G+

1,1GµTµ(x)T+
1,1(x)

+G+
2,1Gµ ln|x− x1|Tµ(x)T+

1,1(x)
)
− η|x− x1|−1GµTµ(x);

and for ν(x1)− 1 ∈ Z− {0}:

µξ =

(
2
∞∑
j=1

sj(x− x1)j−1

)(
G+

2,1GµTµ(x)T+
2,1(x) + |x− x1|1−ν(x1)G+

1,1GµTµ(x)T+
1,1(x)

+ |x− x1|1−ν(x1)KG+
2,1Gµ ln|x− x1|Tµ(x)T+

1,1(x)
)
− η|x− x1|−ν(x1)GµTµ(x).

(A.10)

Near x1, from ν(x1) > 0, we have |x − xi|−ν(x1) dominating in (A.8-A.10) as x → x1.

Therefore lim
x→x1
|µξ|=∞.

For ν(x3), using G+
2,3 = 0:

(A.11)
µξ =

(
2
∞∑
j=1

sj(x− x3)j−1

)(
|x− x3|1−ν(x3)G+

1,3GµTµ(x)T+
1,3(x)

)
− η|x− x3|−ν(x3)GµTµ(x);

Since ν(x3) < 0, it is immediate that lim
x→x3

µξ = 0.
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A.3 Calculating the constants a1-a4 and η

We aim to show how (i)-(iv) are constructed. For convenience, first denote the

constant

ai = ãiη, (A.12)

then we introduce the definition of Ii(x) and rewrite ξi(x) as in Table A.1:

Table A.1: Definitions of µ, I and ξ in each interval.

Ii(x) µi(x) ξi(x)

i = 1, x ∈ [0, x1)

∫ x

0

sµ1(z)

s2(z)− 1
dz exp

(∫ x

0

2

s2(z)− 1
dz

)
η

µ1(x)
(−2I1(x) + ã1)

i = 2, x ∈ (x1, x2]

∫ x2

x

sµ2(z)

s2(z)− 1
dz exp

(
−
∫ x2

x

2

s2(z)− 1
dz

)
η

µ2(x)
(2I2(x) + ã2)

i = 3, x ∈ (x2, x3)

∫ x

x2

sµ3(z)

s2(z)− 1
dz exp

(∫ x

x2

2

s2(z)− 1
dz

)
η

µ3(x)
(−2I3(x) + ã3)

i = 4, x ∈ (x3, 1]

∫ 1

x

sµ4(z)

s2(z)− 1
dz exp

(
−
∫ 1

x

2

s2(z)− 1
dz

)
η

µ4(x)
(2I4(x) + ã4)

We note that

1 = lim
x→0+

µ1(x) = lim
x→x−2

µ2(x) = lim
x→x+2

µ3(x) = lim
x→1−

µ4(x), (A.13)

and as a result

0 = lim
x→0+

I1(x) = lim
x→x−2

I2(x) = lim
x→x+2

I3(x) = lim
x→1−

I4(x). (A.14)

Therefore, using (I) we get (i):

lim
x→0+

ξ1(x) = lim
x→1−

ξ4(x) ⇒ ã1 = ã4 ⇒ a1 = a4. (A.15)

Similarly, using (II) we get (ii):

lim
x→x−2

ξ2(x) = lim
x→x+2

ξ3(x) ⇒ ã2 = ã3 ⇒ a2 = a3. (A.16)
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We then use (III) to get (iii):

lim
x→x−3

µ3ξ3 = 0 = lim
x→x−3

−2ηI3(x) + ã3η.

Therefore

ã3η = 2I3(x−3 ) ⇒ a3 = 2I3(x−3 ) = 2

∫ x−3

x2

sµ3(z)

s2(z)− 1
dz. (A.17)

Similarly from (IV) to (iv):

ã4η = −2I4(x+
3 ) ⇒ a4 = −2I4(x+

3 ) = −2

∫ 1

x+3

sµ4(z)

s2(z)− 1
dz. (A.18)

Within each interval Ii we can also use the formula (3.32) to compute Σ:

Σ(x) =
1

2

(
ξ(x) + η

s(x)− 1
+
ξ(x)− η
s(x) + 1

)
=
sξ + η

s2 − 1
.

Since each ξi is known up to by the constant multiple of η, we use (V):
∫ 1

0
Σ(x) = 1 to

get (v):
4∑
i=1

[∫
Ii

s(x)ξi(x) + η

s2(x)− 1
dx

]
= 1. (A.19)

Specifically we can let

Σ(x)

η
=



2s
µ1(x)

(−I1(x)−I4(x+3 ))+1

s2(x)−1
, 0 ≤ x < x1

2s
µ2(x)

(I2(x)+I3(x−3 ))+1

s2(x)−1
, x1 < x ≤ x2

2s
µ3(x)

(−I3(x)+I3(x−3 ))+1

s2(x)−1
, x2 < x < x3

2s
µ4(x)

(I4(x)−I4(x+3 ))+1

s2(x)−1
, x3 < x ≤ 1

= Σ0(x), (A.20)

which no longer depends on η, to get

η =
1∫ 1

0
Σ0(x)dx

. (A.21)
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