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Abstract

Advertising is a crucial component of marketing and an important way for
companies to raise awareness of goods and services in the marketplace.
Advertising campaigns are designed to convey a marketing image or message to
an audience of potential consumers and television commercials can be an
effective way of transmitting these messages to a large audience. In order to meet
the requirements for a typical advertising order, television content providers must
provide advertisers with a predetermined number of “impressions” in the target
demographic. However, because the number of impressions for a given program is
not known a priori and because there are a limited number of time slots available
for commercials, scheduling advertisements efficiently can be a challenging
computational problem. In this case study, we compare a variety of methods for
estimating future viewership patterns in a target demographic from past data.
We also present a method for using those predictions to generate an optimal
advertising schedule that satisfies campaign requirements while maximizing
advertising revenue.
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1 Background
The use of advertisements as a means for marketing consumer goods has been com-

mon practice for centuries. Mass distribution of advertisements through newspapers

was first made possible by the printing press, but it was the advent of the radio and

the television in the twentieth century that ultimately revolutionized advertising by

allowing companies to transmit marketing messages into millions of homes around

the world simultaneously [1]. Today, advertising is an over $500 trillion dollar global

industry, and although advertising through digital media is growing rapidly, tele-

vision remains the primary advertising medium with total television advertising

expenditures making up approximately 40% of the worldwide total [2].

Advertising on “linear” (traditional live, not on-demand) television typically con-

sists of an arrangement between content providers/programmers (TV networks such

as ABC, NBC and Fox or cable operators such as Comcast or Cox) and advertis-

ing agencies in which the networks/operators are paid to run commercials in order

to reach a desired audience. This audience is typically specified in demographic or
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psychographic terms, such as “women 18 - 54”, or “people concerned with health

and fitness.” A campaign’s marketing target can be quantified by three measures:

impressions, which is the total number of times the message or ad is seen by a

member of the target audience, reach, which is the number of unique members of

the target groups exposed to the ad, and frequency, which is the average number

of times the ad is viewed by each member of the target group that is reached by

the ad. When a content provider agrees to fill an advertising order, they commit

to running the commercial as many times as necessary until the desired number

of impressions (and possibly reach and frequency) have been obtained. Since the

available commercial time in a given time frame is limited and each order that a

content provider is able to fill provides additional revenue, it is of interest to meet

each impression target in such a way that leaves broadcast time available for ad-

ditional orders. Therefore, before an order can be accepted, content programmers

must assess whether the number of impressions can be achieved in an acceptable

time-frame and whether the budget for the order is large enough to warrant using

broadcast time to provide those impressions.

In order to make this determination, it is necessary to be able to generate a sched-

ule that satisfies the order constraints in an efficient way. However, the generation

of optimal advertising schedules poses a number of challenges. First of all, one must

know the viewership demographics of each television program. Unfortunately, this

is not known in advance and can only be estimated from past viewership data.

Secondly, depending on the content provider and time-frame, there can be a large

number of possible orders and available commercial slots along with a large number

constraints on what schedules are acceptable. This makes finding an optimal sched-

ule a computationally intensive problem that cannot usually be solved by hand.

For this reason, naive approaches to scheduling lead to wasted resources and disen-

chanted audiences when ads fail to reach the interested consumers efficiently and

must be aired repeatedly in order to meet impression targets.

Here, we address two aspects of this interesting mathematical problem. First,

using data modeled statistically mimic real TV viewership behavior as reported,

for example by The Nielsen Company [3], we explore a number of methods for

predicting the number of impressions of future programming (Section 2) . These

methods make use of spectral analysis, machine learning, Kalman filtering and dis-

tance scores. Second, we demonstrate that when combined with advertising orders,

these predictions can be used to formulate a nonlinear optimization problem that

can be solved using standard integer programming techniques (Section 3). Finally,

we outline a method for extending earlier results to account for the reach and fre-

quency of an advertisement (Section 4). This work was sponsored by clypd Inc. and

made possible by the 2015 Mathematical Problems in Industry Workshop.

2 Predicting Number of Impressions
In order to generate predictions for the viewership and demographics of future

programs, we used simulated past program viewership data provided by clypd Inc.

Since precise data on the viewership of commercials was not available, we assume

that program viewership data is representative of the viewership of advertisements

as well. Figure 1 shows a time series for the number of impressions on one particular
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channel over a period of about 273 days. Qualitatively, the signal is noisy with large

spikes in the viewership.
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Figure 1 Impressions per hour. Number of impressions for each hour over the course of 273 days
starting from October 23, 2014 on one particular channel.

2.1 Spectral Analysis

Although the data appears noisy, there are clear periodic trends in the data. These

are mostly likely driven by the periodic nature of the channel programming. In

order to identify these trends, we assume that the number of impressions, S(t) can

be decomposed into a deterministic, periodic part P (t) and a stochastic part η(t),

S(t) = P (t) + η(t). (1)

We attempt to filter the signal to remove η(t), leaving behind P (t) by first filling

in missing data using linear interpolation and then performing a Fourier transform

on the data and taking only the dominant modes in the power spectrum.

For this filtering scheme, we used Matlab’s fft and ifft algorithms to compute

the power spectrum and then removed all frequencies with amplitude less than a

given threshold Athresh. We write the full signal as

S(t) = A0 +

N∑
j=1

(Aje
ikjt/T +A∗je

−ikjt/T ), (2)

where t is the time (in hours), N is the number of frequencies in the transform,

T is the total duration of the signal, Aj and A∗j are complex amplitudes (conju-

gates of each other), and kj are dimensionless frequencies. For our data set, we

have N = 3275, and the total duration of the signal is T = 6551 hours ≈ 273 days.

This corresponds to 6551 data points S(0), . . . , S(6550) and 6551 Fourier coeffi-

cients (distinguishing between Aj and A∗j ) and therefore, representation (2) exactly

reproduces S(t).
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(c) Reconstructed Data (Athresh = 15, 000)
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(e) Reconstructed Data (Athresh = 20, 000)

Figure 2 Total viewership. (a,b): unfiltered data and power spectrum (frequency has units of
day−1). (c,d): filtered signal and power spectrum with Athresh = 15, 000. (e,f): filtered signal and
power spectrum with Athresh = 20, 000.
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Figure 3 Viewership of males 65 and older (a,b): unfiltered data and power spectrum (frequency
has units of day−1). (c,d): filtered signal and power spectrum with Athresh = 2, 000. (e,f): filtered
signal and power spectrum with Athresh = 3, 000.
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We decompose the signal S(t) as follows

S(t) = A0 +
∑

j:|Aj |>Athresh

(Aje
ikjt/T +A∗je

−ikjt/T )

︸ ︷︷ ︸
filtered signal, P (t)

+
∑

j:|Aj |≤Athresh

(Aje
ikjt/T +A∗je

−ikjt/T )

︸ ︷︷ ︸
noise, η(t)

(3)

where the signal is defined as

P (t) = A0 +
∑

j:|Aj |>Athresh

(Aje
ikjt/T +A∗je

−ikjt/T ). (4)

while the noise is defined as

η(t) =
∑

j:|Aj |≤Athresh

(Aje
ikjt/T +A∗je

−ikjt/T ). (5)

Therefore, noise can be eliminated by removing all frequency modes j such that

|Aj | ≤ Athresh. In other words, which Fourier modes are considered part of the

signal and which are part of the noise depends solely on the cut-off Athresh.

2.1.1 Analysis of the signal

The resulting signal is displayed in Figures 2 (for the general viewership) and 3

(for males 65 and older). Power spectra are shown for rescaled frequencies kj/T

which have units of inverse time. In Figure 2, we see that there are “spikes” at

k/T = i/7 per day for i = 1, . . . , 7. There are also spikes at k/T = 0 and k/T = 2

per day. Broadly speaking, the power spectra reveal that the predictable portion of

the signal contains nine dominant frequencies/periods for viewer behavior

1. The zero mode in which the television is always on or off, regardless of the

time (k/T = 0 per day)

2. Viewing patterns that repeat weekly (k/T = 1/7 per day)

3. Viewing patterns that repeat twice per week (k/T = 2/7 per day)

4. Viewing patterns that repeat three times per week (k/T = 3/7 per day)

5. Viewing patterns that repeat four times per week (k/T = 4/7 per day)

6. Viewing patterns that repeat five times per week (k/T = 5/7 per day)

7. Viewing patterns that repeat six times per week (k/T = 6/7 per day)

8. Viewing patterns that repeat daily (k/T = 1 per day)

9. Viewing patterns that repeat twice daily (k/T = 2 per day)

These behaviors do not necessarily refer to the same members of the viewership. The

frequencies above also appeared in different demographic groups. However, males

and females 65 and older did not exhibit these frequencies (see Fig. 3) suggesting

that older members of the population have qualitatively different viewing habits.

We should note, however, that upon taking different 7-week subsets of the data,

some of the spikes at k/T = 1/7, 2/7, 3/7, . . . , 6/7 no longer appear. That is, the

k/T = 0, k/T = 1 and k/T = 2 per day modes are the most robust.

In summary, viewership patterns are periodic with both daily and weekly fre-

quency components. The weekly pattern is shown as a solid black curve in Figure
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Figure 4 Predicted week-long viewership trend. The signal (for channel 7287) exhibits clear

periodicity with dominant frequencies k/T = 1
7
, 2
7
, . . . , 7

7
per day and k/T = 2 per day.

4. This figure indicates the median number of impressions over a typical week along

with confidence intervals. The distribution of impressions at a given time in the

week is found from the first 38 weeks of data. 90% confidence intervals (dashed

light blue) are calculated by taking the 5th and 95th percentiles of the distribu-

tion. We see that during the evening of each day, there is a rise in the viewership.

Saturday seems to be the hardest to predict since it has the highest variability in

impressions. The red curve shows the viewership over the 39th week, which mostly

falls within the confidence intervals.

2.1.2 Analysis of the noise
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Figure 5 Distribution of noise data points. A histogram of the data points in the time-series for
the noise η(t) (obtained using the cut-off Athresh = 20, 000) is displayed along with fitted normal
and t Location-scale distributions. The mean and standard deviation of the best-fit normal pdf are
µ = −2.7 and σ = 32. The parameters of the best-fit t Location-scale pdf are
(µ, σ, ν) = (−6.2, 20, 3).

We now examine the noise η(t), after removing the periodic signal using Athresh =

20, 000. We assume that η is a time-homogeneous sequence of random variables with
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a different realization for every t:

Prob[x ≤ η(t) ≤ x+ dx] = f(x)dx. (6)

Attempts at fitting this data to various well-known probability distributions reveals

two distributions that yield a good fit: normal and the t location-scale distributions

(see Fig 5) with t-location-scale distribution yielding a better overall fit. For a

normal distribution, the we obtained the best-fit N(µ, σ2) with µ = −2.7 and

σ = 32. For the t location-scale distribution with probability density function

f(x) =
Γ[(ν + 1)/2]

σ
√
νπΓ(ν/2)

[
[(x− µ)/σ]2 + ν

ν

]− ν+1
2

, (7)

we found that the best-fit parameters were µ = −6.2, σ = 20 and ν = 3.

2.1.3 Viewership as a stochastic process

Figure 6 Definition of spike time. As highlighted in the schematic, spike time is defined as the
beginning of a series of impressions that exceed a certain threshold. In our analysis, the threshold
is set to be the 95th percentile of the data.

One notable feature of S(t) is that large spikes seem to occur randomly in time.

We define the spiking event time as the time when the impressions signal crosses

a fixed threshold from below (see Fig. 6). Here we choose the threshold to be

the 95th percentile of the available impressions data points. In Figure 7, we show

that the distribution of waiting times τ between consecutive spikes appears to be

approximately exponentially distributed:

Prob[t ≤ τ ≤ t+ dt] = λ exp(−λt)dt. (8)

This suggests that the spiking has no memory (spiking is approximately Markovian)

and occurs at a Poisson rate of λ ≈ 0.015 per hour, so that the mean time between

spikes is about 69 hours. The analysis of spiking time was performed on unfiltered

data S(t). One might also consider spikes in the noise left over from the filtering,

η(t). However, this yields similar results because the periodic signal generally has

small amplitude.
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Figure 7 Distribution of spike times. The time between two spikes in viewership approximately
follows an exponential distribution. ksdensity is a Matlab routine that attempts to find the pdf
associated with given data.

2.2 Machine Learning Approach

Although spectral analysis of viewership data provides insight into the mechanisms

that contribute to the observed trends, this approach assumes periodic behavior and

ignores programming information. These findings can be helpful for filling in missing

data and for estimating viewership of new programming, but an approach that takes

into account the programming could potentially explain both the periodic behavior

and the noise. We therefore implement a machine learning algorithm to predict

the number of impressions in a time slot by learning from past data. The machine

learning task is defined with the following attributes: program ID (nominal), day of

the week (nominal) and time of the day (numeric). The output class is the number

of impressions.

We explored two different approaches. First, we treated the output class as nu-

meric. A number of machine learning methods are suitable for this task, and we

tested k-nearest neighbor, neural networks, linear regression, regression tree, and

k-star. The best performing algorithm was 1-nearest neighbor. The root relative

square error for this method was 61% (100% would correspond to the error in

naively guessing the mean of all impressions).

Second, we divided the output class into 5 bins, and tested 4 algorithms: decision

trees, random forest, naive Bayes, and random tree. Decision tree and random

forest performed equally well - the error was 44% (compared with 80% from naively

guessing the correct bin).

A learning curve is shown in Figure 8. The fact that the curve did not plateau

shows potential for more accurate prediction given more data. The fact that testing

error decreases with training error demonstrates that this approach does not over-fit

the data.

2.3 Kalman Filtering

We also investigated the use of Bayesian estimation and Kalman filtering to predict

the number of impressions for a program. In order to do this, we neglected any sam-

pling issues that may be present in the data and assumed perfect data. We treated

the number of interested viewers as fixed with a particular probability of watching

the program or not. This probability can be modeled by a binomial distribution
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Figure 8 Learning curve for decision tree machine learning algorithm. The lack of a plateau
suggests that the algorithm could be improved with more data. Given the small range of
variability, alternative decision trees should be explored.

because of the two possible values; however, due to the large sample size of viewers,

we can apply the Central Limit theorem and approximate the distribution with a

normal distribution [4].

For a Bayesian estimation, a prior probability distribution and likelihood func-

tion must be assumed in order to formulate an initial prediction. After this initial

prediction is made, the new data is observed and is used to update the probability

distribution and gives a posterior probability distribution. For our purposes, this

posterior distribution was then used as our prior for predicting the next week [5].

The number of impressions, S, for each week w was modeled by a Gaussian with

mean µ(w) and standard deviation σ. While we allow µ to vary from week to week,

we keep σ fixed for simplicity. Under the Bayesian framework, we view µ(w) as an

unknown parameter which we will represent by a subjective probability distribution.

We can think of µ(w) as a measure of the popularity of the show at week w, while

the actual viewership will have an unpredictable fluctuation from week to week due

to external factors. The standard deviation σ measures this inherent variability in

weekly viewership.

To find a reasonable value for the fixed σ, the available data was divided into a

particular number of bins. For each bin of data, the standard deviation was found,

and then all of the standard deviations were averaged together to get an average

standard deviation. This was repeated multiple times with varying numbers of bins

in order to choose the optimal (smallest) standard deviation. The smallest value

found was then used as σ for S.

To understand the distribution of µ, a recursive Bayesian estimation was used. To

start, a weak prior probability distribution was chosen for µ based on a Gaussian

fit to a histogram of 39 weeks of historical viewership data for a given time slot

on a given channel on a given day. These histograms and their Gaussian fits are

illustrated in Figure 9 for 7 different weekly time slots, namely 8 p.m. on the given

day of the week and a given channel. In particular, the prior distribution for µ will

depend on the time of the week (and channel) under consideration. Bayes’ rule is

applied in the usual way to update the prior distribution for an upcoming week with

the likelihood of the data, once collected, to obtain a posterior distribution for µ on

that week. This posterior distribution is then taken as the prior distribution for µ
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Figure 9 Impressions by day. (Left) Histogram of the number of impressions during the 8 p.m.
slot for each day of the week over 39 weeks. (Right) Approximating normal distribution of
available data.

on the following week. The likelihood model, as described above, is Gaussian, so the

recursive Bayesian estimation procedure reduces to a simple version of the Kalman

filter, with the predicted (prior) distribution of the parameter µ at the next week

taken to be the same as the posterior distribution on the current week. The evolving

value of µ is used as a point estimate for the expected number of impressions for a

given channel on a given day of the week at a given time.

In order to assess the performance of this model, we chose the first 20 weeks of

data as the “training” data and then tested the model against the last 19 weeks.

We tested 7 such data sets, namely the viewereship of a given channel at 8 p.m. on

one of the 7 days of the week. For every day of the week the relative errors between

the predicted impressions and observed number of impressions for the last 19 weeks

were computed. The root mean square (RMS) of the relative errors was calculated

as the measure of error for our model. The RMS error for each day of the week

was below 30%, where days such as Tuesday, Friday and Saturday were under 10%.

This suggests that our model is able to make reasonably accurate predictions for



Panaggio et al. Page 11 of 24

the number of future impressions given the data from the first 20 weeks. These

results are displayed in Table 1. The table also includes an example of our model’s

prediction for a week (39th week) for a particular network at 8:00pm.

Day Mon Tues Wed Thurs Fri Sat Sun

Date 2/2 2/3 2/4 2/5 2/6 2/7 2/8

Model 83902 101720 65465 50160 65032 101120 63138

Actual 87204 105940 62146 39267 60376 93997 53142

Rel. Error 0.0379 0.0398 0.0534 0.277 0.0771 0.0758 0.188

RMS for Day 0.27 0.0903 0.2203 0.2016 0.0804 0.0883 0.1983

Table 1 Impressions estimate for February 2-8, 2015 for a given network at 8:00pm. The model
estimates are given along with the observed number of impressions. The relative errors for the
displayed week is calculated and compared to the root mean square determined from all of the 39
weeks.

2.4 Distance scores

One shortcoming the previous two approaches is that they require accurate data

about the viewers of a particular program to train the algorithm. However, for new

programming it is necessary to generate predictions for the number of impressions

with limited data. To overcome this challenge, it is helpful to consider the viewer-

ship trends of similar programs. We therefore created a difference score to identify

appropriate similar programs for comparison. Given two programs, p1 and p2, at

times t1 and t2 respectively, we define a function ∆(p1, t1, p2, t2) that returns a

score measuring how different those programs are at those times in terms of their

demographic ratios. The idea is that the viewership breakdown of future television

shows can be predicted by studying the breakdown of similar shows that have aired

in the past.

First we let Dp,t be the demographics information for program p at time t (where

t includes information about day of the week and time slot during the day, ex:

Monday from 3pm to 4pm).

Dp,t = (d1, d2, ..., dN )

where di is the number of impressions from the i-th demographic (ex: females ages 21

to 24) and N is the number of demographic fields in the data (in our case N = 30,

with 15 age ranges for both males and females). Now let Ip,t =
∑N
i=1 di, be the

total number of impressions for program p in the time slot t. Let D̂p,t =
Dp,t
||Dp,t||1 =

Dp,t/Ip,t which is Dp,t normalized in the `1 norm. D̂p,t ∈ RN is a breakdown of the

viewership by demographic for program p at time t.

The distance score is defined as

∆(p1, t1, p2, t2) = ||D̂p1,t1 − D̂p2,t2 ||2, (9)

which is just the Euclidean distance between D̂p1,t1 and D̂p2,t2 in RN . Note that

this means that programs with lower scores are more similar because their viewer

demographics will be closer to each other in terms of the Euclidean distance.
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Program ID Day of showing Hour of showing ∆
Random Random Random 0.5128
Random Same Same 0.4845
Same Random Same 0.3146
Same Same Random 0.2842

Table 2 Average distance score for 100,000 randomly selected program pairings. The distance ∆ is
defined in equation (9).

Since we do not know where in the space our data sits, we randomly selected pairs

of programs to see how far apart they are on average, keeping certain program

attributes (such as program ID, day of showing, hour of showing) identical. Our

results are shown in Table 2. This reveals that the programming content is a better

predictor of the demographic data than the programming date and time.

This difference measure relies on the L2 norm, however alternative metrics might

also yield reasonable scores. For example, we could compute the difference between

Dp,t and Dp′,t′ using a dot product

〈D̂p,t, D̂p′,t′〉

resulting in a score between 0 and 1 (after dividing by a normalization factor).

These scores could be used to estimate viewership of new programs by averaging

the impression data from a group of similar programs. These predictions could then

be enhanced by correcting for the spectral properties of the viewing habits of each

demographic in the relevant timeslots. Then as additional data is collected, these

predictions could be adjusted using the Kalman filtering approach.

3 Optimal Scheduling using Integer Programming
In this section, we implement a method for creating an optimal schedule of adver-

tisements, given a set of orders from an advertising agency and predicted viewership

numbers such as those that could be generated using the methods outlined in Sec-

tion 2.

In order to formalize the optimization method we define the following notation

and assumptions:

• C is the total number of channels, and the subscript index c with 1 ≤ c ≤ C

is used to denote one particular channel.

• Nc is the number of commercial slots on channel c, and the subscript index

i with 1 ≤ i ≤ Nc is used to denote the corresponding slot. This index takes

into account both day and time. We assume the number of slots are specified

by programmers in advance.

• Pc,i indicates the price for commercial slot i on channel c. We assume these

prices are set by the programmer in advance.

• S(d)
c,i contains the number of impressions for slot i, demographic group d, on

channel c. We assume these values are provided in advance and that this data

is reliable.

• A gives the number of advertising orders, and the superscript index (a) with

1 ≤ a ≤ A denotes one particular order. We assume that all orders for a given

week are received in advance, that the schedule can be determined one week
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at a time, and that all advertisers have equality priority and therefore orders

accepted or rejected only on the basis of whether the order is likely to be

satisfiable.

• V(a) is a binary vector indicating the target demographics in the order for

advertiser a.

• S(a)
c,i contains the number of impressions for slot i, in the demographics spec-

ified by advertiser a, on channel c. In other words, S
(a)
c,i =

∑
d∈V(a) S

(d)
c,i . We

assume that all target demographics are of equal value to the advertiser and

therefore the desired number of impressions can be satisfied by any subset of

the target audience.

• B(a) represents the budget of advertising order a, and R(a) represents desired

impressions for order a. We assume that these requirements are strict and can

be implemented as hard inequality constraints for the solution.

• X(a)
c,i is a ‘binary matrix’ indicating whether advertiser a is assigned to slot i

on channel c. This is the schedule we are trying to find.

3.1 Problem Formulation

We now use this notation to express the scheduling problem as a constrained opti-

mization problem.

3.1.1 Constraints

The most basic constraint on a proposed schedule is that two advertisements cannot

air simultaneously on the same channel.

1. No overlap:

Only one advertiser can use a given slot on a given channel. Mathematically, this

can be stated as

∑
a

X
(a)
c,i ≤ 1.

This constraint can be modified to allow for variable length commercials by weight-

ing each entry in X
(a)
c,i by the commercial length for advertiser a and then changing

the right hand side to include the number of ‘time slots’ in each commercial break.

In addition to this, each order (a) that is accepted imposes two additional in-

equality constraints on the schedule.

2. Budget:

The total cost to each advertiser must not exceed their budget B(a). This implies

that

∑
c,i

X
(a)
c,i Pc,i ≤ B

(a).

Note that it may not be possible to satisfy every order, so if the total cost to an

advertiser is greater than 0, then we must also meet the target number of impres-

sions.

3. Impression Target:
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The total number of impressions (as given by S
(a)
c,i ) must exceed the campaign goal

R(a). In other words,

∑
c,i

X
(a)
c,i S

(a)
c,i ≥ R

(a).

Since this linear inequality only yields a feasible region if it is possible to satisfy

every order (which in practice is unlikely), we impose these constraints by solving

a sequence of optimization problems where R(a) are replaced with 0 for the orders

we are not able to fill. In Section 3.3, we propose a value function that can be used

to determine which orders should be eliminated.

The above constraints are necessary to obtain a usable schedule that satisfies the

advertising campaign goals. However, programmers may impose additional require-

ments on allowable schedules to prevent consecutive airings of the same commercial

(X
(a)
c,i + X

(a)
c,i+1 ≤ 1 for all i, c, a), commercials with adult content from airing

during children’s programming (X
(a)
c,i = 0 for particular i, c, a), etc. These and

any other requirements can be implemented by imposing additional inequality and

equality constraints on X
(a)
c,i . However, for simplicity, we omit these constraints in

what follows.

3.1.2 Objective function

Presumably, the advertising schedule is set by the programmer or an intermedi-

ary who is interested in maximizing advertising revenue. Therefore, the objective

function of interest is simply the total revenue which is given by

∑
a

∑
c,i

X
(a)
c,i Pc,i. (10)

3.1.3 Binary Integer Program

This optimization problem involves finding a vector inputs X (a vectorized version

of X
(a)
c,i ) that satisfies a set of linear constraints and that maximizes the value of

a linear objective function. If the inputs were real numbers, then this could be

solved with a linear program. However, X must contain binary inputs so therefore

we solved this using a binary integer program.

To implement this program, we write the inequality constraints as a matrix in-

equality

AX ≤ B

and the objective function as dot product

f(X) = P ·X,

where P is a vectorized version of Pc,i. This allows us to make use of MATLAB’s

built-in mixed integer linear programming algorithm from the optimization toolbox.

This algorithm consists of the following three steps [6, 7, 8]:

1. Solve the linear programming problem without the integer valued constraints.
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2. Use a heuristic algorithm to find a nearby feasible integer solution.

3. Perform branching to try to improve on the heurtistic feasible solution.

Depending on the data and parameters used, this algorithm occasionally finds a

solution which sells all of the time slots or it fills all of the order leaving some

time slots unfilled. These outcomes represent the global maximum for the revenue.

Other times, it cannot find a feasible solution at all. This suggests that a high

quality heuristic is necessary for finding feasible solutions to initialize the integer

program [9]. We explore one such heuristic in Section 3.2. One explanation for this

inability to find a feasible solution is the fact that it is not always possible to satisfy

all of the orders. To overcome this, we iteratively remove orders and instead choose

a subset of the orders that includes only the ones that are the most valuable (see

Section 3.3).

3.2 Greedy Algorithm

In order to generate a feasible solution both to initialize the integer program and

to compare to the results from the integer program, we also implemented a greedy

algorithm. In this algorithm, we generate a matrix V , where the rows are indexed

by the slot {i, c} and the columns are index by the advertiser a. We assign a value

to each entry of V for each advertiser. Then we choose the slot with the highest

value and assign that to the advertiser who gets the most value from that slot. The

value of slot {i, c} is for advertiser a is equal to

V
(a)
c,i =

(
S

(a)
c,i

R(a)

)
/

(
Pc,i
B(a)

)
(11)

which represents the fraction of the desired impressions that can be provided by

the slot divided by the fraction of the budget that must be used for the slot.

This process is repeated until there are no longer available slots, the orders have

all been met or no advertisers can afford a slot. At this point, incomplete orders

are removed and the process is repeated with the remaining orders until all orders

have been satisfied or removed.

3.3 Value function for individual orders

In order to determine which orders should be rejected, a systematic way of priori-

tizing orders is needed. Below, we propose a heuristic ranking scheme.

Step 1: Eliminate unreasonable orders

If the number of impressions desired is more than the size of the viewership for

that demographic (in the time allotted), then the order cannot be satisfied. These

orders should be rejected immediately. In other words, an order must be rejected if∑
c,i S

(a)
c,i < R(a).

Step 2: Monte Carlo Method

A Monte Carlo method can be used to estimate the number of feasible solutions for

each advertiser. We then assign a value proportional to that number.

1. First generate a random binary vector X
(a)
c,i for fixed a.
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2. Check to see if it is feasible.

3. Repeat N times.

Let F be an N by 1 vector indicating which candidate solutions are feasible. Then,

the fraction of solutions that are feasible is given by

W
(a)
MC =

F · 1
N

(12)

which we call the value function, and the orders that are more likely to be satisfiable

should be prioritized.

3.4 Extensions of the value function

This provides a simple method for identifying feasible orders. However, in practice

the decision making process might be more complex. For example, if rather than

having fixed time-slot prices advertisers were allowed to bid for a given slot, then

the advertisers with larger budgets relative to their demands should be prioritized

since their orders are likely to be both more satisfiable and more lucrative. Also, if

a variable scheduling horizon for orders is allowed (rather than focusing on a sin-

gle week at a time), then the urgency of the order should also be taken into account.

Modification 1: Weight by excess budget.

This value function can be modified to account for bidding on time slots by weight-

ing the feasible solutions by the price the advertiser would be willing to pay in

an auction. An advertiser should be willing to increase the bid by a factor of
B(a)∑

c,iX
(a)
c,i Pc,i

to remain under budget and ensure that their advertising campaign

order is accepted. So, given a set of random X
(a)
c,i from the Monte Carlo method

above, rather than just computing the fraction that are feasible, the feasible sched-

ules can be weighted to account for the amount of leftover money in the budget.

For a feasible solution j, the percentage of the budget that is unused is just

E
(a)
j =

B(a) −
∑
c,iX

(a)
c,i Pc,i

B(a)
.

Let F be an N by 1 vector indicating which candidate solutions are feasible. Let

E(a) be the percentages from above. Then the total value of an order would be given

by the average of this excess

W
(a)
BID =

F ·E(a)

N

and orders with larger average value should be prioritized. In order to balance both

feasibility and value, a balance of the Monte Carlo and bidding based values such

as

W
(a)
COMB = (1− r)W (a)

MC + rW
(a)
BID

was employed, where r represents the relative weight of the excess budget to the

feasibility.
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Modification 2: Weight by urgency.

In order to take into account variable time frames for orders, this value could fac-

tor in the fact that certain orders are more urgent than others. Orders that have

already been accepted will usually need to be prioritized over new orders. For new

orders, some orders with short time tables will be infeasible, others with short time

tables would need to be completed immediately, and orders with long time tables

may be saved for later, but not postponed so long that they become infeasible. This

modification was not implemented, but it warrants further exploration.

3.5 Results

In order to test this optimization scheme, we used a subset of the viewership data

over a single work week (Monday-Friday) between the hours 5:00am-12:00am for

three channels. We also assumed that impressions by demographic are constant over

the span of an hour (if there are two half hour shows in an hour we average the

impressions per demographic from both shows) and do not take into account any

uncertainty in the estimates of impressions per time slot. The results are displayed

below.

Figure 10 Optimal schedule schedule for a programmer with one slot per hour on three different
channels for an entire work week. The resulting schedule satifies the requirements for the top 49
orders over this span. The vertical axis corresponds to different advertiser’s orders while the
horizontal axis corresponds to the time slot index. Black corresponds to a slot being filled.

For this data set, an optimal schedule can be found that satisfies the top 49 orders

and fills all available ad time when orders are sorted using the Monte Carlo value

function. The optimal schedule is shown in Figure 10. With more orders, however,

the algorithm fails because it is unable to find a feasible solution. Thus iterative

reductions in the total number of orders are necessary before a satisfiable subset

of orders can be found. In contrast, the greedy algorithm always yields a feasible

solution (by automatically rejecting unsatisfied orders), but that solution may not

be close to optimal. With 149 orders (the total number of sample orders in our

data-set), a solution satisfying 112 orders that generates 91.8% of the maximum
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Figure 11 Run-time for computing an optimal schedule with a variable advertising time frame.
The integer program was initialized with a variable number of weeks and fixed set of 40 orders
(rescaled to match the number of weeks). These data points can be fit by a quadratic
y = 0.96535x2 with R2 = 0.994. This suggests that the computation time is proportional to the
square of the time frame.

allowable revenue is found in 0.57 seconds whereas the integer program finds the

optimal solution satisfying as many as 49 orders in 6.5 seconds.

In the our data set, adding more time slots by expanding the time horizon to sev-

eral weeks or using more channels with varied viewership allows us to accommodate

more orders, but it can also increase the computation time (see Figure 11). Thus

this method may be more suitable for smaller problems with fixed time horizons.

Scaling the algorithm to larger data sets and to include more complex constraints

(for example, to take into account the reach and frequency of an advertisement)

would require a hybrid approach involving multiple algorithmic frameworks. When

long time horizons, large numbers of channels or large numbers of orders must be

considered, one promising approach would be to segment orders and schedules into

smaller intervals and then apply this integer programming method to each interval.

The most efficient method for this segmentation would likely be dependent on the

data considered but there may be structural properties of this type of problem that

can be exploited. Therefore, scaling this method effectively would require a deeper

look at segmentation strategies that would allow for the large scale problem to be

divided into pieces that could be solved in parallel.

These results suggest that binary integer programming provides a flexible frame-

work for implementing the essential constraints and searching for optimal solutions.

However, the development of new heuristics and improvement of current heuristics

could be beneficial for scaling of the problem to more realistic sizes and warrants

further exploration.

4 Reach and Frequency
In addition to the total number of impressions, advertisers may also be interested

in specifying the desired reach and frequency of their advertisements. The reach of

an advertisement is the number of unique individuals who have received at least
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one impression of the advertisement, and the frequency of an advertisement is the

mean number of times the advertisement is seen by these individuals. From detailed

viewership data, we can express the reach of an advertisement by the following exact

formula:

R =

N(a)∑
j=1

S]ij (13)

where S]ij is number of new impressions made at time slot ij of the jth airing of

advertisement, and N (a) is the total number of times the advertisement is shown. To

reduce the notational complexity, we are dropping here the indices referring to the

channel and demographic group, essentially assuming we are focusing on a fixed

channel and a specified demographic group. This can be generalized in principle

to allow multiple channels and multiple demographic groups, with accompanying

complication in notation.

The formula for reach is to be contrasted with the formula for total number of

impressions made by the advertising campaign,

I =

N(a)∑
j=1

Sij

where Sij is the number of impressions (including both new and repeat viewers)

made at the time slot ij of the jth airing of the advertisement. S]ij by contrast only

counts those viewers on whom an impression was made at time slot ij , but not on a

previous airing of that advertisement. Consequently, to count reach, we must know

more about the viewership than simply the statistics for the number of impressions

likely to be made in each time slot. Put another way, the number of impressions

Si is only a function of the data at time slot i (and thus may be thought of as a

one-dimensional marginal distribution of the viewership data), whereas the number

of new impressions S]i depends not only on the statistics of time slot i by also

on statistics of previous time slots (and thus inherently involves joint distributions

of viewership data at different time slots). To make matters more complicated for

the purpose of schedule optimization, the number of impressions Si in a time slot

depends only on the time slot in which the ad is scheduled, whereas the number

of new impressions S]i depends not only on the time slot i but also the previously

scheduled time slots of the advertisement. The average frequency fortunately is

easily determined from the reach by the simple formula:

F = I/R.

4.1 Predictive Scheme for Reach

As noted above, the reach of a previously aired advertisement can easily be cal-

culated from historical data. However, predicting the reach of a proposed future

advertising campaign is a much more delicate matter. Even if the viewership of

future programs could be assumed to be identical to previous weeks, the reach

could be calculated for any proposed schedule, but this would be an expensive and
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unwieldy calculation. Either it would be necessary to do an online processing of

historical data, or it would be necessary to refer to an intractably large data struc-

ture which has precomputed reach scores for every feasible advertising schedule.

Including reach into the optimization scheme for the advertising schedule would, as

we show, introduce an inherent nonlinearity, and nonlinear optimization typically

requires additional iterations beyond that required for linear optimization. That

means many schedules will be proposed in the optimization, and thus the expensive

reach computation would be invoked many times. We therefore consider a simplified

way to estimate future reach. Such simplification is justified in particular because

future viewership cannot be perfectly predicted, so involving a expensive and pre-

cise computation for reach in the schedule optimization algorithm would seem to

be a misplaced effort.

We propose encoding the information needed for future reach calculations in a

two-slot function Pi,i′ which, for i < i′, represents an estimate of the fraction of

viewers at time slot i′ who also viewed time slot i. Under our standing simpilfy-

ing assumptions, Pi,i′ could be estimated from historical data, possibly using the

Kalman filtering idea in Section 2.3. If we allow future time slots to be associated

with programs different from those in the past, we could try to develop an inference

scheme for combining historical data on viewership of time slots with viewership

of programs. But this might still be attempting too fine a resolution. Since the

number of potential time slots in which a proposed advertisement could air within

a typical campaign window is large, such a detailed data-driven approach would

require the storage of P as an immense matrix, which would be at least 103 × 103

for a weeklong campaign even in our very simplified setting, and much larger in

practice. A more tractable approach might be to simply treat Pi,i′ as a function of

only i− i′, meaning essentially the time difference between slots (and possibly also

a measure of difference between channels for a multichannel campaign). We might

imagine that Pi,i′ begins as a decaying function of |i−i′|, but has peaks at multiples

of a day and a week for patterned viewer behavior. Perhaps historical data could

be fit to a sum of a small number of periodic functions with frequencies identified

by the spectral analysis in Section 2.1, with decaying amplitudes.

We now assume we have in hand some scheme for estimating the two-slot function

Pi,i′ , and now wish to estimate the reach of a proposed scheduling of the advertising

campaign in time slots {i1, i2, . . . , iN(a)}. According to formula (13), we need to

estimate the number of new impressions made with each airing of the advertisement,

and we propose to approximate this in terms of the estimated number of impressions

and the two-slot function as follows:

S]ij ≈ Sij
∏
j′<j

(1− Pij′ ,ij ). (14)

That is, the estimated number of new impressions is equal to the estimated number

of impressions, discounted by factors (1 − Pij′ ,ij ) representing the fraction of the

viewers of the jth airing of the ad who did not also see the prior j′th airing of the

ad. The approximation in Eq. (14) is conditional independence of the viewership

of all previous airings of the advertisement by the viewers of the jth airing of the
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advertisement. For a concrete example, for j = 3, the conditional independence as-

sumption is that whether viewers of the third airing of the advertisement watched

the first airing of the advertisement is independent of whether they watched the

second airing. Note that this is not the same as stating that a general viewer has

an independent chance of viewing the first and second airing of the advertisement

(unconditional independence). Indeed, if Pi1,i3 and Pi2,i3 were 0.95, then the prob-

ability model underlying the formula (14) would have a substantial positive corre-

lation between the viewers of the first and second airing of the advertisement. The

point of the conditional independence assumption is that we assume all such cor-

relations between the viewership of the various airings of the advertisement can be

well represented by an explicit model of the correlation between the viewer of each

airing j′ < j and the airing j under consideration, with the correlations between

the previous airings being implied (not neglected) by the conditional independence

assumption.

The conditional independence assumption can lead to either overestimates or

underestimates of the reach. For example, if the airings occur during successive

episodes of a program with a substantial committed core base who watches every

episode, the number of new impressions would be underestimated by formula (14).

On the other hand, if the airings of the advertisement involve some episodes re-

peated at different times during a week, the viewership of those airings would be

more negatively correlated than the conditional independence assumption, and the

number of new impressions could be overestimated by formula (14). This can be

verified under a simple model in which no viewer makes repeated viewings of the

same episode at different times. Some kind of conditional independence assumption

seems to be necessary to reduce the reach calculation to a complexity comparable to

the 2-slot statistic. Another natural way to invoke conditional independence is via

a Markov chain model, which would only attempt to explicitly model the repetition

in viewership between successive airings of the advertisement. Such a Markovian

approach appears less suitable than the conditional independence we suggest in the

previous paragraph for a couple of reasons. First of all, it is unclear how to deduce

the number of new impressions made on the third airing of an advertisement by

knowing how many viewers of the first advertisement saw the second advertisement,

and how many viewers of the second advertisement saw the third advertisement.

How does one infer from this the number of viewers of the third advertisement

who saw neither the first nor the second airing? Moreover, the Markovian approach

seems completely incapable of representing the likely strong repeat viewership of

a regularly airing program from one week to the next, if advertisements are also

aired in between those weekly episodes. So if the first and third airing of the ad-

vertisement took place one week apart in successive episodes, and a second airing

took place in between, one would expect a large number of repeat viewers between

the first and third airing, but not between the second airing and either the first or

third airing.
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4.2 Incorporation of Reach into Schedule Optimization

The approximate reach estimate developed in Subsection 4.1 can be expressed as a

polynomial function of the schedule vector X
(a)
c,i :

R(X
(a)
c,i ) =

Nc∑
i=1

X
(a)
c,i Si

∏
i′<i

(1− Pi′,iX(a)
c,i′),

where Nc is the number of slots available on the channel c under consideration.

Constraints involving reach (or frequency) would become smooth nonlinear con-

straints, and after relaxation from the integer constraint, could be approached by

the alternating direction method of multipliers [10].

4.3 Uncertainty Estimation for Reach and Frequency

For the purpose of building in safety margins in a schedule to avoid disappointing

an important advertising client, we might be interested in characterizing the risk

that a particular advertising campaign might miss the targets set by an advertiser’s

bid. The simplest characterization of uncertainty would be a standard deviation. If

the number of impressions Ii and the 2-slot characterization of repeat viewership,

Pi,i′ are directly estimated from historical data by one of the methods described

in Section 2, and then those methods could also be used to produce uncertainty

estimates. (Kalman filtering does this automatically.) The reach and frequency are

somewhat complicated functions of these variables, so in what follows, we describe

one simple way we might translate the uncertainty estimates of these variables to

an uncertainty estimate for reach and frequency.

We begin by assuming the uncertainty in the estimates of {Si}Nci=1 and {Pi,i′}1≤i<i′≤Nc
are all independent, and indicate the mean of a random variable Y as Ȳ and its

standard deviation as σ(Y ) (so variance is σ2
Y ). Because the variance of a sum of

independent random variables is the sum of the variances of each term, we can

therefore express the variance of the reach as a sum of the variances of the new

impressions:

σ2(R) =

N(a)∑
j=1

σ2(S]ij ).

The independence assumption does allow the variance of the new impressions,

σ2(S]ia) to be worked out in a closed form expression in terms of the mean and

standard deviations of {Si}Nci=1 and {Pi,i′}1≤i<i′≤Nc , but this expression is quite

long. We therefore compute an approximation to the variance that is valid when

the standard deviations of all the constituent random variables are small compared

to their means:

σ(Si)� S̄i, 1 ≤ i ≤ Nc,

σ(Pi,i′)� P̄i,i′ , 1 ≤ i < i′ ≤ Nc.

Then one can conduct a small noise expansion by writing every random variable in

the form Y = Ȳ + Ỹ , taking a Taylor expansion up to first order in the fluctuations
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S̃i and P̃i,i′ , and then computing the variance. We can thereby obtain:

σ2(R) ≈
N(a)∑
j=1

σ2(Sia)
∏
j′<j

(1−P̄ij′ ,ij )
2+

N(a)∑
j=1

j−1∑
j′′=1

S̄2
ijσ

2(Pij′ ,ij )
∏

j′<j,j′ 6=j′′
(1−P̄ij′ ,ij )

2

Actually this small noise expansion can be readily generalized to allow correlations

between the random variable models for {Si}Ni=1 and {Pi,i′}1≤i<i′≤N ; the same

strategy would produce further sums involving the covariances between all pairs of

these variables.

Applying the same small noise approximation to the frequency, we obtain an

estimate for its standard deviation:

σ2(F ) ≈ σ2(S)

R̄2
+
σ2(R)S̄2

R̄4

where

σ2(S) =

N(a)∑
j=1

σ2(Sij ).

Similar estimates can be made for the predictions for future numbers of impressions

thereby making it possible to estimate the inherent risk in any given schedule.

5 Conclusions
In this report, we analyzed the problem of optimally scheduling advertisements us-

ing several different methods. First, we analyzed historical data to obtain trends in

the viewership. We found that the viewership was strongly periodic and that devi-

ations from the periodic signal (noise) were approximately bell-shaped. We supple-

mented these analyses with predictions from several machine learning algorithms

for viewership, from a Bayesian procedure for predicting new program impressions

from the program’s target demographic, and a measure for comparing programs

in order to fill in missing or unknown data. Second, we developed an algorithm,

based on binary integer programming, to schedule advertisements. Given orders in

the form of a budget, number of impressions desired and demographic targets, the

algorithm produces a binary matrix that tells the media company how to sched-

ule advertisements in such a way as to maximize revenue. The algorithm can be

initialized with a schedule generated by a greedy heuristic. Finally, we developed

a theoretical framework to quickly estimate the reach (number of new impressions

made) of an advertisement. This framework approximates the number of new view-

ers through historical impressions data and a two-slot function, which gives the

fraction of viewers who watched the same advertisement in two time slots.

In summary, mathematical analysis can be an extremely useful tool for under-

standing how to best schedule advertisements. Techniques from probability, statis-

tics, data science, signal analysis and linear/non-linear programming can all be used

to improve and optimize advertising campaigns, give insight into viewership trends

and predict the reach of future television programs.
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